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 Abstract. We first of all consider what if the initial inflaton, were nearly zero instead of proportional to 

a Planck mass, in a SUSY type potential. Using the construction of Padmanabhan about general inflaton 

physics and the conditions of what are usual constituent slow roll requirements for inflation, and also of 

Kolb, Pi and Raby about a SUSY potential, we come up with the counter intuitive formulation of how usual 

tests for slow roll give the standard answers even if the inflaton in the SUSY potential as given by Kolb, 

Pi, and Raby is initially zero. The result, gives support to a formulation of VEV conditions used right after 

a Planck instant of time. As it is, we will from first principles examine what adding acceleration does    as 

to the HUP previously derived.. In doing so we will be tying it in our discussion with the earlier work done 

on the HUP.  The HUP results, so modified are appropriate for the Pre Planckian results and may explain 
why the slow roll formulation as given by Padmanabhan  holds where there is the phenomenon of 

2

SUSYV  for Pre-Planckian space-time . This leads to a very paradoxical result that in Pre Planckian 

physics that the traditional slow roll formulas are satisfied even if 
2

SUSYV  . But it also puts in 

extremely tight restrictions upon the formulation of the degree of freedom problem, as given in Eq. (26) 
in this document. 
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I. Introduction to the basic problem, as far as SUSY potential physics. 

Starting off with a summary of why ~ PlanckM    in 2

SUSYV 

situations, so the square of H, is > 0  

In this introduction we use the results of how we set the state for a modified Pre Planckian physics HUP. 

This will be leading to initial conditions which will lead to , later 
2

SUSYV  in Pre Planckian space-

time physics, which will in turn lead to our main analysis result that in the Pre Planckian Space-time, 

that 2

SUSYV  , will STILL lead to space-time conditions for which we have , the slow roll conditions, 

as outlined by Padmanabhan [1] , which merge seamlessly into the inflationary conditions, even if, in 

the Planckian space-time we have 2

SUSYV  . In the regime which we have 2

SUSYV  we have 

that ~ PlanckM    , for times t << Planck time interval. By the time we have 2

SUSYV  we have 

that ~ PlanckM  for Planck time. One of the findings will be that the square of the Hubble parameter, 

when ~ PlanckM    , will be > 0 only if 2

SUSYV  , which occurs when the time is in the Pre 

Planckian space-time regime and ~ PlanckM when time is Planck time in value, just before the advent 

mailto:Rwill9955b@gmail.com
mailto:abeckwith@uh.edu


 

 

 

 

 

 

of inflation. In doing so, if ~ PlanckM , 2

SUSYV  no longer holds. But to get to this derivation, we 

will attempt to set up a modification of the HUP which will be part of how ~ PlanckM    in 

2

SUSYV  situations, so the square of H, is > 0 . This will be linked to the modification of the HUP 

brought up, which is largely from [  2   ] . This leads to the satisfaction of the  Slow roll hypothesis, usual 

formulation still holding in the Pre Planckian regime, in spite of ~ PlanckM    , will be > 0 only if 

2

SUSYV   

II. Re Hash of discussion given in [ 2 ] about modification of HUP 

As stated in [ 2 ] we will be examining a Friedmann equation for the evolution of the scale factor, using 

explicitly  one case being when the acceleration of expansion of the scale factor is kept in, and the 

intermediate cases of when the acceleration factor, and the scale factor is important but not dominant. 

In doing so we will be tying it in our discussion with the earlier work done on the HUP but from the 

context of how the acceleration term will affect the HUP, and making sense of [2] 
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Namely we will be working with [2] 
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I.e. the fluctuation 1ttg   dramatically boost initial entropy. Not what it would be if 1ttg  . The 

next question to ask would be how could one actually have [2]  

                                                                        2
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In short, we would require an enormous ‘inflaton’ style   valued  scalar function, and 2 110( ) ~10a t 

How could   be initially quite large ? Within Planck time the following for mass holds, as a lower 

bound[ 2,3,4  ]   



 

 

 

 

 

 

                                                                          
 

2

2 22

2 ( )
graviton

tttt P

E V
m

Tg l


 


                               (4) 

Here, [ 2  ]   

                                                                          2 6. . ~ ( )~K E E V a                                                             (5) 

This is a crucial result which will lead to  ~ PlanckM    in 2

SUSYV  situations, so the square of 

the initial Hubble parameter even in Pre Planckian space time,  H, is > 0 

                       II  . What is the argument against the usual Heisenberg Uncertainty principle?      

We will be looking atg the likelihood of recovery of the usual Heisenberg uncertainty principle as would 
be seen if [2]                                 

                                                                        2
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In short, we would require an enormous ‘inflaton’ style   valued scalar function, and 2 110( ) ~10a t 
 . 

I.e. assuming a quantum ‘bounce with 
2 110( ) ~10a t  , but not zero, so as to have Eq.(2) render the 

usual Heisenberg uncertainty principle, would require a scalar value   initially of almost infinite value, 

and there is no reason this would occur. I.e. what we will attempt to do is to model inputs from what 
can be deduced via deconstructing the super symmetric models, as so beloved by the physics 
community. 

III. The SUSY potential utilized. And its role for ~ PlanckM    in 

2

SUSYV  situations, so  the square of H, is > 0 

Going to Kolb, Pi, and Raby, [  5 ] we outline certain problems with the usual SUSY models which in 

effect argues strongly against a scalar value   initially of almost infinite value. The target of what we 

are examining is an old but still referenced model of inflation in the case of a super symmetric potential 

of the form of a VEV, which is what we should be considering, namely, if we use a scalar value   of a 

Higgs field, with 

                                                   4 1 lnV SUSY VeV b
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With [  ]  a minimum value for Eq.(23) according to the first derivative,    , if  is the super symmetry 

breaking scale, and  
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Were this followed, we would also would have a defined mass, for the scalar field which is given in [   ] 
by the following   
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With a minimization of a SUSY style Eq.(7), and Eq. (9) below if Planckm  . The contention we have is 

that if one wanted to have Eq. (9) satisfied, that with the scale factor ALMOST zero, but not zero, that 

there is no way to have Planckm  , and to keep fidelity with the usual HUP relationships of change in 

energy times change in time as greater than or equal to h bar.  Here is the [  ] provided SUSY potential 
for a vanishing VeV [5] 
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I.e. this is still, with some tweaking a commonly accepted SUSY VeV model, with a minimum if 

Planckm  , and due to Eq. (10) we can argue pretty straight forwardly, that if Planckm  no longer 

holds, that the variation in the Pre Planckian metric as brought up in Eq. (10) will NOT allow for the 
resumption of the usual HUP  

So, E t   will in the Pre Planckian regime, break down [2]. We will next then consider what to 
expect if there is a dynamical systems treatment for an emergent VeV and what this says physically. 

IV. Examining what happens to Eq. (10) if in Pre Planckian Space time 
2

SUSYV  due to ~ PlanckM     

We will be looking at the value of Eq. (10) if ~ PlanckM    . In short, we have then that 
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If we use the following, from the Roberson-Walker metric[2,6,7]. 



 

 

 

 

 

 

2

2

2 2

2 2 2

1

( )

1

( )

( ) sin

tt

rr

g

a t
g

k r

g a t r

g a t d



  






 

  

   

            (12) 

Following Unruth [8,9]  , write then, an uncertainty of metric tensor as, with the following inputs  

2 110 35( ) ~10 , ~ 10Pa t r l meters             (13) 

Then, the surviving version of Eq. () and Eq. (8) is, then, if ~ttT   [2,8,9] 
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This Eq. (14) is such that we can extract, up to a point the HUP principle for uncertainty in time and 
energy, with one very large caveat added, namely if we use the fluid approximation of space-time[10] 

( , , , )iiT diag p p p                  (15) 

Then [2] 

 
 3

~ ~tt

E
T

V



                 (16) 

Then, 2

~ (1)

tt

tt

t E
g

Unless g O






  
                            (17) 

How likely is ~ (1)ttg O ? Not going to happen.  

V.  How we can justifying writing ~ ~ ~ 0rrg g g       values.  And other inequalities 

To begin this process, we will break it down into the following co ordinates. In the rr,  , and      

co ordinates,  we will use the Fluid approximation, ( , , , )iiT diag p p p    [2] with 
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If as an example, we have negative pressure, with 
rrT , T , and T  < 0, and p  , then the only 

choice we have, then is to set ~ ~ ~ 0rrg g g     , since there is no way that p  is zero 

valued. If so, then we will go to the behavior of Eq. (10) and 2

SUSYV  due to ~ PlanckM     

 

                            Va. Working with Eq. (10) as a link to 2

SUSYV  due to ~ PlanckM     

The key equation is to look at the following expression for the Hubble parameter, which is [1]  
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Here, we will be having   2

SUSYV  due to ~ PlanckM    because, then  

The key equation is to look at the following expression for the Hubble parameter, which is leading to      
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     Vc. Working with Slow Roll  If we are using Eq.(20) if ~ PlanckM     

From using Padmanabhan [1] , we have the following which we write as for slow roll parameters 
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Then, if ~ PlanckM     
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Note that this is commensurate with this K.E. as proportional to having the left side of Eq. (22) almost 
infinite in value and in turn that also relates to  
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Which due to [11] becomes similar to using Eq. (24) in  
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If we are in a very small Pre- Planckian regime of space-time, we could, then write Eq.(24) as  then  

proportional to 4g T [11] , with g initial degrees of freedom, leading to w = 1/3, and initial degrees 

of freedom as  
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As given by Kolb and Turner, the projected degrees of freedom max out about 110, while unorthodox  

treatment of  the same problem lead to an upper bound of about 1000. Needless to say though, the  

given Eq. (26) only works if there is an extremely small, almost zero inflaton value, as given by the   



 

 

 

 

 

 

following : ~ PlanckM    . This to counteract the enormity of the initial temperature.  We will say  

more about this topic later in subsequent publications.                      
. 

VI. Conclusion.  

We think the only explanation is that even if Eq.(21) and Eq. (22) are not satisfied with an almost zero 
inflaton magnitude that the only explanation we have is of a causal discontinuity which would 
effectively wipe out a good deal of the information and structure from Pre Plankian to Planckian space 
time, even if the behavior of Eq.(21) and Eq. (22) is commensurate with the Planckian slow roll 
condtions. We will write more of this in a subsequent publication. This will complete our full 
development of an extension of [12] as well as issues raised in [13] , and [14] where Corda calculated 
the magnitude of the Inflaton, which has results which we will try to reconcile as to our present 
theoretical developments. 
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