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Abstract 

The Hilbert book test model is a purely mathematical test model that starts from a solid foundation 
from which the whole model can be derived by using trustworthy mathematical methods. What is 
known about physical reality is used as a guidance, but the model is not claimed to be a proper 
reflection of physical reality. The mathematical toolkit still contains holes. These holes will be 
encountered during the development of the model and suggestions are made how those gaps can be 
filled. Some new insights are obtained and some new mathematical methods are introduced. The 
selected foundation is interpreted as part of a recipe for modular construction and that recipe is 
applied throughout the development of the model. This development is an ongoing project. The 
main law of physics appears to be a commandment: “Thou shalt construct in a modular way”. The 
paper reveals the possible origin of several physical concepts. This paper shows that it is possible to 
discover a mathematical structure that is suitable as an extensible foundation. However, without 
adding extra mechanisms that ensure dynamic coherence, the structure does not provide the full 
functionality of reality. These extra mechanisms apply stochastic processes, which generate the 
locations of the elementary modules that populate the model. 

All discrete items in universe are configured from dynamic geometric locations. These items are 
stored in a repository that covers a history part, the current static status quo, and a future part. The 
elementary modules float over the static framework of the repository. Dedicated mechanisms ensure 
the coherent behavior of these elementary modules. Fields exist that describe these elementary 
modules. An encapsulating repository supports these fields. Both repositories are formed by 
quaternionic Hilbert spaces. 

The model offers two interesting views. The first view is the creator’s view and offers free access to 
all dynamic geometric data that are stored in the eigenspaces of operators. The second view is the 
observer’s view. The observers are modules that travel with the vane, which represents the static 
status quo. The observers only perceive information that comes from the past and that is carried by 
the field that embeds them. This view sees the model as a spacetime based structure that stores its 
dynamic geometric data with a Minkowski signature. 
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If you think, then think twice. 

In any case, think frankly. 

1 Foreword of the author 
I am born with a deep curiosity about my living environment. When I became aware of this, I was 

astonished why this environment appeared to be so complicated and at the same time it behaved in 

such a coherent way. In my childhood, I had no clue. Later some unique experiences offered me 

some indications. After my retirement, I started in 2009 a personal research project to discover some 

of the clues. 

The “Hilbert Book Model” is the name of my personal research project. My interest in the structure 

and phenomena of physical reality started in the third year of my physics study when I was first 

confronted with how quantum mechanics was configured. I was quite astonished by the fact that its 

methodology differed fundamentally from the way that classical mechanics was done. So, I asked my 

very wise lecturer on what origin this difference is based. His answer was that the superposition 

principle caused this difference. I was not very happy with this answer, because the superposition 

principle was indeed part of the methodology of quantum mechanics, but in those days, I did not 

comprehend how that could present the main cause of the difference between the two 

methodologies. I decided to dive into literature and after some search I encountered the booklet of 

Peter Mittelsteadt, “Philosophische Probleme der modernen Physik” (1963). This booklet contained a 

chapter about quantum logic and that appeared to me to contain a more appropriate answer. 

Garrett Birkhoff and John von Neumann published in 1936 a paper that published their discovery of 

what they called “quantum logic”. Quantum logic is since then in mathematical terminology known 

as an orthomodular lattice. The relational structure of this lattice is to a large extent quite like the 

relational structure of classical logic. That is why the duo gave their discovery the name “quantum 

logic”. This was an unlucky choice, because no good reason exists to consider the orthomodular 

lattice as a system of logical propositions. In the same paper, the duo indicated that the set of closed 

subspaces of a separable Hilbert space has exactly the relational structure of an orthomodular 

lattice. John von Neumann long doubted between Hilbert spaces and projective geometries. At the 

end, he selected Hilbert spaces as the best platform for developing quantum physical theories. That 

appears to be the reason why quantum physicists prefer Hilbert spaces as a realm in which they do 

their modeling of quantum physical systems. 

Another habit of quantum physicists also intrigued me. My lecturer thought me that all observable 

quantum physical quantities are eigenvalues of Hermitian operators. Hermitian operators feature 

real eigenvalues. When I looked around I saw a world that had a structure that was configured from a 

three-dimensional spatial domain and a one-dimensional time domain. In the quantum physics of 

that time, no operator represents the time domain and no operator was used to deliver the spatial 

domain in a compact fashion. After some trials, I discovered a four-dimensional number system that 

could provide an appropriate normal operator with an eigenspace that represented the full four-

dimensional representation of my living environment. At that moment, I had not yet heard from 

quaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that 

happened more than a century earlier. Quaternions appear to be the number system of choice for 

offering the structure of physical reality its powerful abilities. Quaternions were already mentioned 

in the introductory paper of Birkhoff and von Neumann. Much later Maria Pia Soler offer a hard 

prove that Hilbert space can only cope with members of a division ring. Quaternions form the most 

extensive division ring. To my astonishment, I quickly discovered that physicists preferred a 

spacetime structure that features a Minkowski signature instead of the Euclidean signature of the 

quaternions. The devised Hilbert Book Model shows that in reality, both structures appear in parallel. 
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My university, the TUE, targeted applied physics, and there was not much time nor support for diving 

deep into the fundamentals of quantum physics. After my study, I started a career in high-tech 

industry where I joined the development of image intensifier devices. There followed my 

confrontation with optics and with the actual behavior of elementary particles. See: http://www.e-

physics.eu/#_What_image_intensifiers reveal. 

Only after my retirement I got sufficient time to dive deep into the foundations of physical reality. In 

2009 after the recovery of a severe disease, I started my personal research project that in 2011 got 

its current name “The Hilbert Book Model”. The author takes the freedom to upgrade the related 

papers in a steady rate. 

1.1 My papers 
I use vixra.org as my personal e-print archive: http://vixra.org/author/j_a_j_van_leunen . Vixra 

provides full two-sided open access and has a flexible revision service, which I use extensively. In this 

way, it is possible to follow how my ideas evolved. I put preliminary papers on my website 

http://www.e-physics.eu . There my papers are available in .pdf and in .docx format. I do not request 

copyright on these documents.  

I try to avoid the burden of peer review publishing. The peer review publishing industry has turned 

into a complete chaos. Since no omniscient reviewers exist and most existing reviewers are biased, 

peer review publishing cannot realize its promise. Instead I try to keep the quality of my papers at a 

high standard.  

The most recent versions of the author’s papers will appear on his website. Most of the older papers 

are superseded by newer ones that got different names. Older papers started with knowledge that 

was lectured in universities and or could be found in literature. Newer papers also contain 

corrections and discoveries that are made by the author 

Quite recently Microsoft introduced a new service. You can access it at http://www.docs.com . My 

personal link there is docs.com/hans-van-leunen. 

1.2 Text e-book 
“The Hilbert Book Test Model” is aimed to be a condensed description of the project, which contains 

all items that cannot be easily found in literature. Everybody is free to use or criticize its content. The 

author does not require copyrights. 

The author tries to derive everything from the selected foundation, but when necessary he accepts 

guidance from what he knows from the results of physical theories. In the first part of the paper the 

story will be told with a minimum of symbols or formulas.  

In the second part the results of the investigation are collected and reformulated by using symbols 

and formulas. This approach allows to deepen the investigation and offers a more precise 

formulation. 

The appendix contains subjects that are related to the project, but are not easily found in literature.  

http://www.e-physics.eu/#_What_image_intensifiers
http://www.e-physics.eu/#_What_image_intensifiers
http://vixra.org/author/j_a_j_van_leunen
http://www.e-physics.eu/
http://www.docs.com/
http://www.docs.com/hans-van-leunen
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2 Motivation 
Some scientists start a research project that has as target to develop a theory of everything. This is 
an implausible enterprise because the target is far too complicated to be comprehended by a human 
being. In fact, what these scientists pursue is the discovery of a foundation, whose extension 
automatically leads to a theory that in principle can cover all aspects of physical reality. I never had 
the intention to develop a theory of everything. Instead I am interested in the structure and the 
functioning of the lower levels of physical reality.  

I started a study in physics because I was interested in what destined my environment to be so 
complicated and yet controlled that environment such that what happens appears to be very well 
coordinated. The belief in a creator that settles everything seemed to me a far too simple solution. 
My environment must have a built-in principle that in one way or another installed the necessary 
coherence. That principle must therefore be incorporated in the foundation or in the lower levels of 
the structure of reality.  

If you think about it, then this foundation must be relatively simple. This means that this foundation 

can easily be comprehended by skilled scientists. The question now is how exactly this foundation is 

structured. A great chance exists that humans long ago discovered this structure. It is not necessary 

that they thought that this structure is the foundation of physical reality. They added this structure as 

a part to mathematics. Mathematics represents the library of self-consistent trustworthy exact 

human knowledge. Mathematicians support and maintain that library. Physicists apply that library. 

The challenge of the rediscovery of the founding structure is the fact that the extension of this 

structure to a more complicated structure must automatically restrict to a structure, which shows 

more features that can be recognized as features of physical reality.  

The simplest mathematical structures are sets and relational structures. Relational structures define 

what kind of relations between elements of a set are allowed. Relational structures exist in many 

forms. For example, the classical logic that we use to characterize a proper way of reasoning is in fact 

a relational structure. This logic describes what kind of statements are allowed and what 

relationships between these statements are tolerated. Sets that describe what kind of relationships 

between the elements of the set are tolerated are called lattices. 

The difficulty is not comprehending a suitable foundation. The difficulty is in finding a structure, 

whose extension is restricted such that it automatically leads to a base model, which has a similar 

structure and similar behavior as the lower levels of perceivable physical reality has. The most 

challenging requirement is that the foundation and its extensions must ensure the dynamic 

coherence of the developed model. 

History shows that the course of development of science not always follows a logical route. The 

discoverers of the structure that acts as a candidate for physical reality were searching for reasons 

why one of the known topological spaces could be used as a base for modelling quantum physical 

theories. They discovered that the set of closed subspaces of a separable Hilbert space has the 

relational structure of what they called quantum logic and what mathematicians later called an 

orthomodular lattice. 

This paper shows that it is possible to discover a mathematical structure that is suitable as an 

extensible foundation. However, without adding extra mechanisms that ensure dynamic coherence, 

the structure does not provide the full functionality of reality. These extra mechanisms apply 

stochastic processes, which generate the geometric locations of elementary modules that populate 

the model. 
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The author has long thought that the foundation and the lower levels of the structure of physical 

reality are not observable. However, recently the author concluded that a signature of these lower 

levels can be observed all over universe. This signature is shown by the fact that all discrete objects in 

universe are either modules or they represent modular systems. However, translating this signature 

into a mathematical structure requires deep insight in both modular construction and in 

mathematical structures. 
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3 Generating the base model 

3.1 Observation 
The foundation of physical reality must necessarily be very simple and therefore its structure must be 
easily comprehensible by skilled scientists. So, quite probable the structure was long ago discovered 
and added as a part to mathematics. Consequently, the best way to investigate the foundation of 
reality is to use mathematical test models. The rediscovery of this structure as a foundation of reality 
is a complicated task because extending this foundation must automatically lead to a higher level of 
the structure of physical reality that shows more features that can be recognized as features of 
physical reality. In addition, the lower levels of the structure of physical reality must leave some 
signatures that are visible in many facets of the universe.  

Several of such signatures exist. For example, the fact that all discrete items in universe are either 
modules or they are modular systems is probably a signature of the foundation or of the lower levels 
of the structure of physical reality. Considering this observation as a signature requires the 
investigation of the peculiarities of modular design and modular construction. That analysis learns 
that relations between modules and relations that are relevant inside modules or modular systems 
play a major role. Especially the relations that determine that an object is a module or is part of a 
module are important. It is quite probable that the foundation of physical reality is a relational 
structure. A relational structure is a set in which the relations that can exist between the elements 
are restricted in a well-defined way.  

About eighty years ago, a relational structure was discovered, which was thought to play a significant 
role in the description of physical reality by physical theories. The discoverers of the relational 
structure called it “quantum logic”. The mathematicians used a more technical name and called it 
“orthomodular lattice”. In their introductory paper the discoverers Garrett Birkhoff and John von 
Neumann showed that the set of closed subspaces of the somewhat earlier discovered Hilbert space 
has exactly the relational structure of an orthomodular lattice. With other words this Hilbert space is 
a realization of the orthomodular lattice. The question that arises now is whether this Hilbert space is 
also a realization of modules and modular systems. This question has a positive answer but the 
argumentation requires a deep dive into the concept of modularization and into advanced 
mathematics. 

More signatures exist but in this paper, we first focus on this one. 

3.2 Task 
The base model must include a simple foundation from which a dynamic geometric universe can be 

derived by extending the selected foundation in a coherent and straightforward way. The toughest 

task is to find a foundation that puts sufficient restrictions to its own extension such that it becomes 

comprehensible why the resulting model shows the degree of coherence that we know from 

observing reality. The nice part of this task is that obviously, an important part of that foundation 

was discovered long ago. However, that part alone is not enough to ensure sufficient coherence. The 

foundation must be helped by mechanisms that ensure extra coherence. These mechanisms are not 

part of conventional physical theories. In this paper, we will try to get more information about these 

mechanisms. 
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4 Modular construction 
Diving deep into the fundamental structure of physical reality requires a deep dive into advanced 
mathematics. Usually this goes together with formulas or other descriptions that are 
incomprehensible to most people. The nice thing about this situation is that the deepest foundation 
of reality must be rather simple and therefore it can be described in a simple way and without any 
formulas. For example, if the observed signature characterizes physical reality, then the most 
fundamental and most influential law of physical reality can be formulated in the form of a 
commandment:  

“THOU SHALT CONSTRUCT IN A MODULAR WAY” 
 

This law is the direct or nearly direct consequence of the structure of the deepest foundation. That 

foundation restricts the types of relations that may play a role in physical reality. That structure does 

not yet contain numbers. Therefore, it does not yet contain notions such as location and time. 

This law is intentionally expressed in the form of a commandment. It is not possible to express this 

law in the form of a formula, such as 𝐾 = 𝑚 𝑎 or 𝐸 =  𝑚 𝑐2. At the lowest level numbers that can be 

used as variables in formulas do not yet exist. The impact of the commandment is far more 

influential, than the impact of these famous formulas. 

Modular construction acts very economic with its resources and the law thus includes an important 

lesson:  

"DO NOT SPOIL RESOURCES!" 

4.1 Modular design 

Understanding that the above statements indeed concern the deepest foundation of physics requires 
deep mathematical insight. Alternatively, it requests belief from those that cannot (yet) understand 
this methodology. On the other hand, intuition quickly leads to trust and acceptance that the above 
major law must rule our existence! Modular design has the intention to keep the relational structure 
of the target system as simple as is possible. 
 
Modular design is a complicated concept. Successful modular construction involves the 
standardization of module types and it involves the encapsulation of modules such that internal 
relations are hidden from the outside. Systems become complicated when many relations and many 
types of relations exist inside that system, which must be reckoned when the system is analyzed, 
configured, operated, or changed. The reduction in relational complexity plays a significant role 
during system configuration. The ability to configure modular systems relies heavily on the ability to 
couple modules and on the capability to let these modules operate in concordance. 
 
The modular design method becomes very powerful when modules can be constructed from lower 
level modules. The standardization of modules enables reuse and may generate type communities. 
The success of a type community may depend on other type communities.  
 
An important category of modules are the elementary modules. This are modules, which are 
themselves not constructed from other modules. These modules must be generated by a mechanism 
that constructs these elementary modules. Each elementary module type owns a private generation 
mechanism.  
 
Another category are modular systems. Modular systems and modular subsystems are 
conglomerates of connected modules. The constituting modules are bonded. Often the modules are 
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coupled via interfaces that channel the information paths that are used by the relations. Modular 
subsystems can act as modules and often they can also act as independent modular systems. 
The hiding of internal relations inside a module eases the configuration of modular (sub)systems. In 
complicated systems, modular system generation can be several orders of magnitude more efficient 
than the generation of equivalent monoliths. This means that stochastic modular system generation 
gets a winning chance against monolithic system construction. 
 
The generation of modules and the configuration of modular (sub)systems can be performed in a 
stochastic or in an intelligent way. Stochastic (sub)system generation takes more resources and 
requires more trials than intelligent (sub)system generation. An inexperienced modular designer 
must first learn to discern which relations are relevant and which relations can be neglected. 
Predesigned interfaces that combine provide relations and require relations can save much 
resources. 
 
If all discrete objects are either modules or modular systems, then intelligent (sub)system generation 
must wait for the arrival of intelligent modular systems. 
Intelligent species can take care of the success of their own type. This includes the care about the 
welfare of the types on which its type depends. Thus, for intelligent modular systems, modularization 
also includes the lesson “TAKE CARE OF THE TYPES ON WHICH YOU DEPEND”. 
 
In reality, the elementary modules appear to be generated by mechanisms that apply stochastic 
processes. In most cases system configuration occurs in a trial and error fashion. Only when 
intelligent species are present that can control system configuration will intelligent design 
occasionally manage the system configuration and binding process. Thus, in the first phase, 
stochastic evolution will represent the modular system configuration drive. Due to restricted speed 
of information transfer, intelligent design will only occur at isolated locations. On those locations, 
intelligent species must be present. 
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5 Mathematical model 
We will treat some aspects that involve advanced mathematics. We mainly do that in a descriptive 
way. However, if they really elucidate, then we will apply formulas. In this model, we give new 
names to items that we want to discuss in detail. This eases the discussion. 
 
In a modular system, relations play a major role. The success of the described modular construction 
methodology depends on a particular relational structure that characterizes modular systems.  
 
In 1936 the discoverers of the orthomodular lattice published their discovery in a paper in which they 
called that lattice “quantum logic”. Garrett Birkhoff was an expert in lattice theory and John von 
Neumann was a broadly oriented scientist that was especially interested in quantum physics. 
“quantum logic” is a strange name because in the same paper the duo showed that the set of closed 
subspaces of a separable Hilbert spaces has exactly the relational structure of this orthomodular 
lattice. The name “quantum logic” is only comprehensible, because the relational structure of the 
orthomodular lattice is quite like the relational structure of classical logic and the elements of 
classical logic are logical propositions. It is not likely that the elements of the orthomodular lattice 
can be represented by logical propositions, but this immediately creates the question what kind of 
other objects the elements of the orthomodular lattice represent. The answer is that they represent 
storage locations of dynamic geometric data. Representations of modules are gathered in a subset of 
the lattice. This will be elucidated later. 

5.1 Separable Hilbert space 
The orthomodular lattice extends naturally into a separable Hilbert space. Separable Hilbert spaces 
are mathematical constructs that act as storage media for dynamic geometric data. Quantum 
physicists use Hilbert spaces as a base model in which they perform their quantum physical 
modelling. Each separable Hilbert space is a realization of the orthomodular lattice. 
 
Hilbert spaces are linear vector spaces and each pair of Hilbert vectors owns an inner product that 
represents a number, which is a member of a division ring. Hilbert spaces can only cope with number 
systems that are division rings. The inner product of two perpendicular vectors equals zero.  
Quantum physicists use the Hilbert space as a storage medium for dynamic geometric data. That 
happens in the form of eigenvalues of operators, which map some of the Hilbert vectors onto 
themselves.  

The Hilbert space appears to be no more and no less than a flexible structured repository for 
dynamic geometric data. However, the concept of the Hilbert space appears to be very flexible and 
very feature rich. This is mainly due to its support of division rings and its ability to embed Hilbert 
spaces inside an encapsulating infinite dimensional Hilbert space. 

5.2 Division rings 
For a number system, being a division ring means that every non-zero element of that number 
system owns a unique inverse. Only three suitable continuum division rings exist. These are the real 
numbers, the complex numbers, and the quaternions. Their rational subsets form discrete division 
rings. The quaternions form the most elaborate division ring and comprise the other division rings.  
Number systems exist in several versions that differ in the way that they are ordered. For example, a 
selected Cartesian coordinate system can order multidimensional number systems and subsequently 
a polar coordinate system can order the result. The imaginary part of the quaternionic number 
system represents a three-dimensional space that can be ordered in eight independent ways by a 
Cartesian coordinate system. The ordering affects the arithmetic properties of the quaternions. Left 
handed multiplying quaternions exist and right handed multiplying quaternions exist. [6] [7] [8] 
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 Representation of quaternions 
Quaternions will be represented by a scalar part that represents the real part of the quaternion and a 
three-dimensional vector part that represents the imaginary part of the quaternion. Bold type face is 
used for the imaginary parts. The real parts get a suffix  0. In many applications, the real part 
represents progression, while the imaginary part represents a spatial location. This representation 
concerns dynamic geometric data. Quaternions can represent other subjects, but in this paper the 
representation of dynamic geometric data plays a major role. 

 Quaternionic multiplication 
The quaternionic multiplication rule now follows from: 

 

ℎ = 𝑓 𝑔 = (𝑓0 + 𝒇) (𝑔0 + 𝒈) 

 

ℎ0 = 𝑓0  𝑔0 − ⟨𝒇, 𝒈⟩ 

 

𝒉 = 𝑓0 𝒈 + 𝒈 𝑓0 ± 𝒇×𝒈 

 

The± sign reflects that left handed and right handed quaternions exist.  

 Construction and dismantling of numbers 
Both Cayley and Conway-Smith produced formulas for constructing members of number systems 

from lower dimensional number systems [7]. The dimension increases with a factor two. The reverse 

process is also possible. The reverse procedure dismantles the numbers into two numbers that have 

a lower dimension. The dimension diminishes with a factor two. 

These procedures can be applied inside a quaternionic Hilbert space. There the procedure helps in 

constructing complex number based subspaces from two real number based subspaces or the 

construction of quaternion based subspaces from complex number based subspaces. The road back 

is also possible. These procedures appear to support pair creation and pair annihilation processes. 

5.3 Symmetry flavors 
Symmetry flavors represent a hardly known feature of quaternionic number systems. 

 Ordering 
Quaternionic number systems exist in many versions that differ in the way that these number 

systems are ordered. For example, it is possible to order the real parts of the quaternions up or 

down. A Cartesian coordinate system can be used to order the imaginary parts of the quaternions. If 

the orientation of the coordinate axes is kept fixed, then this Cartesian ordering can be done in eight 

mutually independent ways. It is also possible to apply spherical symmetric ordering by using a polar 

coordinate system. This can be done by starting with the azimuth and order it up or down and then 

order the polar angle and order it up or down. It is also possible to start with the polar angle. A 

spherical coordinate system starts from a selected Cartesian coordinate system. 

 Defining symmetry flavors 
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, 𝒊, 𝒋 and 

𝒌; with 𝒊𝒋 = 𝒌  

(1) 

(2) 

(3) 
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Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered 

versions {𝑞𝑥} that differ only in their discrete Cartesian symmetry set. The quaternionic number 

systems {𝑞𝑥} correspond to 16 versions {𝑞𝑖
𝑥} of rational quaternions.  

Half of these versions are right handed and the other half are left handed. Thus, the symmetry flavor 

influences the handedness. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

Quaternionic number systems can be used to define parameter spaces. We use a superscript  𝑥 to 

indicate the symmetry flavor of parameter space ℛ𝑥. For the reference parameter space ℛ⓪ we 

often will neglect the superscript  ⓪. Later, we will use index  ⓪ for the background parameter 

space. The imaginary part of the parameter space ℛ𝑥 gets a special symbol 𝕾𝑥. We will call such 

parameter spaces symmetry centers. 
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Elementary modules own a private symmetry center. The reference parameter space ℛ owns 

reference center 𝕾. Graphically the symmetry flavor of ℛ can be represented by: 

 

The symmetry related charge of a parameter space follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of symmetry center 𝕾𝑥 with 

the spatial part 𝕾 of the symmetry flavor of reference parameter space ℛ. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

We use the names of the corresponding particles that appear in the standard model to distinguish 

the different symmetry flavor combinations. Elementary fermions relate to solutions of a 

corresponding second order partial differential equation that describes the embedding of these 

particles.  

In a suggestive way, we use the names of the elementary fermions that appear in the Standard 

Model to distinguish the possible combinations of symmetry flavors. 

Fermion symmetry flavor 

Ordering 

x   y   z    τ 

Super 

script 

Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry center type. 

Names are taken from the 

standard model 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

Spherical ordering can be done by first starting with the azimuth and next proceeding by the polar 

angle. Both can be done up or down.  

Fermions and bosons appear to differ in this choice. Quarks are fermions that are anisotropic and therefore they feature a color charge. 

That color charge becomes noticeable via the Pauli principle when quarks bind into hadrons. Whether bosons also feature color charge 

cannot be observed because the Pauli principle does not restrict their binding. A phenomenon that is known as color confinement 

counteracts the appearance of free unbounded quarks. 

Also, continuous functions and continuums feature a symmetry flavor. Continuous quaternionic 

functions 𝜓𝑥(𝑞𝑥) and corresponding continuums do not switch to other symmetry flavors  𝑦.  
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The preferred symmetry flavor version 𝜓𝑦(𝑞𝑦) of a continuous function 𝜓𝑥(𝑞𝑦) is the symmetry 

flavor of the parameter space {𝑞𝑦}.  

If the continuous quaternionic function describes the density distribution of a set {𝑎𝑖
𝑥} of discrete 

objects 𝑎𝑖
𝑥, then this set must be attributed with the same symmetry flavor  𝑥. The real part 

describes the location density distribution and the imaginary part describes the displacement density 

distribution. 

This section shows that ordering of an embedded (parameter) space can represent specific properties of that space that 

distinguishes this embedded space from differently ordered embedded (parameter) spaces. This also hold for embedding 

fields. The consequences come to the front in situations where differences in ordering play an essential role. We will 

encounter that situation where different parameter spaces are used in the integration procedure as occurs in the extended 

Stokes theorem. First, we look at modules and especially the elementary modules will be investigated. Elementary modules 

appear to possess their own private parameter space. 

 Color shift 
Pairs of quaternions can shift other quaternions, sets of quaternions and complete quaternionic 

functions to a different symmetry flavor. The operation 

𝑐 = 𝑎 𝑏/𝑎;   where |𝑎0| = |𝒂| 

rotates the imaginary part of 𝑏 that is perpendicular to 𝒂 over 𝜋/2 radians. The rotation axis is 

perpendicular to the imaginary parts of 𝑎 and 𝑏. The direction of the rotation depends on the 

handedness of the involved numbers. 

Especially quaternions for which the size of the real part equals the size of the imaginary part can 

perform this trick. In this way, such quaternions can implement the behavior of gluons and quarks. 

This capability also supports the manipulation of tri-states. These are states that exist in three 

mutually independent versions. In fact, the color charge of quarks is an example of a tri-state. 

Isotropic particles are not affected by rotating and color shifting quaternions. However, the color 

confinement phenomenon indicates that the generation of anisotropic elementary particles may get 

disturbed by color shifts. The controlling mechanisms appear to react by conspiring with mechanisms 

that control the generation of other anisotropic elementary particles and cooperate in the common 

generation of isotropic conglomerates. These conglomerates are hadrons and the cooperation 

represents a binding of the concerned elementary particles. Hadrons have neutral color charge. 

  

(1) 



20 
 

5.4 Inner product 
Paul Dirac introduced a clear and simple notation for the inner product that is based on the existence 

of bra’s and ket’s. In a quaternionic Hilbert space the order of the factors is important. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 and 〈𝑥|𝑦〉 are quaternions. 

5.5 Operators 
Hilbert space operators describe how Hilbert spaces map into other Hilbert spaces and can describe 
how Hilbert spaces map onto themselves. In the latter case, the inner product describes the relation 
between a Hilbert vector and its map. If the vector is mapped onto itself then the inner product adds 
an eigenvalue to that vector and the vector is called an eigenvector. Thus, eigenvalues of normal 
operators must be members of a division ring. If two eigenvalues differ, then their eigenvectors are 
perpendicular and the inner product of the two eigenvectors equals zero. 
 
Operators map Hilbert vectors onto other Hilbert vectors. For all Hilbert vectors |𝑦〉 holds 

〈𝑇𝑥|𝑦〉 = 〈𝑧|𝑦〉 ⇒  〈𝑇𝑥| = 〈𝑧| 

Via the inner product, the operator 𝑇 may be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≝ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

If 𝑇 is a normal operator, then 𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an 

imaginary normal operator. Self adjoint operators are also Hermitian operators. Imaginary normal 

operators are also anti-Hermitian operators. 

 
Within a set of mutually orthogonal Hilbert vectors exists no notion of closest member. Only the 

corresponding eigenvalues may provide a notion of neighborhood.  

Several mutual orthogonal eigenvectors of a normal operator may share the same eigenvalue. These 

eigenvectors span a subspace and in that subspace all Hilbert vectors are eigenvector of the normal 

operator. 

If eigenvalues differ, then the corresponding eigenvectors are mutually orthogonal. 

The normal operator that represents an elementary module has no means for controlling the 

nearness of the subsequent eigenvalues. The normal operator only acts as a descriptor. It does not 

act as a controller of the nearness of the eigenvalues! In contrast the mechanism that provides the 

eigenvalues of that operator controls the coherence of the swarm of the generated eigenvalues. It 

selects the values from the platform on which the elementary particle resides. The mechanism 

resides outside the Hilbert space. 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 
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5.6 Countable infinity 
The dimension of a separable Hilbert space can be countable infinite. It means that all its base 

vectors can be enumerated with a natural number. This holds for the real number based separable 

Hilbert space, but it also holds for the quaternionic separable Hilbert space. For finite dimensional 

separable Hilbert spaces the selection of the number system makes a significant difference. 

These facts play a significant role when the real number based Hilbert space is considered embedded 

inside the quaternionic Hilbert space. 

Physical reality appears to apply finite subspaces of infinite dimensional separable Hilbert spaces. 

Only infinite dimensional separable Hilbert spaces own a unique non-separable companion Hilbert 

space. Non-separable Hilbert spaces feature operators with uncountable eigenspaces. 

5.7 The real number based separable Hilbert space 
Inside the real number based separable Hilbert space only operators that feature real number valued 

eigenvalues appear. We can construct such operator by starting from an orthonormal base that 

spans this Hilbert space. Next, we take all rational numbers and use them to enumerate the base 

vectors. The corresponding Hermitian operator connects the enumerator with the base vector and in 

this way, they become eigenvalue and eigenvector. This real number based separable Hilbert space 

can be embedded into a complex number based Hilbert space or in a quaternionic number based 

Hilbert space. In that case the eigenspace of the specified Hermitian operator can be used as a model 

wide clock. A 

ll infinite dimensional separable Hilbert spaces own a unique, non-separable companion Hilbert 

space. 

5.8 Reference operators in a quaternionic separable Hilbert space 
Number systems that are division rings can be used to define a category of operators that we will call 
reference operators. The rational values of the number system are used to enumerate the members 
of an orthonormal base of the Hilbert space. The reference operator connects the enumerator with 
the base vector and in this way, they become eigenvalue and eigenvector. Each reference operator 
implements a parameter space that is defined by its eigenspace. Functions use parameter spaces to 
create a target space. The parameter space is flat. The target space need not be defined for all 
parameter values. This can happen for point-like artifacts and for closed regions of the parameter 
space. 
 
Reference operators are normal operators and normal operators can be split into a Hermitian 
operator that has an eigenspace, which is formed by all rational real numbers and an anti-Hermitian 
operator that has an eigenspace, which is formed by the imaginary parts of the eigenvalues of the 
normal operator. For each real eigenvalue, the Hermitian part of the reference operator owns a 
complete subspace that is spanned by corresponding eigenvectors. The anti-Hermitian part of the 
reference operators treats the spatial part of the reference operator. 
 
The Hilbert space can harbor multiple reference operators and in that way, it can harbor multiple 
parameter spaces. Those parameter spaces will in general not share their geometric origins. 

 Families 
In a family of reference operators, the anti-Hermitian parts are ordered such that the Cartesian 

coordinate axes run in parallel to each other.  

A subset of the reference operators can be part of the household of the Hilbert space. These 
reference operators form a family. The household family members all share the eigenvectors of the 
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Hermitian operator that has been assigned the task to act as a model wide clock. A special member 
of this family plays the role of the generator of the background parameter space. The parameter 
spaces that are generated by other family members can float with respect to the background 
parameter space and they can float with respect to each other. 
The clock relates to the kinematics of the geometric centers of these floating parameter spaces. 
 
In the separable quaternionic Hilbert space, each reference operator that is a family member 
represents a hopping path of the geometric center of the eigenspace of the anti-Hermitian operator 
through the eigenspace of the anti-Hermitian operator that corresponds to the background 
reference operator. 

 Platforms 

Platforms are eigenspaces of a selected family of reference operators. The background platform 
belongs to this family. Thus, platforms are considered to belong to the household of the Hilbert 
space. Apart from the background platform will platforms represent floating parameter spaces. Each 
platform owns a geometric center. The anti-Hermitian part of the platform operator describes a 
symmetry center. This is the spatial representative of the platform. The clock operator relates the 
hopping path of the considered platform operator with the platform of the background platform 
operator. 
 
What happens on a platform can to some extent be investigated independent from what happens in 
the complete Hilbert space. 

5.9 The scanning vane 
If the family of a certain reference operator, such as the background reference operator, is singled 
out, then a special subspace of the Hilbert space can be specified that represents the current static 
status quo of the Hilbert space. In the subspace, all eigenvalues of the selected reference operator 
share the same real part. This specification divides the Hilbert space into three subspaces. The first 
subspace represents the past history. The third part represents the future. If the selected real value, 
which represents progression can increase, then the second subspace represents a vane that scans 
over the Hilbert space. This simple model represents a very powerful mathematical test model. 
 
Several processes occur that have a fixed duration. This means that for such processes the passage of 
the vane has this duration. The duration defines the regeneration cycle of corresponding discrete 
objects. This applies for stochastic processes. For these processes, it takes a while before statistical 
characteristics mature. The fixed duration enables the capability to discern properties of certain 
objects and/or enables the definition of their types. 

5.10 Defined operators 
By starting from a selected reference operator, it is possible to define a category of defined normal 
operators that use a mostly continuous function to replace the parameter value by the function 
value and connect this value with the corresponding eigenvector of the reference operator. In fact, 
the reference operators are special versions of the defined operators for which the defining functions 
use the parameter value as the function value. This procedure is very powerful and merges Hilbert 
space operator technology with function theory. 

 The reverse bra-ket method 
Reference operators and defined operators can be described with the help of the reverse bra-ket 

method. The following procedure defines the background reference operator ℛ. 

We start with a very simple defining function ℛ(𝑞) = 𝑞 and the corresponding operator ℛ.  
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Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are the eigenvalues and the eigenvectors of a normal 

operator ℛ. Here we enumerate the base vectors with index 𝑖. 

ℛ ≝ |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| = |𝑞𝑖〉ℜ(𝑞𝑖)〈𝑞𝑖|  

ℛ is the configuration parameter space operator.  ℜ(𝑞) is a quaternionic function, whose target 

equals its parameter space. The definition also covers the situation where the dimension of the (sub) 

space is infinite. 

This reverse bra-ket notation must not be interpreted as a simple outer product between a ket 

vector |𝑞𝑖〉, a quaternion 𝑞𝑖 and a bra vector 〈𝑞𝑖|. In fact, it involves a complete set of eigenvalues 

{𝑞𝑖} and a complete orthomodular set of Hilbert vectors {|𝑞𝑖〉}. It implies a summation over these 

constituents, such that for all bra’s 〈𝑥| and all ket’s |𝑦〉 the fornula: 

〈𝑥|ℛ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|𝑦〉

𝑖

 

holds. Thus, formula (2) represents the full definition for the shorthand (1). ℜ is a special operator. It 

can be considered as a property of the combination of the separable Hilbert space ℌ and one of the 

existing versions of the quaternionic number system. 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the real eigenvalues. The ordered eigenvalues can be 

interpreted as progression values.  

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial locations and can be ordered in several 

ways. For example, eight independent ways exist to order the 3D spatial domain by using Cartesian 

coordinates. We will use special indices to attach operators to versions of number systems. 

Let 𝑓(𝑞) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines 

operator 𝑓 as: 

𝑓 ≝ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values of 𝑓 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator, the reverse bra-ket notation (3) is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

Alternative formulations for the reverse bra-ket definition are: 

𝑓 ≝ |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖〉〈𝑓(𝑞𝑖)𝑞𝑖| = |𝑞𝑖〉〈𝑓𝑞𝑖| = |𝑓∗(𝑞𝑖)𝑞𝑖〉〈𝑞𝑖| = |𝑓†𝑞𝑖〉𝑞𝑖〈𝑞𝑖| 

Here we used the same symbol for the operator 𝑓 and the function 𝑓(𝑞𝑖). For this operator, the 

eigenvalues of the Hermitian part 𝑓0 = (𝑓 + 𝑓†)/2 are not interpreted as progression values. 

Often (not always!), these values can be interpreted as dynamic location density descriptors. 

Similarly, the eigenvalues of the anti-Hermitian part 𝒇 = (𝑓 + 𝑓†)/2 are not interpreted as 

spatial location values. The eigenspace of normal operator 𝑓 will represent fields. 

(1) 

(2) 

(3) 

(4) 

(5) 
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The left side of (4) only equals the right side when the domain over which the summation is taken is 

restricted to the region of the parameter space ℛ where 𝑓(𝑞) is defined. 

 Symmetry centers 
Reference operators are a special kind of defined operators. The target space of the defining function 

equals the parameter space. The anti-Hermitian parts of the reference operators that belong to the 

family of the background reference operator play a special role and we will use special symbols for 

them. 

We can define a category of anti-Hermitian operators {𝕾𝑛
𝑥}that have no Hermitian part and that are 

distinguished by the way that their eigenspace is ordered by applying a Cartesian coordinate system. 

In addition, a polar coordinate system can be applied. We call them symmetry centers 𝕾𝑛
𝑥. A polar 

ordering always starts with a selected Cartesian ordering. The geometric center of the eigenspace of 

the symmetry center floats on a background parameter space of the normal reference operator ℛ, 

whose eigenspace defines a full quaternionic parameter space. The eigenspace of the symmetry 

center 𝕾𝑛
𝑥  acts as a three-dimensional spatial parameter space. The super script  𝑥 refers to the 

symmetry flavor of 𝕾𝑛
𝑥. The subscript  𝑛enumerates the symmetry centers. Sometimes we omit the 

subscript. 

 

𝕾𝑥 = |𝖘𝑖
𝑥〉𝖘𝑖

𝑥〈𝖘𝑖
𝑥| 

 

𝕾𝑥† = −𝕾𝑥 

 

It must be noticed that the eigenvalues of the symmetry center operator have no real part! However, 

when mapped to another parameter space, the geometric center location of the symmetry center 

eigenvalues can be a function of progression. 

The symmetry centers can be ordered with the help of a Cartesian coordinate system as well as with 

the help of a polar coordinate system. In the platform family, the ordering of the symmetry center is 

defined relative to the ordering of the background platform. This ordering determines the 

symmetry flavor of the symmetry center. The difference of the symmetry flavor of a selected 

symmetry center with the symmetry flavor of the background platform determines the symmetry 

related charge of the selected symmetry center. This charge can be split in an isotropic part, an 

anisotropic part, and a spin.  

The short list of isotropic symmetry related charges covers: −3, −2, −1, 0, +1, +2, +3. For historical reasons, these 

numbers must be divided by 3 to get the equivalent electric charges. The anisotropic symmetry related charges 

correspond to color charges and correspond with the three perpendicular directions and the opposite directions in 

which ordering anisotropy can manifest itself. 

Symmetry center 𝕾𝑛
𝑥  can be rotated by a pair of quaternions that are each other’s inverse. Special 

quaternions exist of which the size of the real part equals the size of the imaginary part. These 

special quaternions can shift the anisotropy of a symmetry center to another dimension. 

5.11 Non-separable companion Hilbert space 
Each infinite dimensional separable Hilbert space owns a unique companion non-separable Hilbert 
space that features operators, which have continuum eigenspaces. Such eigenspaces can form flat 
parameter spaces or dynamic fields. This can easily be comprehended when in the non-separable 

(1) 

(2) 
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Hilbert space a similar procedure is used for specifying defined operators as we applied in the 
separable Hilbert space. In that procedure, we specified reference operators and we defined normal 
operators by using continuous functions. This time we not only use the rational members of the 
number system, but we also apply the irrational members and we use the same continuous 
functions. The consequence is that the notion of dimension of the subspaces may lose its sense. The 
procedure that creates defined operators now links operator technology with function technology, 
differentiation technology and integration technology. 
The separable Hilbert space can be considered embedded in its non-separable companion. 
Platforms that step in the separable Hilbert space will float in the non-separable companion Hilbert 
space. In a similar way, the clock steps in the separable Hilbert space and the clock floats in its non-
separable companion.  
Here we keep the difference between the separable Hilbert space and its non-separable companion 
alive. The scanning vane can be interpreted as a progressive embedding of the separable Hilbert 
space into its non-separable companion. 
 
In the non-separable Hilbert space the reverse bracket method applies integration rather than 
summation to define operators that have continuum eigenspaces. 
For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

 

〈𝑥|ℱ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖=∞

𝑖=0

≈ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

The integral only equals the sum sufficiently close when the function ℱ(𝑞) is sufficiently continuous 
in the domain over which the integration takes place. Otherwise the left side only equals the right 
side when domain is restricted to the region of the parameter space ℜ where ℱ(𝑞) is sufficiently 
continuous. 

 Platform dynamics 
In the separable Hilbert space, platforms can step relative to the background platform. This can occur 

with a minimal spatial step size. In the non-separable Hilbert space the corresponding platforms float 

relative to the background platform. 

Quaternionic platforms can be converted into two complex number based platforms and two 

complex number based platforms can be converted into a quaternionic platform. At conversion, the 

quaternionic platforms mirror at the vane. 

 Artifacts 
Nearness between mutually orthogonal Hilbert vectors is not defined. Only via eigenvalues of 

eigenvectors the nearness of the eigenvectors makes sense. In an infinite dimensional separable 

Hilbert space, it is always possible to add or subtract base vectors without changing the dimension of 

the Hilbert space. After enumerating an orthonormal base with an ordered set of equidistant rational 

numbers it is possible to add base vectors that disrupt the equidistant ordering. These additional 

base vectors will act as artifacts in the eigenspace of the operator that uses the orthonormal base as 

its eigenvectors. Artifacts may occur in coherent swarms and the swarm may feature its own internal 

ordering that differs from the ordering of the original orthonormal base. Adding a new base vector 

that does not disrupt the equidistant ordering will not produce a noticeable artifact but that addition 

is impossible inside infinite equidistant sets. 

(1) 
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In the non-separable Hilbert space the addition of a single base vector or of a coherent swarm of 

ordered base vectors will always present artifacts. 

5.12 Modules as subspaces 
According to the discoverers of the orthomodular lattice, the elements of the lattice can be 
represented as closed subspaces of a separable Hilbert space. It also has sense to consider a subset 
of these elements as representatives of modules or modular systems. Thus, not every closed 
subspace of a separable Hilbert space represents a module or modular system, but every module and 
a closed subspace of the separable Hilbert space represents every modular system. Compared to 
general closed subspaces of the Hilbert space, will modules and modular systems have extra 
characteristics.  

5.13 Elementary modules 
In the Hilbert space, an elementary module cannot be represented by a single Hilbert vector, 
because that single vector can on the utmost correspond to a static geometric location and from 
reality we know that modules possess a dynamic geometric location and that fact also holds for the 
elementary modules. However, elementary modules cannot be split into other modules. Thus, the 
subspaces that represent elementary modules must have multiple dimensions. Still it is possible that 
at each progression instant each module represents exactly one spatial location. This is a very special 
condition, but we postulate that this special condition is valid for all elementary modules. Because of 
this postulate the vane contains representatives of elementary modules that are one-dimensional 
subspaces. They cannot be split into lower level modules. One-dimensional subspaces of the Hilbert 
space are called rays. 
The postulate forbids that two elementary modules with identical properties at the same progression 
instant take the same geometric location.  
The vane contains many subspaces that do not contain Hilbert vectors that represent an elementary 
module. These subspaces are representing empty space. 

 Modular configuration lattice 

In the vane, a ray represents every elementary module. These elementary modules and the modules 
and modular systems that they configure represent a sub-lattice of the orthomodular lattice. We call 
this sub-lattice a modular configuration lattice. This lattice is a recipe for modular system 
generation. 

5.14 Germ operators 
The elementary modules are represented by a new category of operators that differ from reference 
operators and that differ from defined operators but that describe the dynamics of elementary 
modules. This means that they are coupled to the clock operator, but they are not member of an 
operator family. The dynamic location of elementary modules hops as a function of progression. 
After a while the hops form a swarm and both the hopping path and the swarm represent the 
elementary module. These structures determine the properties of the elementary particle. The 
location of the swarm corresponds to its geometric center. The operators will be called germ 
operators. We will use symbol ℴ for the germ operators. The germ operators are controlled by 
mechanisms that apply stochastic processes for the generation of the dynamic locations.  
The germ operator uses its own private reference operator. This means that the elementary modules 
reside on their own platform, which applies its own private parameter space that may float with 
respect to the selected background parameter space. The eigenvalues of the anti-hermitic part of the 
germ operator correspond exactly with the eigenvalues of the anti-hermitic part of the 
corresponding platform operator. The germ operators are decoupled from the ordering of the 
family operators. Spatial ordering will destroy their coupling to the clock operator. The hop landings 
act as point-like artifacts! 
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5.15 Hopping paths and swarms 
After generation, the dynamic locations of an elementary module will be ordered with respect to the 
real value of the quaternions that represents the dynamic location. After ordering of the progression 
values the elementary module appears to walk along a hopping path and the landing positions form a 
location swarm. An uncontrolled generation would produce an arbitrary hopping path and a chaotic 
hop landing location swarm. The mechanism is supposed to ensure that a coherent swarm is 
generated. 
 
The hops that cause field vibrations in form of spherical shape keeping fronts will be called clamps. 
After integration over a long enough period a clamp results in the Green’s function of the field. The 
Green’s function describes how the field reacts on the hop. 
 
This means that elementary modules are represented by closed subspaces of a Hilbert space that 
may have a huge dimension. However, at a single progression instant, each elementary module is 
represented by a subspace that is spanned by a single Hilbert vector. We call such a subspace a ray. 
Thus, a subset of the orthomodular lattice represents modules and modular systems. Within that 
subset, the elementary modules are represented by elements that act as atoms of the subset. 
If the swarm contains many hop landing locations, then its geometric center will move in a much less 
chaotic way. A large number of elements also means an equivalently long regeneration cycle of the 
swarm. Increasing the number of hop landings will increase the inertness of the swarm. 

5.16 Mechanisms 
From reality, we know that the hopping path is not an arbitrary path and the location swarm is not a 
chaotic collection. Instead the swarm forms a coherent set of locations that can be characterized by a 
rather continuous location density distribution. That does not say that the hopping path is not a 
stochastic path! The location swarm integrates over the regeneration cycle. Its characteristics are 
statistical characteristics. 
 
From physics, we know that elementary particles own a wave function and the squared modulus of 
that wave function forms a continuous probability density distribution, which can be interpreted as a 
location density distribution of a point-like object. The location density distribution owns a Fourier 
transform and therefore the swarm owns a displacement generator. This means that at first 
approximation the swarm can be considered to move as one unit. Thus, the swarm is a coherent, 
rather smoothly moving object, which represents the violent stochastic hopping of a point-like 
object. For a large part this is because the swarm contains a huge number of locations that is 
refreshed in a cyclic fashion.  
 
The fact that at every progression instant the swarm owns a Fourier transform means that at every 
progression instant the swarm can be interpreted as a wave package. Wave packages can represent 
interference patterns; thus, they can simulate wave behavior. The problem is that moving wave 
packages tend to disperse. The swarm does not suffer that problem because at every progression 
instant the wave package is regenerated. The result is that the elementary module shows wave 
behavior and at the same time it shows particle behavior. When it is detected it is caught at the 
precise location (the exact swarm element) where it was at this progression instant.  
 
The Hilbert space is nothing more and nothing less than a structured storage medium for dynamic 
geometric data. It does its storage task in a very precise way, thus without any uncertainty! Neither 
the separable Hilbert space nor its non-separable companion does contain functionality that ensures 
the coherent dynamic behavior of the location swarms. Dedicated mechanisms, which do not belong 
to the household of the Hilbert spaces fill the eigenspaces of the stochastic germ operators that 
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control the elementary modules. The hopping path only stops when the elementary module is 
“detected” and the controlling mechanism changes to a different mode of operation. 

5.17 Fermions and bosons 
The swarm and the hopping path determine the properties of the elementary particle. The swarm 

that represents the elementary particle owns a geometrical center. For fermions, the Pauli principle 

states that no two elementary particles that possess the same properties cannot share the same 

geometrical center. Fermions possess a half integer spin. Separate elementary particles own private 

platforms that correspond to a private symmetry center. The Pauli principle states that these 

platforms cannot share the map of their geometric centers onto the background parameter space. 

Fermions appear to be the elementary modules that appear in stable modular systems. 

Bosons with identical properties can share the same geometrical location. Bosons possess integer 

spin. The platforms of elementary bosons can share the map of their geometric centers onto the 

background parameter space. 

Massive bosons act as temporary containers of hops that cause field vibrations in the form of 

spherical shape keeping fronts. 

5.18 Dynamic model 
We did construct a vane that splits the Hilbert space such that all elementary module eigenvalues 
that have a selected real value have the corresponding eigenvector inside the vane. The vane splits 
the Hilbert space in an historic part, the vane itself and a future part. The vane then represents a 
static status quo that corresponds to the current state of the universe. 
 
This represents an interesting possibility. The Hilbert space is a storage medium that contains a 
repository of all historic, present, and future data. It can also be interpreted as a scene that is 
observed by modules and modular systems that travel with the vane. These observers might know 
part of the stored history, but have no notion of the future. Depending on their capabilities, the 
observers reflect only a part of their history. Information that inside the vane is generated at a 
distance has still to travel through an information carrying field that acts as the living space for the 
elementary modules to reach the observer. The encounter will take place in the future. Information 
that reaches the observer arrives from the past. Those kinds of information travel via information 
carriers. In addition, the observers meet new conditions when the vane passes over them. 
 
The vane forms a subspace of the Hilbert space and for each elementary module that subspace 
contains a single Hilbert vector that plays as eigenvector for the corresponding geometric location. 
This location is the landing point of a hop rather than the geometric center of the location swarm. 
 
The dynamic model offers two interesting views. The creator of physical reality can view all dynamic 
geometric data that are stored in eigenspaces of operators. We will call this the creator’s view. The 
observer’s travel with the vane and can only receive information that comes to them from the past. 
We will call this the observer’s view. The vane represents a static status quo of the model. Within the 
vane nothing happens. The dynamics that affects the observer occurs in the region at the history side 
of the vane and the dynamics that is actuated by the observer occurs in the region at the future side 
of the vane. 
The information that reaches the observers is transported to them via fields. Fields feature a 
maximum speed of information transfer. The differential field equations determine the speed of 
information transfer of the fields. In the creator’s view this information transport can be modelled in 
a simple way. In the observer’s view relativity plays its role. It means that the Lorentz transform 
governs dynamic behavior of elementary modules. 
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Quaternionic platforms can be converted into two complex number based platforms and two complex number based 

platforms can be converted into a quaternionic platform. At conversion, the quaternionic platforms mirror at the vane. The 

mirrors carry a particle at one side and an anti-particle at the other side. The conversion takes a fixed duration. Number 

construction procedures or number dismantling procedures support the processes. 

 Scientific method 
The scientific method requires experimental verification of every significant physical statement. This 

rule can only be obeyed in the observer’s view. It makes no sense in the creator’s view. 

5.19 Defining fields 
Fields are eigenspaces of defined operators that reside in the companion non-separable Hilbert 
space and that have continuum eigenspaces. This enables the treatment of fields independent of 
their defining functions and the corresponding parameter spaces. However, if the dynamic behavior 
of fields must be investigated, then the quaternionic differential calculus must be applied to 
formulate corresponding defining functions and defined operators. 

5.20 Living space 
The germ operators have no equivalent inside the non-separable Hilbert space. However, their 
eigenvalues may be sensed by a field that exists as eigenspace of a defined operator, which resides in 
the non-separable Hilbert space. The considered field is a descriptor of the involved clamps. This can 
occur when the separable Hilbert space is embedded in its non-separable companion Hilbert space. 
We will call the mentioned field the living space of the modules and modular systems or we will use 
the nick name Palestra for this field. 
 

The hops in the hopping path generate vibrations of the Palestra. These vibrations are solutions of a homogeneous second 

order partial differential equation. Differential equations are treated later. The concerned solutions are spherical shape 

keeping fronts. We will call them clamps. After integration over a sufficiently long period, each front forms the Green’s 

function of the field that describes the deformation of the field. This deformation is the effect of the hop.  

 
The hopping path that represents an elementary module, corresponds to a coherent location swarm, 
which is characterized by a location density distribution. Via the convolution of the Green’s function 
of a field and this location density distribution, the swarm corresponds to a deformed part of the 
field. In this way, the field describes the existing elementary modules. The description of a nearby 
located elementary particles deforms the field in that region. The convolution means that the 
Green’s function blurs the location density distribution. This can be interpreted as if the hopping 
landing locations influence the field, but the alternative interpretation is that the field is a kind of 
blurred descriptor of the hopping landing locations. Anyway, the landing locations and the discussed 
field are intimately coupled. The deformed field can be interpreted as the living space of the modules 
and modular systems. 

5.21 Green’s function 
At every progression instant, the hop landing locations cause the emission of a spherical shape-

keeping front. That front keeps its shape, but the amplitude of that shape diminishes as 1/𝑟 with 

distance 𝑟 from the emission location. The fronts proceed outwards with a fixed speed. The shape-

keeping front is a solution of the homogeneous second order partial differential equation that 

describes the dynamic behavior of the affected field. Later we will identify both the hop and the 

corresponding solution by using the name clamp for these phenomena. If this effect is integrated 

over the regeneration cycle of the swarm, then the Green’s function results. The integration turns 

the homogeneous second order partial differential equation into an inhomogeneous second order 

partial differential equation. The extra term that makes the equation inhomogeneous concerns the 
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Green’s function. The amplitude of the Green’s also diminishes as 1/𝑟 with distance 𝑟 from the 

emission location. 

5.22 Stochastic processes 
The mechanisms that generate the hopping landing location control the dynamics of the model. 
These mechanisms use stochastic processes. These processes appear to belong to a category which is 
mathematically known as inhomogeneous spatial Poisson point processes. In more detail these 
processes probably are like modified Thomas processes. 
 
This fact is supported by a signature that is visible in the visual trajectory of a category of living 
species that are called vertebrates. It appears that the visual trajectory of all vertebrates is optimized 
for low dose rate imaging. This visual system contains noise filters that block information for which 
the signal to noise ratio is too low. This signal to noise ratio is typical for information generated by 
Poisson processes that are attenuated by subsequent binomial processes that are implemented by 
spatial point spread functions. The mechanisms appear to apply inhomogeneous spatial Poisson 
point processes. See: “Low Dose Rate Imaging”; http://vixra.org/abs/1606.0329 . Humans are 
vertebrates and at starlight conditions the described processes govern their visual perception. 
 
Physical theories stop at the wave function of particles. This exposure of the mechanisms dives 
deeper and reaches the characteristic function of the stochastic process that controls the generation 
of the landing locations that form the hopping path. 

5.23 Self-coherence 
It is difficult to belief in a creator that installs separate mechanisms, which ensure the dynamic 

coherence of the generated modules. It is easier to accept that the relation between the generated 

location swarms and the field that describes these swarms is based on a mathematically explainable 

kind of self-coherence. In case of self-coherence, the interaction between the field and the swarm 

restricts the possible location density distribution. As is indicated earlier, this restriction may be 

influenced by the number of elements that are contained in the swarm. This fact may explain the 

existence of generations of elementary modules. A larger number of elements increases the 

inertness of the swarm. However, also the living space field takes a role in the self-coherence of the 

swarm. 

In the relation between the swarm and the field, the Green’s function of the field plays an important 

role. It plays the role of a potential that implements an attracting force. Another factor is the kind of 

stochastic process that generates the individual locations. This process belongs to the category of the 

inhomogeneous spatial Poisson point processes. Each hop tries to displace the geometric center of 

the swarm. This displacement represents an acceleration of the geometric center of the swarm.  

Let the Green’s function represent a scalar potential. When the platform on which the elementary 

object resides moves with a uniform speed with respect to the background parameter space, then 

the scalar potential will in that coordinate system turn into a vector potential. Differential calculus 

learns that the dynamic change of the vector field goes together with a new field that counteracts 

the acceleration. This effect is like the phenomenon that is known as inertia. It looks as if the center 

of geometry of the swarm is attracting the accelerating hopping elementary object. This is an 

effective kind of self-coherence that is installed via the living space field that we call Palestra. 

This obscure description is elucidated more clearly with appropriate formulas in the section about 

force raising fields. 

For the description of the location swarm by the field, the Green’s function blurs the location density 

distribution of the swarm. If the location density distribution has the form of a Gaussian distribution, 

http://vixra.org/abs/1606.0329
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then the blurred function is the convolution of this location density distribution and the Green’s 

function. The shape of this example is given by: 

 

𝜒𝑛(𝑟) = −
𝐶𝑛

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

In this function, every trace of the singularity of the Green’s function has disappeared. It is due to the 

distribution and the huge number of participating hop locations. This is just an example. Such extra 

potentials add a local contribution to the field that acts as the living space of modules and modular 

systems. The shown extra contribution is due to the local elementary module. Together, a myriad of 

such bumps constitutes the living space. 

5.24 The symmetry related field 
The convolution of the location density distribution of the swarm with the Green’s function involves 

an integration. The local contribution to the integral involves two parameter spaces. One of them is 

the background parameter space. These parameter spaces may differ in their ordering. To cope for 

this difference, the platform on which the elementary object resides must be encapsulated. The 

integration is an application of the generalized Stokes theorem. This theorem converts an integral 

over a volume into an integral over the boundary of that volume. The boundary must only cross 

regions of the parameter spaces where the field and the extra potential are both continuous and the 

amplitude of the extra potential must become negligible. In fact, the influences of the ordering 

characterize the parameter spaces rather than the deformed fields. For the parameter spaces the 

condition is automatically fulfilled and therefore the shape of the boundary does not matter. For that 

reason, we select a boundary that has the form of a cube, whose axes are aligned along the axes of 

the Cartesian coordinate systems that is used to order the background parameter space. This 

procedure enables the correct accounting for the differences in the ordering. This accounting process 

reveals values that we will call charges that go together with the difference in ordering. This reveals 

the short list of electric charges and the color charges that appear in the Standard Model. The 

charges will be anchored on the geometric centers of the floating platforms. These symmetry related 

charges are the source of a new separate basic field that we will call the symmetry related field. We 

will use the nick name Electra for this field. This field differs fundamentally from the field that 

represents the living space of the elementary modules. 

The contribution to the field that we called Palestra by the influence of the clamps, couples to the 

new symmetry related field via the geometric centers of the platforms that carry the swarm 

elements. The convolution of the Green’s function of the Palestra and the location density 

distribution, which characterizes the location swarm, determine the concerning contribution. 

5.25 Partial differentiation 
In this section, we intensively use formulas. These formulas keep the description compact and 

comprehensive.  

We use the quaternionic nabla ∇ to provide a compact description of quaternionic partial 

differentiation. 

 

(6) 
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∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
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𝜕𝜏
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𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

∇𝑓 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑒𝜇

3

𝜇=0

 

 

This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator and some of the related differential operators can 

be applied as a multiplier. This means that we can apply the quaternionic multiplication rule. 

Therefore, these partial differential operators can be used to define corresponding fields and their 

operators. The following equation defines the first order change ∇ 𝜓 of field 𝜓. 

 

𝛷 = 𝛷0 +  𝜱 = ∇ 𝜓 = (𝛻0 + 𝜵)( 𝜓0 + 𝝍)  

= 𝜓0𝜓0 − ⟨𝜵,𝝍⟩ + 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵×𝝍 

 

𝛷0 = 𝜓0𝜓0 − ⟨𝜵,𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵×𝝍 

 

These equations invite the definition of derived vector fields. We use symbols that corresponding 

Maxwell equations also use: 

 

𝕰 ≝ −∇0𝝍 − 𝜵𝜓0 

 

𝕭 ≝ 𝜵×𝝍 

 

The ± sign indicates that the nabla operator is also afflicted by symmetry properties of the applied 

quaternionic number system. The above equations represent only low order partial differential 

equations. Thus, these partial differential equations represent approximations rather than precise 

descriptions of the considered change. In this form the equations can still describe point-like 

disruptions of the continuity of the field. We can take the conjugate: 

 

𝛷∗ = (𝛻𝜓)∗ = 𝛻∗𝜓∗ ∓ 2 𝜵×𝝍 

 

𝛻∗(𝛻∗𝜓∗)∗ = 𝛻∗𝛷 = 𝛻∗𝛻𝜓 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Two different non-homogeneous second order partial differential equations exist that offer 

different views on the embedding process. The equation that is based upon the double 

quaternionic nabla ⊡ = 𝛻𝛻∗ cannot show wave behavior. However, the equation that is based 

on d’Alembert’s operator 𝔒 acts as a wave equation, which offers waves as part of its set of 

solutions. Both second order partial differential operators can be applied as multipliers. 

 

⊡ ≝ 𝛻𝛻∗ = 𝛻∗𝛻 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

𝔒 ≝ −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

⊡ 𝜓 represents the quaternionic variance of field 𝜓. 

In isotropic conditions the homogeneous equations look like: 

 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) ±

𝜕2𝜓

𝜕𝜏2
= 0 

 

These equations have special solutions in odd numbers of participating dimensions in the form of 

shape-keeping fronts. 

The d’Alembert’s equation offers solutions in the form of waves. That does not hold for the 

double nabla operator ⊡ that is defined in (9). That equation can be split into two first order 

partial differential equations: 

 

𝛷 = 𝛻 𝜓 

 

𝜌 = 𝛻∗𝛷 = 𝛻∗𝛻 𝜓 

 

The similarity to Maxwell equations is not accidental. Equation (4) has no equivalent in Maxwell equations. In physics, 

special gauge equations compensate this lack. 

 Other partial differential equations 
Other second order partial differential equations are: 

 

〈𝜵, 𝜵×𝝍〉 = 0 

 

〈𝜵×𝜵,𝝍〉 = 𝟎 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 
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(𝜵×𝜵)𝝍 = 𝜵×(𝜵×𝝍) =  𝜵〈𝜵,𝝍〉 − 〈𝜵, 𝜵〉𝝍 

 

 

 

 The contracted equations 
The partial differential equations can be contracted by replacing the spatial nabla 𝜵 by a normalized 

vector 𝒏 that is perpendicular to a selected plane surface 𝑆. 

 

𝛁 𝜓 = 𝜵( 𝜓0 + 𝝍)  = −⟨𝜵,𝝍⟩ + 𝜵𝜓0 ± 𝜵×𝝍 ⟹ 𝒏 𝜓 = −⟨𝒏,𝝍⟩ + 𝒏𝜓0 ± 𝒏×𝝍 

 

𝜵×(𝜵×𝝍) =  𝜵〈𝜵,𝝍〉 − 〈𝜵, 𝜵〉𝝍 ⟹  𝒏×(𝒏×𝝍) =  𝒏〈𝒏,𝝍〉 − 〈𝒏, 𝒏〉𝝍 

 

These contractions lead to the generalized Stokes theorem 

5.26 Elementary behavior 
Fields act on point-like artifacts in an elementary way. The d’Alembert’s operator 𝔒 offers plane and 

spherical waves and both second order equations offer shape-keeping fronts as elementary 

solutions. 

 Waves 
Waves are solutions of the wave equation that uses d’Alembert’s operator 𝔒: 

 

𝔒 𝑓 = (−𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓 = 0 

 

𝛻0𝛻0𝑓 = ⟨𝜵, 𝜵⟩𝑓 = −𝜔2𝑓 

 

For Cartesian symmetry conditions this leads to: 

 

𝑓(𝜏, 𝒙) = 𝑎 exp(𝕚 𝜔(𝑐𝜏 − |𝒙 − 𝒙′|)) ;  𝑐 = ±1 

 

In spherical symmetric conditions, equation (2) leads to a category of solutions that are known as solutions of the 

Helmholtz equation. However, here proper time 𝜏 replaces coordinate time. 

 One dimensional fronts 
These solutions proceed in one spatial dimension, but they may act in a three-dimensional spatial 

setting. Thus: 

 

(3) 

(1) 

(2) 

(1) 

(2) 

(3) 
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𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

We try a solution in the form 𝜑 = 𝑓(𝛼𝑧 + 𝛽𝜏): 

 

𝜕𝑓

𝜕𝑧
= 𝛼𝑓′;

𝜕2𝑓

𝜕𝑧
= 𝛼

𝜕𝑓′

𝜕𝑧
= 𝛼2𝑓′′ 

𝜕𝑓

𝜕𝜏
= 𝛽𝑓′;

𝜕2𝑓

𝜕𝜏2
= 𝛽

𝜕𝑓′

𝜕𝜏
= 𝛽2𝑓′′ 

𝛼2𝑓′′ ± 𝛽2𝑓′′ = 0 

 

This is solved when 𝛼2 = ∓𝛽2. 

For the first kind of the second order partial differential equation this means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a 

normalized imaginary quaternion. With 𝑔(𝑧) = 𝑓(𝛽 𝑧) follows: 

 

𝜑 = 𝑔(𝑧 𝒊 ± 𝜏) 

 

The function 𝑔 represents a shape-keeping front. It also keeps its amplitude. It is not a wave. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 

𝑧. 

 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑧) = 𝑓(𝛽 𝑧) follows:  

𝜑 = 𝑔(𝑧 ± 𝜏) 

 

The corresponding hop landing that represents the continuity disturbing artifact will be called warp. 

A warp corresponds to the hop of the geometric center of the platform on which the corresponding 

elementary particle resides. Thus, the location of the hop is defined relative to a geometric location 

on the carrier field that is defined with respect to the background parameter space. The platform 

carries its own private parameter space. Subsequent warps occur in “linear” strings that follow the 

deformation of the carrier field. Such strings will be called messengers. Warps can also occur as 

single hops. Warp hops shift the geometric centers of parameter spaces relative to the background 

parameter space. As solutions of the second order partial differential equation the warp shifts the 

map of the geometric center of the platform onto the carrying field to a subsequent location on that 

carrying field.  

Combined in strings the warps can only shift empty platforms. Any clamp in the platform would 

conflict with the warp speed. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Warps appear to be emitted from the geometric centers of platforms and when they are absorbed, then they 

appear to be absorbed at the geometric center. This requires incredible aiming capability. At the utmost, this 

can be comprehended in the creator’s view. In that view an absorption is a reverse emission. 

 Spherical fronts 
Next, we focus on the three-dimensional spherical symmetric condition.  

In that case, writing 𝜓 = 𝑟 𝜑(𝑟, 𝜏) separates the equation. 

 

𝜕2𝜑

𝜕𝑟2
+

2

𝑟

𝜕𝜑

𝜕𝑟
±

𝜕2𝜑

𝜕𝜏2
= 0 ⟹

𝜕2𝜓

𝜕𝑟2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

With other words 𝜓 fulfills the conditions of the one-dimensional case. Thus, solutions in the form 

𝜑 = 𝑓(𝛼𝑟 + 𝛽𝜏)/𝑟 will fit. 

For the first kind of the second order partial differential equation that uses the ⊡ operator this 

means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a normalized imaginary quaternion. With 𝑔(𝑥) = 𝑓(𝛽 𝑥) follows: 

 

𝜑 = 𝑔(𝑟 𝒊 ± 𝜏)/𝑟 

 

𝒊 represents a base vector in radial direction. 

The corresponding hop landing that represents the continuity disturbing artifact will be called a 

clamp. The clamp corresponds to a hop relative to the geometric center of the platform on which the 

elementary particle resides. Thus, the location of the hop is defined relative to this geometric 

location. The description uses the parameter space that is private to the platform and the 

elementary particle. This description is mapped onto the background parameter space and 

subsequently it is embedded into the field that represents the living space of the elementary 

modules. This procedure represents an interaction between the hopping module and the living 

space. Clamps occur in coherent swarms. All swarm elements share the same platform. Thus, the 

swarm moves as a single unit. 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑟) = 𝑓(𝛽 𝑟) follows: 

 

𝜑 = 𝑔(𝑟 ± 𝜏)/𝑟 

 

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminishes as 1/𝑟 

with distance 𝑟 from the sources. When integrated over a long enough period of progression the 

result takes the form of the fields Green’s function. 

(1) 

(2) 

(3) 
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 Sets of clamps, sets of warps and regeneration cycles 
The homogeneous second order partial differential equation offers two kinds of solutions that 

represent shape-keeping fronts. One kind concerns the spherical shape-keeping fronts. The second 

kind acts in one-dimension and not only keeps its shape, it also keeps its amplitude. 

1.1.1.1 Swarms of clamps 

Hops that correspond to solutions, which represent spherical shape-keeping fronts will be called 

clamp hops or clamps. The same name is used for this type of solutions of the homogeneous second 

order differential equations. Clamps occur in swarms and reside on a platform that if the elementary 

module exists is private to that elementary module. During that episode, the symmetry center carries 

an ordered parameter space. Each elementary module type exists in a set of generations and each of 

these generations shows a cyclic regeneration period. The swarms have a corresponding number of 

elements. 

Integration of clamp solutions over the regeneration cycle turns them into Green’s functions. During 

that operation, the violent varying function that describes the living space field changes in a rather 

coherently varying function that represents a blurred representation of the original field. This blurred 

field represents the living space potential. From now on, if we speak about the living space, then we 

mean the living space potential. 

1.1.1.2 Strings of warps 

Hops that correspond to solutions, which represent one-dimensional shape-keeping fronts will be 

called warp hops or warps. The same name is used for this type of solutions of the homogeneous 

second order differential equations. Among other possibilities, warps correspond to hops of 

platforms on which elementary modules may reside. Such warps occur in isolation or equidistant in 

strings. The warps do not deform their carrying field. 

Warp strings feature a spatial and a temporal frequency. We postulate that locally and in the same 

progression period the warp strings will feature a fixed regeneration cycle and a fixed spatial path 

length that are the same for all warp strings. This makes it possible to distinguish the individual warp 

strings via their frequency. This frequency determines the information capacity of the string. Each 

string member carries a unit of information. The path of the warp string is located inside and with 

respect to the carrying field. Thus, the path of the string follows the deformation of the carrying field.  

The symmetry related field Electra depends on the nearby existence of symmetry related charges 

and for that reason it is not a good carrier for the warps. In contrast the Palestra exists always and 

everywhere and for that reason it is a proper candidate as carrier for warps. 

The homogeneous second order partial differential equation of the carrying field describes the 

corresponding warp solutions. These solutions feature a fixed speed. The path length determines the 

passage duration of an information messenger. That duration equals the (re)generation cycle of the 

string. 

The behavior of the warp strings invites their interpretation as information messengers. The path 

length postulate only holds locally. Taken over huge ranges of the carrying field or over a long period, 

the path length may vary in a smooth way. This phenomenon is the subject of the equivalent of 

Hubble’s law. 

5.27 The Planck-Einstein relation 
The Planck-Einstein relation states that the frequency of an information messenger is proportional to 

the energy of the messenger string. Together with the fixed speed of the warps, this means that each 
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member of the string carries a standard bit of energy and that, at least locally, all messenger strings 

feature the same length. 

The consequence of the Planck-Einstein relation is that processes that are related to the emission or 

absorption of information messengers have a standard duration. This duration takes a fixed number 

of progression steps. 

It means that the model features two standard clocks. The first clock determines the rate at which 

the vane steps. The second clock determines the number of progression steps that the generation of 

information messengers take. 

5.28 Messenger redistribution and messenger redirection 
Some types of modular (sub)systems, which we will call atomic modular systems are capable of 

splitting information messengers into a set of new information messengers. Further they can absorb 

information messengers and emit information messengers. During the split action the hops are 

redistributed over the resulting parts, such that each part has again the correct path length. The 

emission can occur in a direction that is independent of the direction from which the messenger was 

absorbed. The duration of the absorption processes and the duration of the emission processes must 

be in concordance with the local passage duration of the information messengers.  

If the absorption takes place at a location that is a huge distance away from the emission location, 

then a difference between absorption spectra and emission spectra can occur. In physics this 

phenomenon is known as cosmological redshift. 

The absorption and emission processes must obey spectral rules that determine the absorption and 

emission spectra. 

5.29 The symmetric pair production and annihilation process 
The pair creation and pair annihilation processes appear to be supported by procedures that 

construct quaternions from two complex numbers or that dismantle quaternions into complex 

numbers. 

In the observer’s view, the symmetric pair annihilation incident appears as if a pair of elementary 

modules that are each other’s antiparticle convert into a pair of linear messengers that leave in 

opposite directions. It is the simplest pair annihilation process. In this process, each clamp element 

of the hopping path of the arriving elementary (anti)particle converts into a warp element of a linear 

hop string of a leaving messenger. The messengers leave in a direction that is perpendicular to the 

direction into which the elementary modules were approaching each other.  

The chance that the geometric centers of the elementary modules will meet head-on is very low. A 

more appropriate interpretation can be made in the creator’s view such that at the conversion 

instant the particle reflects against the vane and turns into the corresponding antiparticle that travels 

in the reverse direction of progression. Thus, not two particles annihilate each other, but instead a 

single particle converts into its antiparticle. At the reflection point each reflecting clamp causes the 

emission of two warps that leave in opposite directions, which are perpendicular to the direction of 

the original elementary particle. 

The model represents messengers as strings of equidistant hops in a complex number based 

subspace. The complex numbers represent function values. The leaving messengers are strings of 

warps that transport empty and thus massless platforms. The number of elements in the leaving 

strings reflect the number of clamps in the annihilated elementary modules. The path length of the 

information messengers determines the duration of the annihilation process. 
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If each warp in the string carries a fixed bit of energy, then this process explains the mass-energy 

equivalence. 

During the process the symmetry centers of the platforms are annihilated and therefore the 

symmetry related charges vanish. 

5.30 Pair creation 
At pair creation, the reverse process takes place. In the observer’s view, two strings of warps that 

have sufficient number of elements that enter from opposite direction combine to generate two 

swarms of clamps that constitute a particle-antiparticle pair. During the creation process the 

symmetry centers of the platforms are created. Therefore, the symmetry related charges will 

emerge. 

In the creators view the particle reflects on the future side of the vane. This reflection goes together 

with the reflection of a warp string at the history side of the vane. 

5.31 Interpreting the pair creation/annihilation process 
The creation ‘event’ and the annihilation ‘event’ occur in the neighborhood of the vane. These 

processes are not occurring instantaneously. They take a fixed duration. However, each conversion of 

a clamp into a warp can take a single instant. In reverse, each conversion of a warp into a clamp can 

also take a single instant. Similarly, the emission and absorption processes of atomic modular 

systems take the same duration. Thus, the surround of the vane is reserved for these processes. 

Generations of elementary particles involve different numbers of swarm elements, but if no 

observable difference exist between the duration of the passage of the involved warp strings, then 

the active region around the vane can be subdivided in multiple step numbers. These subdivisions 

correspond to elementary module types and elementary module generations. 

5.32 Moving elementary modules 
On average, clamp swarms will not move with respect to the geometric center of its platform. The 

mechanism that ensures coherence of the swarm will ensure that the geometric center of the swarm 

will on average stay on the geometric center of the platform. The regeneration process can at the 

utmost generate some jitter of the geometric center of the swarm.  

Isolated warps and strings of warps may cause the hopping of the platform with respect to the 

background parameter space. Consequently, the platform hops with respect to the field that 

represents the living space of the elementary modules. Thus, a mixture of clamps and warps may 

cause the movement of the swarm relative to the geometry of this carrying field. 

It is not yet clear what causes the extra insertions of warps, however, a uniform movement of a 

platform already requires the regular insertion of isolated warps. This insinuates that isolated wraps 

can be generated due to the action of something that generates the displacement. These isolated 

wraps concern the hop of the platform as well as the hop landing location and the corresponding 

solution of the second order partial differential equation. 
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6 The test model 
We will first recollect and deepen what we have achieved. After that we will further extend the 

model by using results of what experimental observation of reality has revealed. In the resulting part 

of the paper we will use symbols for new and existing concepts and when appropriate, we will use 

these symbols in equations. In addition, we will refer to scientific documents that support the 

approach that is taken in this paper. 

The Hilbert Book Test Model 𝓜 is based on a foundation that has the relational structure of an 

orthomodular lattice [1] [2]. Nearly a century ago, in 1936, the discovery of this lattice was published 

by the duo Garrett Birkhoff and John von Neumann in a paper in which they also explained its 

relation to the notion of a separable Hilbert space [3] [4]. The orthonormal lattice does not contain 

the notion of number systems. Thus, this foundation cannot represent the concepts that define 

dynamic geometric data, such as time and location. These notions emerge by extending this 

foundation in the direction of the separable Hilbert space. By selecting this extension of the 

foundation, the freedom of selection of derived concepts is significantly restricted. The separable 

Hilbert space provides operators that have countable eigenspaces that are filled with eigenvalues 

that must be members of division rings [5]. Only three suitable division rings exist. These are the real 

numbers, the complex numbers, and the quaternions. The separable Hilbert space can only cope 

with the rational versions of these number systems. These restrictions appear very favorable for the 

pursued model building process. It strongly limits the range of choices. Still the resulting possibilities 

appear to be flexible enough to generate a powerful base model. The combination of the infinite 

dimensional separable Hilbert space and its non-separable companion Hilbert space appears to 

represent a very feature rich and flexible model. 

The restrictions limit the freedom of model generation, but if the orthomodular lattice indeed 

represents the foundation of reality, then at the same time these restrictions limit the way that 

reality can develop. It means that reality must also show the structure and the behavior that the 

Hilbert space shows. 

𝓜 does not interpret the orthomodular lattice as a logical system and it does not interpret the 

elements of the lattice as separate spatial locations, which feature a progression stamp. Instead 

𝓜 interprets atomic elements of the orthomodular lattice as storage places for dynamic 

geometric data. In addition, 𝓜 interprets the atoms of a subset of the lattice as elementary 

modules that are represented by hopping paths and corresponding location swarms. These 

objects are elementary modules of a modular system. These elementary modules are 

represented by subspaces of a separable Hilbert space, but these subspaces contain a huge 

number of dimensions. However, at each progression instant, these subspaces reduce to a ray, 

which is a subspace that is spanned by a single Hilbert vector. Therefore, 𝓜 interprets the 

orthomodular lattice as part of a recipe for modular construction. Modular construction 

represents a very beneficial strategy that strongly reduces relational complexity of the target 

system. For very complex systems the modular construction strategy is orders of magnitude 

more efficient than a monolithic approach. Modular construction uses its resources in an 

optimally economic fashion. 𝓜 applies modular construction as a general strategy. Modular 

construction requires the encapsulation of modules, such that internal relations are hidden 

inside the capsule of the module. In some way, 𝓜 must implement that encapsulation. 

Reality offers huge resources in available time and in numbers of building components. In this 

way, even stochastic design as is applied by nature can reach high levels of complexity. In 

advance the model will apply a stochastic design as its generation strategy. This will change 

when the model has achieved a level in which intelligent species appear. From that instant on 
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the efficiency of the modular construction strategy will on some locations increase significantly. 

Intelligent design and construction will use far less design and generation time and other 

required resources. This will clearly affect the evolution of the model. Due to limited speed of 

information spread, these effects will appear at isolated locations. 

𝓜 applies the fact that the set of closed subspaces of a separable Hilbert space has the relational 

structure of an orthomodular lattice. Not all closed subspaces of a separable Hilbert space 

represent modules or modular systems, thus the notion of a module must be further restricted. 

𝓜 applies the fact that separable Hilbert spaces can only cope with number systems that are division 

rings. We use the most elaborate category of these division rings. That category is formed by the 

quaternionic number systems [8]. Quaternionic number systems exist in multiple versions, that differ 

in the way that they are ordered. This ordering may influence the arithmetic properties of the 

number system. For example, right handed multiplying quaternions and left handed multiplying 

quaternions exist. Further, as will be shown in this paper, it appears that ordering influences the 

behavior of quaternionic functions under integration. This fact has astonishing consequences. It 

enables the distinction of elementary modules into a small series of types. 

Another important fact is that every infinite dimensional separable Hilbert system owns a companion 

Gelfand triple, which is a non-separable Hilbert space [10]. Where the separable Hilbert space can 

only handle discrete data, is the Gelfand triple capable of handling continuums. 𝓜 uses both kinds of 

Hilbert spaces as structured storage media, in a model in which discrete quaternionic data as well as 

quaternionic manifolds can be archived. By applying Hilbert spaces 𝓜 accepts that the model uses a 

storage medium in which all its activities are precisely archived. This repository covers history, the 

present status quo, AND the future! A vane that represents the current static status quo scans over 

this repository. Observation only occurs inside this vane. The observers are modules and modular 

systems that travel with the vane. 

𝓜 uses a separable Hilbert space ℌ to archive countable sets of discrete quaternionic data and 

𝓜 uses the companion Gelfand triple ℋ to archive continuous quaternionic manifolds. ℋ also 

contains an image of the content of ℌ. 𝓜 Uses this fact to describe the embedding of the separable 

Hilbert space into its Gelfand companion. 𝓜 considers the embedding as an ongoing process. In 

taking this view 𝓜 selects between two possible views. The view taken classifies the model as a 

dynamic model. It classifies the view as the observer’s view. The observers travel with the vane. In 

the vane, the separable Hilbert space is embedded into its non-separable companion Hilbert space. 

The alternative view accepts that besides the historic data the Hilbert spaces already contains the 

future data. This classifies this view as the creator’s view. In this alternative view a boundary splits 

the Hilbert space into three parts:  

 The past history part of the model 

 The current static status quo, which is represented by the boundary 

 The future part of the model 

The creator’s view treats these three parts as sections of a model that is created as one whole 

system. 

𝓜 introduces the reverse bra-ket method and uses this method to relate operators and their 

eigenspaces to pairs of functions and their parameter spaces [9]. In this way, subspaces act as Hilbert 

space domains in relation to which manifolds are defined. 

In the observer’s view, the base version ℳ of 𝓜 consists of the foundation, a quaternionic 

separable Hilbert space, its companion Gelfand triple and a set of mechanisms {𝔐𝑛
𝑥} that control the 
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dynamic split of this base version ℳ in a historic part, a part that represents the present static status 

quo and a part that represents the future.  

The observer’s view shifts the equivalent of the mystery of the origin of the dynamics of physical 

reality to the mysteries of a set of mechanisms that control the coherence of the dynamics of the 

model. 

𝓜 applies an extended version of the generalized Stokes theorem to describe the split of the Hilbert 

space into the mentioned three parts [11] [12]. The split implements the vane that travels through 

the base model. The vane represents a static status quo of the model. The generalized Stokes 

theorem enforces the encapsulation of artifacts that disrupt the continuity of the manifolds. This 

introduces an extra splitting of the base model in which elementary artifacts and domain cavities are 

set apart from the domains of the continuous parts of the manifolds.  

Via the reverse bra-ket method, smoothing operators are introduced that convolute the defining 

function of a primary operator with a blurring function. With an appropriate selection of the blurring 

function, the eigenspace of the smoothing operator will represent the “observable” version of the 

primary manifold. Here “observable” means the way that discrete objects sense the influence of the 

local disruptions of the continuity of the primary manifold that are caused by other discrete objects. 

In this way 𝓜 introduces notions such as the wave function, the uncertainty principle, and the 

equivalent of the gravitation potential. 

𝓜 allows two interpretations of the living space of modules and modular systems. One 

interpretation sees the living space as a field that describes the swarms that are formed by the 

landing locations of the hopping paths in a way that is blurred by the Green’s function of the field. 

That Green’s function represents the average over the regeneration cycle of the dynamic response of 

the field to the hop landings. Special spherical symmetric solutions of the homogeneous second 

order partial differential equation that describes the dynamic behavior of the field describe these 

responses. During the travel, away from the hopping location, these solutions keep the shape of the 

moving front. 

The second interpretation sees the hop landings as the actors that influence the field by deforming it. 

These different interpretations do not affect the model. 

The fact that 𝓜 steps with model wide steps in the separable Hilbert space ℌ and flows in the 

companion Gelfand triple ℋ is the reason to use the name Hilbert Book Model  for 𝓜.  

The author extends the name to Hilbert Book Test Model  to warn that 𝓜 is not meant to be a 

physical model. Instead 𝓜 is a pure mathematical test model that is used to investigate the 

mathematical tools and methods that can be use to describe a physical model. A separate static 

status quo of the Hilbert Book Model will be called a Hilbert book page or sheet.  
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7 Stokes theorem 

7.1 Domains and parameter spaces 
The quaternionic domain Ω is supposed to be defined as part of the domain ℜ of a reference 

operator ℜ that resides in the non-separable quaternionic Hilbert space ℋ. The reverse bra-ket 

method relates the eigenspace {𝑞} of reference operator ℜ to a flat quaternionic function ℜ(𝑞). The 

target of function ℜ(𝑞) is its own parameter space {𝑞}. Here we explicitly use the same symbol ℜ for 

all directly related objects. In 𝕸 , ℜ(𝑞) is always and everywhere continuous. 

 

ℜ = |𝑞〉ℜ(𝑞)〈𝑞| = |𝑞〉𝑞〈𝑞| 

 

The domain ℜ is spanned by the eigenvectors {|𝑞〉} of operator ℜ.  

The reverse bra-ket method also relates the eigenspace ℜ to an equivalent eigenspace ℛ of a 

reference operator ℛ, which resides in the infinite dimensional separable Hilbert space ℌ. Both 

eigenspaces are related to the same version of the quaternionic number system. However, the 

second eigenspace ℛ only uses rational quaternions 𝑞𝑖.  

 

ℛ = |𝑞𝑖〉ℜ(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖| 

 

Quaternionic number systems can be ordered in several ways. Operator ℛ corresponds with one of 

these orderings. ℛ is supposed to be Cartesian-ordered. ℛ is a normal operator and its eigenspace is 

countable. Cartesian ordering means that the set of eigenvectors of ℛ can be enumerated by the 

separate eigenvalues of ℛ. The eigenspace is the Cartesian product of four partially ordered sets in 

which the set, which represents the real part takes a special role. The eigenspace of the Hermitian 

part ℛ0 = ½(ℛ + ℛ†) of normal operator ℛ can be used to enumerate a division of ℌ into a 

countable number of disjunctive subspaces, which are spanned by eigenvectors of ℛ. Cartesian 

ordering means partial ordering of the eigenvalues of ℛ0 and additional ordering of the eigenvalues 

of the anti-Hermitian operator 𝕽 = ½(ℜ − ℜ†) by selecting a Cartesian coordinate system. Eight 

mutually independent Cartesian coordinate systems exist. ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint 

operator. The ordered eigenvalues of ℛ0 can be interpreted as progression values. The eigenvalues 

of 𝓡 can be interpreted as spatial location values. This differs from the physical notions of time and 

space that contemporary physics uses. Physical spacetime has a Minkowski signature. Here we are 

talking about a mathematical test model. This test model uses a Euclidean space-progression 

structure for the creator’s view and a spacetime structure with a Minkowski signature for the 

observer’s view. 

Parameter spaces as well as domains correspond to closed subspaces of the Hilbert spaces. The 

domain subspaces are subspaces of the domains of the corresponding reference operators. A 

selected coordinate system brings ordering to the parameter spaces. A part of the eigenspace of 

reference operator ℜ represents the Ω domain. The flat quaternionic function ℜ(𝑞) defines the 

parameter space ℜ. ℜ has a Euclidean signature. It installs an ordering by selecting a Cartesian 

coordinate system for the eigenspace of its anti-Hermitian part 𝕽 = ½(ℜ − ℜ†). Several mutually 

independent selections are possible. The chosen selection attaches a corresponding symmetry flavor 

(1) 

(2) 
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to this parameter space. In the mathematical test model, this symmetry flavor will become the 

reference symmetry flavor. Thus, the symmetry flavor of parameter space ℜ⓪ may be distinguished 

by its superscript  ⓪. 

The manifold 𝜔 is also defined as the continuum eigenspace of a dedicated normal operator 𝜔 which 

is related to domain 𝛺 and to parameter space ℜ⓪ via function 𝔉. Within this parameter space, 𝔉 

may have discontinuities, but these must be excluded from the domain over which integration takes 

place. This exclusion will be treated below. 

Symmetry centers are described by anti-Hermitian operators and their geometric center can float on 

another parameter space as a function of progression. At every progression step, the residing 

elementary module uses only one location of the symmetry center. In combination, this produces a 

well-ordered operator where a single progression value corresponds with a single spatial location. A 

stochastic mechanism determines the spatial location. This mechanism produces coherent location 

swarms. A continuous location density distribution can describe the swarm. Further, a progression 

value can enumerate all swarm elements and in this way that procedure forms a hopping path. 

7.2 Stokes theorem without discontinuities 
The conventional generalized Stokes theorem is in fact a combination of multiple versions. One is the 

using the divergence part of the exterior derivative 𝑑𝜔. It is also known as the generalized 

divergence theorem. Another version uses the curl part of the exterior derivative. In fact, all these 

versions concern separate terms that exist in the first order partial differential. Thus, the generalized 

Stokes theorem divides the integration along the “lines” in which change takes place. The 

conventional version of the Stokes theorem does not apply all terms of the first order partial 

differential. For quaternionic manifolds all terms can be combined in one formula. This results in the 

extended version of the generalized Stokes theorem and that is the version that will be used here. 

Usually the domains cover a static status quo or we integrate over the regeneration period such that 

variation with time becomes small or negligible. The static status quo is characterized by three 

changes, a divergence, a gradient and a curl. The other two changes concern what disappears into 

history and what comes in from the future. The parts concern the change of the scalar and vector 

fields that often represent blurred views of weighted location density distributions. 

Without discontinuities in the manifold 𝜔 a simple formula represents the conventional generalized 

Stokes theorem  

Without discontinuities in the manifold 𝜔, a simple formula represents the conventional generalized 

Stokes theorem [11] [12]. 

 

∫ 𝑑𝜔
Ω

= ∫ 𝜔 (= ∮ 𝜔
𝜕Ω

)
𝜕Ω

 

 

The theorem can be applied when everywhere in Ω the derivative d𝜔 exists and when everywhere in 

𝜕Ω the manifold 𝜔 is continuous and integrable. The domain Ω is encapsulated by a boundary 𝜕Ω. 

 

Ω ⊂ 𝜕Ω 

 

(1) 

(2) 
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In this paper, the manifolds 𝜔 and 𝑑𝜔 represent quaternionic fields 𝔉 and 𝑑𝔉, while inside 𝜕Ω the 

manifold 𝜔 represents the quaternionic boundary of the quaternionic field 𝔉. These fields and 

manifolds correspond to defining functions 𝔉(𝑞) and 𝑑𝔉(𝑞). 

𝑑𝜔 is the exterior derivative of 𝜔.  

This view is focusing onto the spatial part 𝕽 of the quaternionic parameter space ℜ. It uses only the 

spatial parts 〈𝛁, 𝒇〉, 𝛁𝑓0 and 𝛁×𝒇 of the first order differential equation. 

 

∇𝑓 = ∇0𝑓0 − 〈𝛁, 𝒇〉 + ∇0𝒇 + 𝛁𝑓0 + 𝛁×𝒇 

 

If 𝑓 represents the living space potential, then in this formula the black terms on the right side can be 

considered small and will be neglected. 

In the conventional Stokes theorem, the gradient 𝛁𝑓0 is neglected. In quaternionic space all five 

terms contribute to the balance and continuity equations. If both the historic and the future parts are 

taken into the view, then a new extended Stokes theorem emerges. 

Formula (1) does not pay any attention to the what exists outside of the splitting boundary. If the 

parameter space ℜ is an eigenspace of a normal reference operator in a quaternionic Hilbert space, 

then the ignored region concerns the other part of the Hilbert space. A proper balance equation 

must consider all participating parts. We will extend the Stokes theorem in that direction. 

7.3 Interpreting the exterior derivative 
Via quaternionic defining functions, the reverse bra-ket method couples the separable Hilbert space 

to its non-separable companion.  

The defining function ℱ(q) links the integral over the full quaternionic 𝑞 numbers to the 

summation over the rational 𝑞𝑖numbers. 

 

〈𝑥|ℱ 𝑦〉 = ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

≈ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

This corresponds to: 

 

∮ ℱ
𝜕Ω

= ∫ ℱ ⟺ ∑〈𝑥|𝑞𝑖〉ℱ(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖𝜕Ω

 

 

∫ 𝑑ℱ ⟺ ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞
Ω

 

 

(3) 

(1) 

(2) 

(3) 
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This divides the region over which the equation works into two parts. One in which summation 

equals integration and a region or a set of regions where integration does not work properly due to 

the existence of discontinuities of ℱ(𝑞) in those sub-regions. Exchanging ℱ(𝑞) against a smoothed 

version can completely or partly cure this problem. 

Another possibility is the split of the parameter space ℜ of ℱ(𝑞) into the parts ℜ− and ℜ+. This splits 

the real part of the parameter space in two parts. The split occurs at a selected progression value. If 

the two splits are combined, then the split between summation and integration can be interpreted as 

a leakage of the second split in which discrete objects pass though the sieve that splits ℜ− and ℜ+. A 

similar interpretation can be given to larger regions in which ℱ(𝑞) is not defined. 

Thus, the quaternionic extension of the Stokes theorem may involve multiple splits: 

 The split between ℜ− and the static status quo. 

 The slit between the static status quo and ℜ+. 

 The split around point-like artifacts. 

 The split around other regions where the defining function is not integrable or does not exist. 

Properly smoothed fields pass straight through the boundaries. 

The conventional generalized Stokes theorem exists in the form of a divergence based version and in 

the form of a curl based version [11] [12]. However, for quaternionic manifolds the definition of the 

exterior derivative requests extra attention. In this section, we assume that the quaternionic 

manifold ω is represented by the target of a quaternionic function 𝔉(𝑞). Function 𝔉(𝑞) has a flat 

parameter space ℜ.  

ℜ is a flat quaternionic manifold, which is represented by the target of function ℜ(𝑞) ≝ 𝑞. 

We presume that the exterior derivative d𝔉 of 𝔉 can be interpreted by the following equations: 

 

d𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇
𝑑𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇𝑑𝑥𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝜈𝐷𝜇𝔉𝜈 

 

𝐷𝜇 ≝ 𝑑𝑥𝜇  
𝜕

𝜕𝑥𝜇
 

 

Thus d𝔉 is represented by a tensor. This is not a very attractive presentation. It is more convenient to 

treat the change along the directions in which change takes place according to the first order partial 

differential equations. This opens the possibility to apply the corresponding Stokes and Gauss 

theorems. 

The exterior derivative differs from the partial differentials that appear in partial differential 

equations. 

 

(4) 

(5) 

(3) 
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𝔊 = ∑𝑒𝜍𝔊𝜍 = 𝑒𝜍𝔊𝜍

3

𝜍=0

 

= ∇𝔉 = ∑ 𝑒𝜇
𝜕𝔉

𝜕𝑥𝜇

3

𝜇=0

= ∑ 𝑒𝜇 ∑ 𝑒𝜈
𝜕𝔉𝜈

𝜕𝑥𝜇

3

𝜈=0

3

𝜇=0

= 𝑒𝜇𝑒𝜈𝜕𝜇𝔉𝜈 = 𝑒𝜇𝜈𝜕𝜇𝔉𝜈 

 

In the right parts of the above formulas, the summation rules for subscripts and superscripts are 

applied. 

We use the fact that quaternions can be considered as a combination of a real scalar and an 

imaginary vector. Further, we apply the fact that first order quaternionic partial differential operators 

act as multipliers. 

 

𝔉 = 𝔉0 + 𝕱 

 

𝔊 = ∇𝔉 = 𝔊0 + 𝕲 = (∇0 + 𝛁)(𝔉0 + 𝕱) 

 

𝔊0 = ∇0𝔉0 − 〈𝛁,𝕱〉 

 

𝕲 = ∇0𝕱 + 𝛁𝔉0 ± 𝛁×𝕱 

 

For some fields, some parts of 𝕲 may get special symbols. This is applied in Maxwell-like equations. 

 

𝕰 = −∇0𝕱 − 𝛁𝔉0 

 

𝕭 = 𝛁×𝕱 

 

Similar definitions are applied in Maxwell equations. However, despite these similarities, the derived 

fields 𝕰 and 𝕭 are not equivalent to the Maxwell fields E and B. The Maxwell equations are treated 

in the appendix. 

In general, there is no guarantee that 𝕰 and 𝕭 are perpendicular. Thus, in general: 

 

〈𝕰,𝕭〉 ≠ 0 

 

However, a third vector 𝕻 is perpendicular to both 𝕰 and 𝕭. 

(4) 

(5) 

(6) 

(7) 

(8) 

 (8 

(9) 

(10) 
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𝕻 = 𝕰×𝕭 

 

Equation (6) is not part of the Maxwell set of partial differential equations. However, in conventional 

physical theories the terms ∇0𝔉0 and 〈𝛁,𝕱〉 are used in gauge equations. 

We may conclude that change covers five terms that do not represent four independent directions as 

is suggested by the conventional Maxwell differential equations. 

Please note that 

 

∇∗𝔉∗ = (∇0 − 𝛁)(𝔉0 − 𝕱) = 𝔊0 − ∇0𝕱 − 𝛁𝔉0 ± 𝛁×𝕱 

 

(∇𝔉)∗ = 𝔊∗ = ∇∗𝔉∗ ∓ 2𝛁×𝕱 

 

The ± sign indicates the fact that quaternionic parameter spaces and quaternionic functions exist in 

versions that differ in the handedness of their external vector product. 

 

In the integrals below some terms of ∇𝔉 are combined. 

 

𝛁𝕱 = −〈𝛁,𝕱〉 ± 𝛁×𝕱 

 

𝛁𝔉 = 𝛁𝔉0 − 〈𝛁,𝕱〉 ± 𝛁×𝕱 

 

∇0𝔉 = ∇0𝔉0 + ∇0𝕱 

 

It must be noticed that  

 

d𝔉 ≠ ∑ 𝑒𝜇𝔊𝜇𝑑𝑥𝜇

3

𝜇=0

 

 

This is the reason that the conventional generalized Stokes integral uses the wedge product 𝑑𝑥 ∧

𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. These wedge products are merely a warning that a tensor is active. In the quaternionic 

version of the Stokes theorem, it is not a clear exposure of the mechanism.  

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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The Maxwell-like partial quaternionic differential equations differ from the Maxwell equations that are used in current 

physical theories. Thus, great care must be applied in comparing the two sets of partial differential equations. Especially 

equations (6) and (10) signal alarming differences. 

7.4 A special domain split 
In the special splitting case that is investigated here, the extended generalized Stokes theorem 

constructs a vane 𝔉(𝒙, 𝜏) between the past history of the field [𝔉(𝒙, 𝑡)]𝑡<𝜏 and the future 

[𝔉(𝒙, 𝑡)]𝑡>𝜏 of that field. It means that the boundary 𝔉(𝒙, 𝜏) of field [𝔉(𝒙, 𝑡)]𝑡<𝜏 represents a 

universe wide static status quo of that field.  

More specifically, the form of the generalized Stokes theorem for the sketched situation runs as: 

 

∫ ∭d𝔉

𝑉

𝜏

𝑡=0

(𝑥) = ∫ (∭∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

𝑉

) ∧ 𝑑𝜏

𝜏

𝑡=0

= [∭𝔉

𝑉

(𝒙)𝑑𝒙]

𝑡=𝜏

 

 

𝑥 = 𝒙 + 𝜏 

 

Here [𝔉(𝒙, 𝑡)]𝑡=𝜏 represents the static status quo of a quaternionic field at instance 𝜏. 𝑉 represents 

the spatial part of the quaternionic domain of 𝔉, but it may represent only a restricted part of that 

parameter space. This last situation corresponds to the usual form of the divergence theorem. 

As mentioned above great care must be taken by interpreting the wedge product in  

d𝔉(𝑥) = ∇𝔉(𝑥) 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 ∧ 𝑑𝜏. 

Due to the danger of misinterpretation, we will avoid the wedge products that appear in the middle 

part of equations (1) and (3). In the right part of the equation only the divergence, the curl and a 

gradient play a role. The split that has been selected, sets a category of operators apart that are all 

Cartesian-ordered in the same way as operator ℛ is. It enables a space-progression model in which 

progression steps in the separable Hilbert space ℌ and flows in its non-separable companion ℋ. Via 

the reverse bra-ket method the Cartesian-ordering of ℛ can be transferred to ℜ. 

 Interpretation of the selected encapsulation 
The boundary 𝜕Ω is selected between the real part and the imaginary part of domain ℜ. But it also 

excludes part of the real part. That part is the range of the real part from 𝜏 to infinity. 𝜏 is interpreted 

as the current progression value.  

The boundary 𝜕Ω has one dimension less than the domain Ω. The failing dimension is taken by the 

form of the partition. In the special case, most of the three-dimensional spatial part of the parameter 

space forms the boundary. The theorem does not specify the form of the partition, but requires that 

the partition form does not traverse discontinuities or regions in which the defining function is not 

defined. Thus, if the partition wipes through the parameter space and encounters discontinuities or 

regions in which the defining function is not defined, then the partition must encapsulate these 

objects while it passes them. These encapsulating partitions become part of the boundary. In this 

way, these objects stay outside of the boundary 𝜕Ω. Symmetry centers and space cavities become 

objects that float as encapsulated modules over the domain Ω. If they enter the partition, then they 

can be considered created. If they keep floating with the partition, then these objects are alive. If 

(1) 

(2) 

(3) 
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they have completely passed the partition, then they can be considered to have been annihilated. A 

long lifetime will correspond to a tube-like history and a corresponding tube-like future. 

The future ℜ − Ω is kept on the outside of the boundary 𝜕Ω. Consequently, the mechanisms that 

generate new data, operate on the rim 𝜕Ω between past Ω and future ℜ − Ω. Two interpretations 

are possible. Either, the mechanisms generate data that was not yet present in the Hilbert spaces, or 

the mechanisms represent the data that are encountered during the passage of the partition. The 

observers cannot decide which of the two interpretations is correct. It is merely a question of what 

you want to belief. For 𝕸 this interpretation does not matter. This paper describes the model in 

accordance to the first interpretation. This avoids confusion about why and how the creator of the 

model generated the data that are archived in 𝕸‘s Hilbert spaces. In 𝕸 the relevant observers live 

inside the wiping boundary (the vane). In the selected interpretation, the creator of the model is 

throwing dices! In this action, a set of dedicated mechanisms represents the creator. These 

mechanisms apply stochastic processes. 

The described split of quaternionic space results in a space-progression model that is to a significant 

extent similar to the way that physical theories describe their space time models. However, the 

physical theories apply a spacetime model that has a Minkowski signature. The quaternionic model is 

strictly Euclidean. The creator’s view represents this. The observer’s view represents a spacetime 

structure, which has a Minkowski structure. 

The paper does not claim that this quaternionic space-progression model reflects the structure and 

the habits of physical reality. The quaternionic space-progression model is merely promoted as a 

mathematical test model. 

It is possible to see what according to the selected interpretation happens in the mathematical test 

model as an ongoing process that embeds the subsequent static status quos of the separable Hilbert 

space into the Gelfand triple. 

Controlling mechanisms act as a function of progression 𝜏 in a stochastic and step-wise fashion in the 

realm of the separable Hilbert space. The results of their actions are stored in eigenspaces of 

corresponding stochastic operators that reside in the separable Hilbert space. These stochastic 

operators differ from the kind of operators that are handled by the reverse bra-ket method. 

However, if the stochastic operators produce coherent swarms that feature a continuous density 

distribution, then that distribution corresponds with an operator that is defined by this distribution 

via the reverse bra-ket method. 

The controlling mechanisms have no notion of the fields. They only work with discrete objects that 

appear in swarms. Discrete objects that appear in isolation will be considered and treated as spurious 

objects. 

At the same progression instant, this part of the separable Hilbert space is embedded into its 

companion Gelfand triple. The controlling mechanisms will provide all generated data with a 

progression stamp 𝜏. This progression stamp reflects the state of a model wide clock tick. The whole 

model, including its “physical” fields will proceed with these progression steps. However, in the 

Gelfand triple this progression can be considered to flow.  

We have selected one of two possible interpretations. The model does not change by selecting an 

interpretation. The interpretation that is selected, has significant consequences for the description of 

the model. At the defined vane, any forecasting will be considered as mathematical cheating. Thus, 

at the vane, the uncertainty principle does not work for the progression part of the parameter 
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spaces. Differential equations that offer advanced as well as retarded solutions must reinterpret the 

advanced solutions and turn them into retarded solutions, which in that case represent another kind 

of object. If the original object represents a particle, then the reversed particle is the anti-particle. 

Thus, the tubes that represent elementary modules will appear to reflect on the boundary in one 

interpretation and will just pass the boundary in the other interpretation. In the panning view the 

tube just passes undisturbed through the boundary. 

Because of the construct, the history, which is stored, free from any uncertainty, in the already 

processed part of the eigenspaces of the physical operators, is no longer touched. Future is unknown 

or at least it is inaccessible for observation. 

 Integrals over regular spatial domains 
If in a spatial domain, function 𝔉 obeys the homogeneous equation 

 

𝜵𝜵𝔉 = 0 

 

then the function 𝔉 and the corresponding field 𝔉 is considered regular in that domain. For functions 

𝔉 that are this kind of regular in spatial domain 𝑉 hold: 

 

∭ 𝜵𝔉 = ∯𝒏𝔉
𝑆𝑉

 

 

∭ 𝜵𝔉0 = ∯ 𝒏𝔉0𝑆𝑉
 (gradient theorem) 

 

∭ 〈𝜵,𝕱〉 = ∯ 〈𝒏,𝕱〉
𝑆𝑉

 (divergence theorem) 

 

∭ 𝜵×𝕱 = ∯ 𝒏×𝕱
𝑆𝑉

 (curl theorem) 

 

If we try to interpret these integrals, then they compute the contributions to the balance of change 

in the closed boundary that in each of its points locally is perpendicular to unit vector 𝒏. 

𝜵𝔉 ⇒ 𝒏𝔉 

〈𝜵, 𝕱〉 ⇒ 〈𝒏,𝕱〉 

𝜵×𝕱 ⇒ 𝒏×𝕱  

𝜵𝔉0 ⇒ 𝒏𝔉0 

𝜵𝔉 = 𝜵𝔉0 − 〈𝜵, 𝕱〉 ±  𝜵×𝕱 ⇒ 𝒏𝔉 = 𝒏𝔉0 − 〈𝒏,𝕱〉 ±  𝒏×𝕱  

In fact, equation (2) comprises equation (3) through (5). 

𝔊 = ∇𝔉 = 𝔊0 + 𝕲 = (∇0 + 𝛁)(𝔉0 + 𝕱) = ∇0𝔉0 − 〈𝛁,𝕱〉 + ∇0𝕱 + 𝛁𝔉0 ± 𝛁×𝕱 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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 Integrating irregular functions  
We can use the gradient of the inverse of the spatial distance |𝒒 − 𝒄|. 

 

𝜵
1

|𝒒 − 𝒄|
= −

𝒒 − 𝒄

|𝒒 − 𝒄|𝟑
 

 

The divergence of this gradient is a Dirac delta function. 

 

𝛿(𝒒 − 𝒄) = −
1

4𝜋
〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉 = −

1

4𝜋
〈𝜵, 𝜵〉

1

|𝒒 − 𝒄|
 

 

This means that: 

 

𝜙(𝒄) = ∭𝜙(𝒒)𝛿(𝒒 − 𝒄)
𝑉

= −
1

4𝜋
∭𝜙(𝒒)〈𝜵, 𝜵〉

𝑉

1

|𝒒 − 𝒄|
 

 

As alternative, we can also use the Green’s function 𝐺(𝒒) of the partial differential equation. 

 

𝜙(𝒄) = ∭𝜙(𝒒)𝐺(𝒒 − 𝒄)
𝑉

 

 

For the Laplacian 〈𝜵, 𝜵〉 this obviously means: 

 

〈𝜵, 𝜵〉𝔉 = 𝜙(𝒒) 

 

𝐺(𝒒 − 𝒄) =
1

|𝒒 − 𝒄|
 

 

However, when added to the Green’s function, every solution 𝑓 of the homogeneous equation 

 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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〈𝜵, 𝜵〉𝑓 = 0 

 

is also a solution of the Laplace equation. 

 

𝜙(𝒄) = ∭
𝜙(𝒒)

|𝒒 − 𝒄|𝑉

 

 

Function 𝜙(𝒄) can be interpreted as the potential that is raised by charge distribution 𝜙(𝒒). 

In pure spherical conditions the Laplacian reduces to: 

 

〈𝜵, 𝜵〉𝔉(𝑟) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝔉(𝑟)

𝜕𝑟
) 

 

For the following test function 𝔗(𝑟) this means [13]: 

 

𝔗(𝑟) =
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔉(𝑟) =
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

 

Thus, for a Gaussian location distribution 𝜌(𝑟) of point-like artifacts the corresponding contribution 

to field 𝔗(𝑟) equals an error function divided by its argument. At first sight this may look in 

contradiction with equations (4) − (8), but here the distribution of artifacts extends over the 

boundary of domain 𝑉. 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟

𝐸𝑅𝐹(𝑟)

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(− 𝐸𝑅𝐹(𝑟) + 𝑟

2

√𝜋
exp(−𝑟2)) 

=
1

𝑟2
(−

2

√𝜋
exp(−𝑟2) +

2

√𝜋
exp(−𝑟2) − 2𝑟

2

√𝜋
exp(−𝑟2))  =

4

√𝜋
exp(−𝑟2) 

 

(7) 

(8) 

(9) 

(10) 

(11) 
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Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further 

from the center the form of the Green’s function (1/r) is retained. 

The test function does not represent the action of a mechanism that ensures the dynamic coherence of a real object. It is 

a pure mathematical example. 

  

0,0000

1,0000

2,0000

3,0000

4,0000

0 1 2 3 4 5 6

r

ERF(r)/r and 1/r



55 
 

7.5 The detailed generalized Stokes theorem 
We separate all point-like discontinuities from the domain Ω by encapsulating them in an extra 

boundary. Symmetry centers represent spherically ordered parameter spaces in regions H𝑛
𝑥 that float 

on a background parameter space ℜ. The boundaries 𝜕H𝑛
𝑥 separate the regions H𝑛

𝑥 from the domain 

Ω. The regions H𝑛
𝑥 are platforms for local discontinuities in basic fields [x]. These fields are 

continuous in domain Ω − H.  

 

𝐻 = ⋃H𝑛
𝑥

𝑛

 

 

The symmetry centers 𝕾𝑛
𝑥  are encapsulated in regions H𝑛

𝑥 and the encapsulating boundary 𝜕H𝑛
𝑥 is 

not part of the disconnected boundary which encapsulates all continuous parts of the quaternionic 

manifold 𝜔 that exist in the quaternionic model. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω∪𝜕H

= ∫ 𝜔
𝜕Ω

− ∑∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

If everywhere on the boundary we take the unit normal to point outward, then this reverses the 

direction of the normal on 𝜕H𝑛
𝑥, which negates the integral. Thus, in this formula, the contributions 

of boundaries {𝜕H𝑛
𝑥} are subtracted from the contributions of boundary 𝜕Ω. This means that 𝜕Ω also 

surrounds the regions {H𝑛
𝑥}. This fact renders the integration sensitive to the ordering of the 

participating domains. 

Domain Ω corresponds to part of the reference parameter space ℜ⓪. As mentioned before the 

symmetry centers {𝕾𝑛
𝑥} represent encapsulated regions {H𝑛

𝑥} that float on parameter space ℜ⓪. 

The geometric center of symmetry center 𝕾𝑛
𝑥  is represented by a floating location on parameter 

space ℜ⓪. 

The relation between the subspace 𝑆Ω that corresponds to the domain Ω and the subspace 𝑆ℜ that 

corresponds to the parameter space ℜ⓪ is given by: 

 

Ω⏟
𝑆Ω

⊂ ℜ⓪⏟
𝑆ℜ

 

Similarly: 

 

H𝑛
𝑥⏟

𝑆H𝑛
𝑥

⊂ 𝕾𝑛
𝑥⏟

𝑆𝕾𝑛
𝑥

  

(1) 

(2) 

(3) 

(4) 
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7.6 Symmetry flavor and the origin of the symmetry related charge 
The symmetry center 𝕾𝑛

𝑥  is characterized by a private symmetry flavor. That symmetry flavor relates 

to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is 

fixed, then eight independent Cartesian orderings are possible. We use the Cartesian ordering of ℜ⓪ 

as the reference for the orientation of the axes. ℜ⓪ has the same Cartesian ordering as ℛ⓪ has. 

 

∫ 𝑑𝜔
Ω−H

= ∫ 𝜔
𝜕Ω

− ∑∫ 𝜔
𝜕H𝑛

𝑥
𝑛

 

 

In this formula, the boundaries 𝝏𝜴 and 𝝏𝑯𝒏
𝒙  are subtracted from each other. The difference in 

ordering of the domains Ω and H𝑛
𝑥 controls this subtraction. 

Due to the smoothness of the embedding field, we have some freedom with the spatial placement of the encapsulating 

boundaries. We exploit that freedom by selecting a cubic, rather than a spherical encapsulation of the point-like 

discontinuities. The cube is aligned along the coordinate axes. This enables us to correctly determine the influence of the 

differences in ordering along the coordinate axes. 

The consequence of the differences of the symmetry flavor on the subtraction can best be 

comprehended when the encapsulation 𝜕H𝑛
𝑥 is performed by a cubic space form that is aligned along 

the Cartesian axes. Now the six sides of the cube contribute different to the effects of the 

encapsulation when the ordering differs from the Cartesian ordering of the reference parameter 

space ℜ⓪. Each discrepant axis ordering corresponds to one third of the surface of the cube. This 

effect is represented by the symmetry related charge and the color charge of the symmetry center. 

It is easily related to the algorithm which is introduced for the computation of the symmetry related 

charge. Also the relation to the color charge will be clear. Thus, this effect couples the ordering of 

the local parameter spaces to the symmetry related charge of the encapsulated elementary 

module. The differences with the ordering of the surrounding space determines the value of the 

symmetry related charge of the object that resides inside the encapsulation! 

The symmetry related charge and the color charge of symmetry center 𝕾𝑛
𝑥  are supposed to be 

located at the geometric center of the symmetry center. A Green’s function together with these 

charges can represent the local defining function 𝜑𝑥(𝑞) of the contribution 𝜑𝑥 to the symmetry 

related field 𝔄𝑥 within and beyond the realm of the floating region H𝑛
𝑥. 

Nothing else than the discrepancy of the ordering of symmetry center 𝕾𝑛
𝑥  with respect to the 

ordering of the parameter spaces ℛ⓪and ℜ⓪ causes the existence of the symmetry related charge, 

which is related to the symmetry center. Anything that resides on this symmetry center will inherit 

that symmetry related charge. 

7.7 Single symmetry center 
H𝑛

𝑥 is a spatial domain. The regions H𝑛
𝑥 that are combined in 𝐻 are excluded from domain Ω. The 

Stokes theorem does not hold for the separate regions H𝑛
𝑥. Instead, the difference between the 

integrals defines a potential. In case of isotropic symmetry flavor of the symmetry center 𝕾𝑛
𝑥  holds: 

 

𝑄𝑛
𝑥 = |𝒒 − 𝒄𝑛

𝑥| {∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

} 

(1) 

(1) 
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𝒄𝑛
𝑥  is the geometric center of symmetry center 𝕾𝑛

𝑥. 𝑄𝑛
𝑥 is the symmetry related charge. This 

corresponds to the symmetry related potential 𝜑𝑛
𝑥(𝑞) that exists at the outskirts of the 

encapsulation. 

 

𝜑𝑛
𝑥(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

= ∫ 𝑑𝜔
H𝑛

𝑥
− ∫ 𝜔

𝜕H𝑛
𝑥

 

 

The potential 𝜑𝑛
𝑥(𝒒 − 𝐜𝑛

𝑥) contributes to the symmetry related field 𝔄𝑥. 

7.8 Bounded center 
A locally a spatially connected union 𝐻⊎ of encapsulations H𝑛

𝑥 is defined by: 

 

𝐻⊎ = ⋃ H𝑛
𝑥

𝑁𝑥

𝑛=1

 

𝐻⊎ encapsulates multiple symmetry centers. In case that 𝐻⊎ exists, we consider the objects that 

reside within that encapsulation 𝜕𝐻⊎ as bounded by the symmetry related charges. 

 

𝜙𝑥(𝒒) = ∑
𝑄𝑛

𝑥

|𝒒 − 𝒄𝑛
𝑥|

𝑁𝑥

𝑛=1

 

 

At large enough distance from this bounded center, all charges can be considered merged in a single 

charge with symmetry related potential function 𝜙(𝑞): 

 

𝜙(𝑞) =
∑ 𝑄𝑛

𝑥𝑁
𝑛=1

|𝒒 − 𝒓|
 

 

𝒓 =
1

𝑁
∑ 𝒄𝑛

𝑁

𝑛=1

 

 

7.9 Discrepant regions 
The symmetry centers correspond to point-like discontinuities. However, also large connected 

regions of ℜ⓪ may exist that disrupt the continuity of the manifold. For example, a region that is 

surrounded by a boundary where the deformation is so strong that information contained in ω 

cannot pass the boundary of this region. These regions must also be separated from domain Ω. In 

this way, these regions will correspond to cavities in the domain Ω. The information contained in the 

(2) 

(1) 

(2) 

(3) 

(4) 



58 
 

manifold cannot pass the surface of the cavity. The cavities act as information holes. Within the 

cavity, the manifold can be considered non-existent. Within that region, it has no defining function. 

Current mathematical integration technology appears to lack proper solutions for this situation. 

Discrepant regions cannot be hidden by applying a smoothing operator to the underlying field. 

The discrepant regions are the “black holes” of the model. 
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8 Compartments 
Universe can be divided into compartments that act as envelops of black holes. The black hole itself 

is enclosed by an envelope that corresponds to the densest packaging of entropy. The amount of 

entropy that is enclosed is proportional to the area of the enclosure. For each enclosure holds that 

the enclosure represents a description of all enclosed clamps and warps that are enclosed. 

9 Elementary modules 
Each elementary module resides on a private platform, whose spatial part corresponds to a private 

symmetry center. A symmetry flavor characterizes that symmetry center. Symbol 𝕾𝒏
𝒙   will represent 

the symmetry center. The superscript refers to the type of the elementary module and the subscript 

refers to the identity of the elementary module inside its type group. A germ operator ℴ𝑛
𝑥 generates 

the hopping path and the location swarm that correspond to the identity of the elementary module. 

The mechanism that ensures the dynamic coherence of the location swarm picks the eigenvalues of 

the germ operator ℴ𝑛
𝑥 from the platform that corresponds to symmetry center 𝕾𝒏

𝒙 . 

For the operator ℴ𝑛
𝑥 that describes via its eigenvalues the ‘life’ of the elementary module, each 

subsequent real progression value is accompanied by an imaginary part and together these parts 

form the eigenvalue that belongs to the Hilbert vector, which at this progression instant represents 

the elementary module. This single value has not much to say about the owner of this eigenvalue. 

Only a series of subsequent eigenvalues can do that job. A large series of these numbers can tell the 

types of elementary modules apart. These subsequent quaternionic numbers form a hopping path. 

After a while these numbers form a dynamic location swarm. The spatial parts of these numbers are 

taken from symmetry center 𝕾𝒏
𝒙 . that due to this role determines part of the properties of the 

elementary module. Thus, the hopping path and the location swarm reside on the platform that 

corresponds to the symmetry center. Thus, all elementary modules reside on their own individual 

symmetry center. The symmetry center covers a closed subspace and the module covers a subspace 

of that subspace. The private symmetry center floats over a background parameter space and the 

map of its center location onto the background parameter space is a function of progression.  

The location of the geometric center of the floating symmetry center is not part of the eigenspace of 

the anti-Hermitian operator 𝕾𝒏
𝒙 , but it is a property of the symmetry center. This floating location is 

also a property of the elementary module and is formulated in terms of a value of the background 

parameter space ℜ. This reference operator is a normal operator and provides full quaternionic 

eigenvalues that can represent progression values as well as spatial locations. 

The model embeds the swarm into the Palestra field that represents its living space. This embedding 

act deforms the field. The action involves a convolution of the location density distribution of the 

swarm with the Green’s function of the field that represents this living space. The swarm is in fact an 

integration over the regeneration cycle of the hopping path and the Green’s function is in fact an 

integration over the dynamic response of the field during this regeneration cycle. Similarly, the 

Green’s function is in fact an integration over the regeneration cycle of the dynamic response of the 

living space field in reaction on the corresponding hop landing. Each landing location in the hopping 

path corresponds with a sudden point-like trigger that affects the field. A special solution of the 

homogeneous second order partial differential equation describes that response. The response 

represents the behavior of the field when such artifacts trigger this field. The response deforms this 

field and the convolution accounts for the deformation due to all triggers that are members of the 

location swarm. The convolution involves an integral. This reasoning implies that the generation of 

the swarm is an ongoing process.  
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If the generation stops, then the swarm collapses. This colaps includes the corresponding location 

density distribution. The reason can be that the mechanism, which is responsible for the generation 

of the swarm decides to switch to another operation mode. 

Two fields are involved. One field represents the living space Palestra. The result of the convolution is 

the living space potential. The other field is the symmetry related field Electra. The integral that 

concerns the symmetry related field must take the differences in the ordering of the involved 

platforms in account. The generalized Stokes theorem best explains this. That theorem converts an 

integral over a volume into an integral over the boundary that encapsulates this volume. Depending 

on the ordering, the contribution is added or subtracted. If the encapsulation is located such that at 

these locations the added function values are negligible, then only the contributions of the difference 

in parameter space ordering result. In that case these differences will reveal the symmetry related 

charges. The symmetry related charges are supposed to be located at the geometric center of the 

platform on which the elementary module resides. Thus, for the symmetry related field, the volume 

integral involves a single Green’s function. 

9.1 Module content 
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space 

states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an 

orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues 

characterize this closed subspace. 

Germ operator ℴ𝑛
𝑥 only acts as a descriptor. It describes a hopping path. The operator does not 

generate its own eigenvalues. It has eigenvalues that are generated by a mechanism 𝔐𝑛
𝑥, which is 

not part of the Hilbert space. 

 Progression window 
Operator ℴ𝑛

𝑥 is a stochastic operator. It is a normal operator. Its eigenvalues are not ordered in the 

way that the eigenvalues of reference operators are ordered. Still the real parts of operator ℴ𝑛
𝑥 are in 

sync with the eigenvalues of the clock operator. Due to the integration over the regeneration cycle, 

the stochastic ordering of the spatial part of the eigenvalues will become hidden. In fact, the location 

density distribution implements a spatial reordering of the hopping locations.  

Thus, it is possible to define a quaternionic normal operator 𝓈𝑛
𝑥 for which a subset of the 

eigenvectors span the same closed subspace as is spanned by the eigenvectors of ℴ𝑛
𝑥 and the 

corresponding eigenvalues of this new operator describe the reordered dynamic geometric data of 

this elementary module such that they fit in the ordering of the eigenvalues of symmetry center 𝕾𝒏
𝒙 . 

After that ordering process, they form a subset of the eigenvalues of 𝕾𝒏
𝒙 . The integration over the 

regeneration cycle can be installed as a smoothing effect, which dampens the kinematic actions of 

the eigenvalues of 𝓈𝑛
𝑥. In this way, the geometric data become new functions of what we already 

have called progression. The new operator 𝓈𝑛
𝑥 describes the module content in a reordered fashion 

that can be interpreted as a location swarm.  

The determination of the location density distribution of the swarm integrates over the regeneration 

cycle and turns the hopping path into a location swarm. The integration turns the spherical shape 

keeping fronts that are caused by the hop landings into the Green’s function of the embedding field. 

The convolution of this Green’s function with the location density distribution of the swarm of hop 

landing locations results in the deformation of the embedding field that is caused by the presence of 

the elementary particle. 
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A companion normal reference operator 𝔗𝑛
𝑥  provides a normal capsule for the anti-Hermitian 

symmetry center 𝕾𝒏
𝒙 . On the other hand, it also covers the progression window of operator ℴ𝑛

𝑥 It can 

be considered as the capsule or as the encapsulating operator for the elementary module. Its 

eigenspace can be viewed as a tube in which the elementary module travels. The operator ℴ𝑛
𝑥 can be 

considered as the descriptor of an inner tube. It gets its data from a private stochastic mechanism. 

The operator stores these data into the separable Hilbert space. The progression window covers a 

harmonica of sheets in which the model steps from sheet to sheet. Outside of the harmonica the 

model is considered to flow. 

The operator 𝕾𝒏
𝒙  that describes the symmetry center is only a descriptor. This also holds for the 

operators ℴ𝑛
𝑥, 𝓈𝑛

𝑥, and 𝔗𝑛
𝑥  that describe the content and the direct environment of the corresponding 

elementary module. The real actor is the controlling mechanism 𝔐𝑛
𝑥, which is responsible for 

establishing the characteristics that are typical for the elementary module. These characteristics are 

the statistical characteristics and the symmetry of the swarm and the dynamic characteristics of the 

corresponding hopping path. The mechanism 𝔐𝑛
𝑥  takes care of the fact that the swarm is a coherent 

swarm and stays that way. This is partly ensured by the fact that the private mechanism uses a 

stochastic process that owns a characteristic function. 

Stochastic processes that are controlled by dedicated mechanisms provide the elementary modules 

with dynamic geometric data. Here we only consider elementary modules for which the content is 

well-ordered. This means that in the eigenspace of the selected operator every progression value is 

only used once. 

For the most primitive modules the closed subspace may be reduced until it covers a generation 

cycle in which the statistically averaged characteristics of the module mature to fixed values. The 

resulting closed subspace acts as a sliding progression window. This sliding window corresponds to a 

regeneration cycle. The sliding window covers a (large) series of sheets that act as static status quos. 

A cycle of operator 𝔗𝑛
𝑥  describes it. 

What happens can be integrated over the progression window. This turns the germ operator, which 

describes the hopping path, into a swarm operator 𝓈𝑛
𝑥 = |𝒶𝑗

𝑥〉 𝒶𝑗
𝑥〈𝒶𝑗

𝑥|. 

For observers, the sliding window separates a deterministic history from a partly uncertain future. 

Inside the sliding window a dedicated mechanism 𝔐𝑛
𝑥  fills the eigenspace of operator𝓈𝑛

𝑥. The 

mechanism is a function of progression. If it is a cyclic function of progression, then its private 

mechanism recurrently regenerates the module. 

The phrase “recurrently regenerated” is related to the observer’s interpretation of the model where mechanisms generate 

new eigenvalues in contrast to the alternative interpretation where the boundary is passing over data that already exist as 

eigenvalues in the Hilbert space. These interpretations do not influence the model. For describing the model, the paper 

mostly follows the first interpretation. However, it is also good to keep the creator’s interpretation in mind. It throws a 

slightly different light upon the model. 

9.2 Interaction with a continuum 
The swarm is defined with respect to the parameter space that resides on the platform of the 

symmetry center. To define the interaction with the living space field Palestra, the swarm must be 

reinterpreted with respect to the background parameter space, which is used as parameter space by 

the Palestra. We will not redefine the swarm, but instead we formulate the location density 

distribution such that it uses the background parameter space as its parameter space.  

By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm 

{𝒶𝑗
𝑥}, which is a subset of the rational quaternions {𝖘𝑖

𝑥} that are eigenvalues of the symmetry center 
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on which the module resides. At the same time the discrete eigenvalues form a hopping path. They 

form a subset of the eigenvalues of tube operator 𝔗𝑛
𝑥. With other words the swarm forms a spatial 

map of the dynamic hopping of the point-like object. The swarm and the hopping path conform to a 

stochastic operator ℴ𝑛
𝑥 that is well ordered with respect to its progression values, but is not ordered 

in spatial sense like reference operators ℛ or 𝕾𝑛
𝑥. The swarm is spatially reordered to construct the 

location density distribution. To prepare this map, the collection {𝒶𝑗
𝑥} must be reordered such that it 

conforms to the ordering of the background parameter space. This results in collection {𝒷𝑗}. Here the 

superscript is removed. This collection is eigenspace of operator 𝓈𝑛. 

𝓈𝑛 = |𝒷𝑗〉𝒷𝑗〈𝒷𝑗| 

In approximation, operator 𝓈𝑛 can be considered as a defined operator that uses the location density 

distribution 𝓈𝑛 as its defining function. 

The image 𝒷𝑗 of hop landing location 𝒶𝑗
𝑥 represents a point-like artifact that leads to a dynamic 

response of the living space field in the form of a spherical shape-keeping front that after integration 

over the regeneration cycle corresponds to the Green’s function of the living space field and through 

the convolution with location density distribution 𝓈𝑛 leads to a local contribution to the living space 

field ℭ. The Green’s function blurs the location density distribution. The contribution 𝔘 of the 

elementary module to the Palestra ℭ is the gravitation potential of the elementary module. 

The deformed field ℭ represents a conglomerate of descriptors of the location density of location 

swarms. Where the location density becomes negligible the field ℭ describes the background 

parameter space. The convolution process must convert the symmetry flavors of the location swarms 

to the symmetry flavor of the background parameter space. 

In the previous paragraphs the field is viewed as being deformed by the discrete objects that disturb its continuity. It is also 

possible to view the field as a descriptor that describes the location density distribution of the discrete objects. These views 

correspond to different interpretations of the same model. The interpretations do not influence the model. However, the 

selected interpretation does affect the description of the model. This duality indicates that there is nothing mysterious 

about the fact that the field and the discrete objects appear to interact. However, the situation will look mysterious if 

information transfer will use the deformed field as its carrier. That is what happens in physical reality. 

The generalized Stokes theorem shows that in the integration process the discrepant regions must be separately handled 

and for that reason it is necessary to encapsulate the discrepant locations. The corresponding contributions must account 

the difference in symmetry flavor. 

The interaction process influences none of the eigenspaces of the parameter space operators. Only 

this last step causes space curvature in the deformable target field. The embedding of each of the 

swarm elements lasts only a short instant and is immediately released. What results is the impact on 

the smoothed field ℭ. Field ℭ is not only blurred in spatial sense. It is also averaged over the 

progression window. 

9.3 Coherent elementary modules  
A coherent location swarm characterizes elementary modules that behave in a coherent dynamic 

way. The coherent elementary modules are directly related to an individual symmetry center. The 

elements of the coherent location swarm that characterizes the coherent elementary module are 

taken from this symmetry center. These elements are ordered with respect to progression, but 

spatially they are selected in a stochastic fashion. This selection is described by germ operator ℴ𝑥. In 

the map onto the reference continuum, coherent elementary modules feature a hopping path. Inside 

the symmetry center the hopping path is on average closed. It means that on average it has a static 

geometric center. That center is supposed to correspond to the geometric center of the symmetry 



63 
 

center. Further, for coherent elementary modules, the map of the location swarm into the reference 

continuum corresponds to a density operator 𝜌 that is defined by a continuous function. 𝜌 

approximates 𝓈𝑛.That continuous function is a normalized location density distribution and it has a 

Fourier transform. This Fourier transform equals the characteristic function of the stochastic process 

that is used by the mechanism, which generates the hop landing locations of the elementary module. 

Due to the existence of this Fourier transform, the swarm owns a displacement generator and as a 

further consequence in first approximation the swarm will move as one unit. Another consequence 

of the existence of the Fourier transform is that the swarm behaves like a wave package and the hop 

landing locations may form an interference pattern.  

The fact that the location density distribution of the swarm can be convoluted with the Green’s function of the field to 

compute the interaction indicates that the contributions of the separate hops can be superposed to deliver the total effect 

of the swarm. 

The new operator 𝜌 has ℛ and thus ℜ as the parameter space of the defining function 𝜌. It tends 

to describe the swarm as a single unit. It no longer describes the hopping path. The operator 𝜌 is 

no more than a special descriptor. It does not affect the distribution of the density of the 

locations that is described by this operator and its defining function. 

The private mechanism 𝔐𝑛 that selects the eigenvalues such that a coherent swarm is generated 

ensures the coherence.  

This paper gives no full explanation for this special habit of the mechanism. However, this habit is essential for the 

coherence of the whole model. Some guesses about the way that mechanism 𝔐𝑛 works are possible. Due to his experience 

with low dose intensified imaging, the author assumes that the mechanisms apply something that looks like a combination 

of a Poisson process and a binomial process. Together they form an inhomogeneous spatial Poisson point process. The test 

function shows that such a combination results in a coherent swarm. A combination of a Poisson process and a binomial 

process that is implemented by a spatial spread function can establish a location density distribution, which approaches the 

Gaussian distribution, which underlies the described test function. This might provide a partial indication of how the 

mechanism works. A Poisson process that is combined with an attenuating binomial process can again be considered as a 

Poisson process that has a lower local efficiency than the homogeneous spatial Poisson point process. Thus, in this 

interpretation, the spread function defines the spatial spread of the efficiency of the local Poisson processes. See the 

section on low dose rate imaging. 

The symmetry flavor of their symmetry center 𝕾𝑛
𝑥  also characterizes coherent elementary modules. 

When mapped into a reference continuum that is eigenspace of reference operator 

ℜ⓪ = |𝑞⓪〉𝑞⓪〈𝑞⓪| the module is characterized by a symmetry related charge, which is located at 

the center of symmetry. The symmetry related charge is a property of the local symmetry center 𝕾𝑛
𝑥. 

The symmetry related charge corresponds to an isolated point-like artifact of the symmetry related 

field 𝔄. This symmetry related field 𝔄 will be treated later. 

 

The size and the sign of the symmetry related charge depends on the difference of the symmetry 

flavor of the local symmetry center with respect to the symmetry flavor of the surrounding reference 

continuum ℛ⓪. The coherent swarm {𝒶𝑗
𝑥} inherits the symmetry flavor of the local symmetry center 

𝕾𝑛
𝑥. However, the controlling mechanism 𝔐𝑛

𝑥  picks the elements of this set in a spatially stochastic 

way instead of in a spatially ordered fashion. Thus, the stochastic operator ℴ𝑛
𝑥that reflects the 

stochastic selection by 𝔐𝑛
𝑥, corresponds with another operator, this time a density operator 𝓈𝑛

𝑥 that 

reflects the spatial ordering and characterizes the coherent stochastic mechanism 𝔐𝑛
𝑥  with respect 

to its achievement to establish spatial coherence.  
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9.4 The function of coherence 
Embedding of sets of point-like objects into the affected embedding continuum spreads the reach of 

the separate embedding locations and offers the possibility to bind modules. The Green’s function 

defines the spread of a single embedded point-like object. The Green’s function represents the 

integral over the regeneration cycle of the dynamic response of the field on a short trigger. The 

trigger corresponds with a hop landing and is immediately released. The homogeneous second order 

partial differential equation describes the dynamic response of the field. The integration turns the 

homogeneous equation into an inhomogeneous equation in which the extra term represents the 

Green’s function.  

Spurious embedding locations have not enough strength and not enough reach to implement an 

efficient binding effect. In contrast, coherent location swarms offer enough locality, enough spread 

and enough embedding strength to bind coherent swarms that are sufficiently close. 

For example, a Gaussian distribution of the location swarm would turn the very peaky Green’s 

functions into a rather broad spherical painting brush that can be described by the potential: 

 

𝜑(𝑟) =
𝐸𝑅𝐹(𝑟)

𝑟
 

 

This is a smooth function without a trace of a singularity. Thus, the coherent swarm bends the 

embedding field in a smooth fashion! We will give this special function a name and call it test 

function. At the center location, the amplitude of the test function equals about 1,128379. The test 

function has a standard spread. The standard deviation is about 0,598758. A graph of function 𝜑(𝑟) 

was shown in figure 1. 

The actual location density distribution may differ from the Gaussian distribution. The amplitude of the resulting function 

will depend on the form of the density distribution and will depend on the number of participating point-like obstructions. 

For large numbers of participating point-like obstructions, the coherence of the swarm ensures that the smoothed 

embedding field stays integrable, while each of the elements of the swarm would separately cause a singularity. The actual 

smoothness of the affected field will depend on the number of participating obstructions. This plays a greater role in the 

outskirts of the distribution. In that region, the signal to noise ratio is much lower than in the center. This results in a larger 

local relative variance in the outskirts.  

We assumed that all obstructions have similar impact on the affected field. However, the process that governs the 

generation of the obstructions has a stochastic nature. The characteristics of this process depends on the properties of the 

controlling mechanism. The number of elements in the coherent swarms that corresponds to actual elementary modules 

depends on the type of the module. For most types of elementary modules this number is huge. If the generator of the 

obstructions is a Poisson process in combination with a binomial process that is implemented by a known spatial spread 

function, then the local signal to noise ratio can be calculated at any location where the number of participating 

obstructions is still large enough. This is because a Poisson process in combination with a binomial process is again a 

Poisson process with an attenuated efficiency. An object that will approach these outskirts will sense the local relative 

variance of the field and may act accordingly. Therefore, its behavior in response to the local field value may appear to 

show some turbulence. Closer to the center of the swarm the signal to noise is much larger and the behavior of the 

respondent will become more consistent. 

If for some reason the generation process is halted, then the controlling mechanism changes to another control mode and 

because of that the discrete nature of the swarm will becomes noticeable. In this case the last location in the location 

swarm indicates the exact location where the generation process was disrupted. After this instant, the previous location 

density distribution has lost its validity and collapses. In physics the group of physicists that support the Copenhagen 

interpretation named this phenomenon “the collapse of the wave function”. 

(1) 
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Imaging of the location swarm onto the reference continuum is only used to define coherence and it 

is used to indicate the influence of the symmetry related charges. The embedding onto the affected 

continuum ℭ is used to exploit the corresponding potential binding effect of the swarm. The 

stochastic process that implements the stochastic location distribution under control of mechanism 

𝔐𝑛
𝑥  is the de facto actuator in establishing the coherent swarm. The embedding field ℭ is not 

affected by symmetry differences. In contrast the symmetry related field 𝔄 is caused by these 

differences. Thus ℭ and 𝔄 differ fundamentally! For the elementary module, the symmetry center 

couples the two fields. 

9.5 The effect of the blur 
The coherent swarm represents an effective blur of every observation of the spatial location of the 

corresponding object. All information about the swarm will be transmitted via the fields that are 

influenced by the presence of the swarms. The model does not support other information carriers. 

In this aspect, the model differs from theories that postulate the existence of force carriers. This model does not support 

force carriers. Nor does it support the corresponding force fields. However, the basic fields can cause acceleration of the 

discrete objects that reside on symmetry centers. The notion of force carriers imposes a dilemma: What supports the force 

carrier? On the other hand, the variation of a vector field as a function of progression goes together with a new field that is 

represented in the first order partial differential equation. This new field acts with a force onto artifacts that are embedded 

in that new field. For the living space this effect is known as inertia. For the symmetry related field, the effect is known as 

symmetry related force. In physics, it is called electric force. The section on force raising subfields treats the situation in 

which the total change of the field stays zero. 

The blur means that every object that is informed about the properties of the observed object will 

perceive this observed object with a blur that is defined by the field contribution that represents the 

actual location density distribution. This is not the smooth density distribution 𝜌. It is the convolution 

of the density distribution with the Green’s function of the field. 

Due to the blur, no observer will directly perceive the difference between an object that is 

constructed as a swarm of discrete elements and an object that has a more compact structure such 

as a sphere. This fact is increased if the observer itself has a similar structure. The location swarms 

contain a huge number of elements. Only in this way the signal to noise ratio of the transferred 

information is large enough to tolerate reliable reactions of the observer on the signal that it receives 

via the surrounding fields. 

Thus, every interaction is afflicted with a certain signal to noise ratio. 

9.6 Modules and subspaces 
Only a small fraction of the rational quaternions will represent a dynamic location of an elementary 

module. Thus, a comparable number of Hilbert vectors will represent the state of an elementary 

module. Each of these Hilbert vectors spans a closed subspace. With other words, the orthomodular 

lattice that describes the relations between all modules will only sparsely cover the set of closed 

subspace of the Hilbert space.  

At the next progression instant, a new category of Hilbert vectors will represent the elementary 

modules. In this way, the model steps with model wide progression steps. The current state of the 

model wipes through the model and divides the model in three parts: a historic part, a current part, 

and a future part. The separable Hilbert space exactly registers these states. Thus, the separable 

Hilbert space is not confronted with any uncertainty. However, everything that travels with the 

separating blade will be cut off from any information that is stored in the future part. What occurs at 

a distance will reach the observer in the future. That information is transferred via fields. For all 
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participants uncertainty exists about what the future will bring. The fact that the controlling 

mechanisms install coherence will reduce the size of the uncertainty. 

The elementary modules will follow hopping paths and controlling mechanisms take care that these 

hopping paths stay within a tube. A map of the hopping path onto the cross section of the tube 

results in a spatial location swarm. This swarm and the hopping path characterize the properties and 

therefore the type of the elementary module. 

This paper follows the view that is obtained by objects that travel with the scanning vane. Observers 

are modules that run with the vane. However, it is also possible to take a view in which the 

investigator knows all eigenvalues that are stored in the Hilbert space. In that case the uncertainty of 

the vane traveler is changed into the uncertainty of the process that filled the eigen values at the 

instance that the whole Hilbert space was established. These uncertainties are the same. The creator 

generated its own (un)certainty! 
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10 Fields 

10.1 Fields in contrast to sets of discrete objects 
Coherent sets of discrete quaternions have much in common with the continuums that describe the 

location density of these swarms. The set of rational quaternions is densely embedded in the 

continuum of the corresponding quaternionic number system. A continuous function can relate the 

coherent set that corresponds to the target of the rational quaternionic function and the 

corresponding smooth continuum. If you want to estimate the impact of point-like disruptions of the 

continuity, it makes more sense to investigate the set of rational target values of the relating 

function, than trying to investigate the disrupted continuum. Putting the point-like disruptions in 

capsules will partly solve integration and differentiation problems. In this way, smoothed versions of 

the fields can be derived that circumvent the problems that integration has with the existence of 

point-like disruptions. 

10.2 Differentiable and integrable basic fields 
By applying the reverse bra-ket method, a category of operators can represent quaternionic 

functions. They do this in combination with reference operators. This is applicable both in the 

separable Hilbert space and in the Gelfand triple.  

In this paper, fields are continuums that are target spaces of quaternionic functions that define 

eigenspaces of operators, which reside in the Gelfand triple. 

Quaternionic functions and their differentials can be split in real number valued scalar functions and 

imaginary vector functions. Here we will only consider the not too violent disruptions of the 

continuity of the fields. We also restrict the validity range of the equations. With these restrictions, 

the quaternionic nabla can be applied and the discontinuities restrict to point-like artifacts. The 

quaternionic nabla has the advantage that it works as a multiplying operator. Apart from its 

functionality as a differentiation operator, it obeys quaternionic multiplication rules. 

Quaternionic functions can represent fields and continuums, but they can also represent density 

distributions of discrete dynamic locations. A point-like disruption then corresponds to a single 

exception in a large assembly of smoothly varying values. The vector field that goes together with the 

scalar field may then represents the displacements of the discrete objects. Quaternionic 

differentiation of such fields is treated in the next chapter. 

Double differentiation of a basic field leads to a non-homogeneous second order partial differential 

equation that relates the basic field to the corresponding density distributions of discrete dynamic 

locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic 

functions two different second order partial differential equations exist. They describe different 

dynamic behavior of the same basic field and the two second order partial differential equations can 

offer views on different behavior of the investigated field. 

The symmetry related field 𝔄 and the embedding continuum ℭ are basic fields. This paper mainly 

investigates these two basic fields. A third basic field describes the activity of rotator quaternions. In 

this paper, all other fields are derived from these basic fields. 

The symmetry related field 𝔄 is based on the existence of symmetry centers. These symmetry 

centers float over a reference parameter space that acts as a background in the whole model. 

The embedding continuum ℭ is based on the existence of a dynamic deformable function ℭ that 

describes the embedding of discrete artifacts, which reside on symmetry centers and interact with ℭ. 

Mechanisms 𝔐𝑛
𝑥  that are dedicated to the symmetry center 𝕾𝑛

𝑥  select the artifacts. Corresponding 
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stochastic operators ℴ𝑛
𝑥 describe the results of the activity of these mechanisms. All stochastic 

operators of type ℴ have countable eigenspaces and can be considered to reside in the separable 

Hilbert space.  

10.3 Subspace maps 
The orthomodular base model consist of two related Hilbert spaces.  

 An infinite dimensional separable Hilbert space ℌ that acts as a descriptor of the properties 

of all discrete objects.  

 A non-separable Hilbert space ℋ that acts as a descriptor of the properties of all continuums. 

The non-separable Hilbert space can be interpreted as the envelop of its separable companion. 

The orthomodular base model does not apply Fock spaces because the tensor product of quaternionic Hilbert spaces is no 

longer a quaternionic Hilbert space. Instead it is a real Hilbert space. It reduces the model to the representation of the 

model’s clock. 

In the observer’s view, an ongoing process which is governed by dedicated mechanisms embeds a 

part of the separable Hilbert space ℌ into its non-separable companion Hilbert space ℋ. The treated 

part is the vane and a section that covers the regeneration cycle. This ongoing process corresponds 

to a partition in the form of a vane that moves through the reference parameter spaces ℛ⓪ and ℜ⓪ 

and splits them into three parts: history, present static status quo, and future. This corresponds to a 

similar split of the Hilbert space that divides the Hilbert space into three subspaces. We introduce a 

harmonica that splits the vicinity of this boundary in a series of sheets. The middle sheet is the actual 

vane. Thus, near the boundary we treat progression as a discrete parameter. Further away, 

progression may be considered to flow. The sheets cover a sliding progression window that covers 

the current regeneration cycles of the swarms. The mechanism 𝔐𝑛
𝑥  that governs the embedding of 

an elementary module is active in the splitting boundary, but its control is influenced by historic and 

future sheets that belong to the harmonica, which covers the regeneration cycle that produces the 

coherent location swarm, which is characteristic for the elementary module. The behavior of the 

mechanism is stochastic and only determined by statistical and symmetry related characteristics. 

Nothing, not even the creator of the model, has deterministic insight in the decisions of the 

mechanism. 

This view corresponds to the interpretation of the model in which mechanisms generate new spatial data as a function of 

the progression value. An alternative interpretation suspects that the future data are already present in the Hilbert space 

and are encountered by the moving boundary. In that case the mechanisms must have been active as generators at the 

instance of the formation of the whole Hilbert space. Also in that case the activity of the mechanisms is stochastic and is not 

governed and deterministically determined by the creator of the model. These different interpretations do not affect the 

model. 

The Cartesian-ordered reference operator ℛ⓪ and the corresponding reference operator ℜ⓪ 

couple the two Hilbert spaces. Both are defined by the quaternionic function ℜ(𝑞) ≝ 𝑞. 

On the rim between history and future will controlling mechanisms {𝔐𝑛
𝑥} fill the module related 

subspaces of separable Hilbert space ℌ with data and the new contents of these subspaces are 

subsequently embedded into the non-separable Hilbert space ℋ. The history stays untouched. The 

fill of subspaces with data is described by dedicated stochastic operators. The mechanisms {𝔐𝑛
𝑥} 

use stochastic processes to generate these data. These operators glue the generated geometric 

data as eigenvalues to corresponding eigenvectors that each span a ray. The author suspects that 

the stochastic operators represent inhomogeneous spatial Poisson point processes. In more 

detail these processes are probably modified Thomas processes. Each of these processes can be 

interpreted as a combination of a Poisson process and a subsequent binomial process that is 
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implemented by a spatial spread function. The combination of a Poisson process and a binomial 

process acts again as a Poisson process which has a weakened efficiency. The combination can 

be interpreted as a stochastic spatial spread function. 

A closed subspace in ℌ maps into a subspace of ℋ. Only the countable subspaces of ℋ have a 

sensible dimension. By applying the reverse bra-ket method, defining functions can map 

countable eigenspaces of operators that reside in the separable Hilbert space into continuum 

eigenspaces in the Gelfand triple. Mapping does not influence the flat reference fields that are in 

use as parameter spaces. However, the embedding process affects the deformable field ℭ. In this 

case the embedding must be interpreted as interaction and not as a much simpler mapping. The 

ℭ field describes the generated location swarms that result from the corresponding hopping 

paths. Indirectly, the embedding process affects the symmetry related field 𝔄. In fact, both fields 

interact by affecting the location of the geometric center of the symmetry centers that 

correspond to elementary modules. 

10.4 Embedding field 
The elements of the eigenspace of the stochastic operator ℴ𝑛

𝑥, which is used by a controlling 

mechanism 𝔐𝑛
𝑥  will be embedded in the eigenspace of operator ℭ. A more smoothed version 𝔘 

of this operator exists that mimics the view that observers get from the field ℭ. For example, ℭ is 

smoothed by its Green’s function and 𝔘 is smoothed by a blur that approaches the blur of the 

test function. Observers are the receivers of information that is transported by messengers or by 

other vibrations or deformations of the embedding field. The messengers are objects that use 

the embedding field as their transport medium. Smoothing blurs the perception of the observer. 

The smoothing implemented by 𝔘 represents the minimal observation blur for elementary 

modules. 

With this interpretation, the embedding process is the pursuit by the embedding field to follow the density 

distribution of a set of rational and thus discrete quaternionic target values as close as is tolerated by a selected 

blurring function. This process involves a convolution and this convolution involves an integration. The target values 

are the targets of the defining function for a selected set of parameter values. ℭ uses a narrower blurring function than 

𝔘 does. ℭ is interpreted as a field, while 𝔘 is interpreted as a potential. The difference between ℭ and 𝔘 is that 𝔘 blurs 

all spurious point-like artifacts such that as an individual, they become “unobservable”. Only in huge numbers these 

spurious point-like artifacts will become noticeable as large range effects. 

Operator ℭ can be described by a quaternionic function ℭ(𝑞⓪) that has a parameter space ℜ⓪, 

which is generated by the eigenspace of reference operator ℜ⓪. When applicable, we use the 

same symbol for the parameter space, the defining function, and the operator. With the installed 

restrictions, the dynamics of the embedding process can be described by quaternionic 

differential calculus.  

If the discontinuities that are generated by local discontinuities are not too violent, then the non-

homogeneous second order partial differential equation will elucidate the embedding process. 

This will be treated in detail in the next chapter. 

In ℋthe operator ℭ ≝ |𝑞⓪〉ℭ(𝑞⓪)〈𝑞⓪| is defined by function ℭ(𝑞⓪) and represents an 

embedding continuum ℭ. The embedding process affects this continuum and thus deforms it 

dynamically. 

We will show that two different non-homogeneous second order partial differential equations 

exist that offer different descriptions of the embedding process. The equation that is based upon 

the double quaternionic nabla 𝛻𝛻∗ cannot show wave behavior. However, the equation that is 

based on d’Alembert’s operator 𝔒 acts as a wave equation, which offers waves as part of its set 

of solutions. 
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𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

𝔒 ≝ −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

The embedding continuum ℭ is always and (nearly) everywhere present. Closed regions exist 

where ℭ is not defined. These space cavities form an exception to the rule. ℭ is vibrated and 

deformed by discrete artifacts that are embedded during a short event in this field. In the 

considered domain, ℭ may contain point-like artifacts and connected regions where ℭ(𝑞) is not 

defined. 

In ℋ, the representations of symmetry centers float over the natural parameter space ℜ⓪ of the 

embedding continuum. The symmetry related charges of the symmetry centers generate local 

contributions 𝜑 to the symmetry related field 𝔄. The location of the center of the symmetry 

center 𝕾𝑛
𝑥  within parameter space ℜ⓪ is affected by the symmetry related field 𝔄. The 

symmetry related field 𝔄 ≝ |𝑞⓪〉𝔄(𝑞⓪)〈𝑞⓪| uses the same natural parameter space ℜ⓪ as the 

embedding field ℭ does. This indicates that the fields 𝔄 and ℭ influence each other in an indirect 

way via the symmetry centers. Forces effectuate this influence. For the 𝔄 field these forces relate 

to the electric charge. For the ℭ field the force relates to the mass, which on its turn relates to the 

number of involved hop landings. 

The mechanism 𝔐𝑛
𝑥  that controls stochastic operator ℴ𝑛

𝑥 picks members of a symmetry center 

𝕾𝑛
𝑥  and stores them in the eigenvalues of that operator. These eigenvalues are mapped to 

parameter space ℛ⓪ and in that way, they become eigenvalues of a new operator 𝒷𝑛
𝑥. This map 

involves relocation and re-ordering. This fact couples the location of the symmetry related 

charge of this symmetry center with the locations that get embedded in the eigenspace of 

operator ℭ. However, the parameter location of the symmetry related charge does not coincide 

with the parameter location of the eigenvalue of operator 𝒷𝑛
𝑥,that will be embedded in the 

eigenspace of operator ℭ. This embedding involves an interaction that is described in a blurred 

way by function ℭ(q). The eigenvalues of operator 𝒷𝑛
𝑥 will form a mapped swarm whose center 

will coincide with the mapped parameter location of the symmetry related charge. That location 

also coincides with the location of the mapped geometric center of the symmetry center. The  

eigenvalues of 𝒷𝑛
𝑥 interact with field ℭ. This interaction is not a simple map, but can be 

interpreted as a blurred image. The images of these eigenvalues on the smoothed version 𝔘 of ℭ 

correspond with even more blurred locations in 𝔘. Convolutions cause these blurs. 

ℭ and 𝔘 lay like thin and thick (3D) snow blankets over the set of discrete rational quaternions. 

𝔘 represents a thicker and thus smoother snow blanket than ℭ. 

10.5 Symmetry related fields 
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ 

in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry 

flavor. This is the symmetry flavor of the symmetry center 𝕾𝑛
𝑥  that supports the original location 

swarm. Differences between symmetry flavors of a symmetry center 𝕾𝑛
𝑥  and the symmetry flavor of 

the eigenspace of the surrounding reference operator ℛ⓪ cause the presence of a symmetry related 

charge at the center location of that symmetry center. The countable reference parameter space 

(1) 

(2) 
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ℛ⓪ in the separable Hilbert space ℌ maps onto the continuum parameter space ℜ⓪, which resides 

in the Gelfand triple ℋ. 

Symmetry related charges are point-like objects. These charges generate a field 𝔄 that 

fundamentally differs from the embedding continuum. This symmetry related field also plays a role in 

the binding of modules, but that role differs significantly from the role of the embedding continuum 

ℭ. The defining function 𝔄(𝑞) of field 𝔄 and the defining function ℭ(q) of field ℭ use the same 

parameter space ℜ⓪. 

Symmetry related charges are located at the geometric centers of local symmetry centers. The size 

and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the 

symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry 

centers that belong to different symmetry related charges appear to react on the symmetry 

differences. Equally signed charges repel and differently signed charges attract. The attached 

coherent location sets that are attached to the symmetry centers will be affected by these effects. 

The symmetry related charges do not directly affect the embedding continuum ℭ. Their effects are 

confined to the map of the symmetry center 𝕾𝑛
𝑥  to the parameter space ℜ⓪. However, with their 

action the symmetry related charges relocate the centers of the corresponding coherent swarms. 

The elements of the swarms deform the embedding continuum. 

The symmetry related charges are rather isolated point charges. Consequently, the range of the field 

that is generated by a single charge is rather limited. The corresponding Green’s function diminishes 

as 1/r with distance r from the charge. 

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point 

charges can generate a corresponding wide spread symmetry related field 𝔄. This works well if most 

charges have the same sign. Still, relevant values of the symmetry related field 𝔄 depend on the 

nearby existence of symmetry related charges. 

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are 

not recurrently generated, but instead their geometric center can get relocated. Together with these 

symmetry centers, the corresponding symmetry related charges and the residing swarms get 

relocated. 

The relative short range of relevant field values makes the symmetry related field a bad candidate for 

the medium on which long range messengers can travel. For that purpose, the embedding field ℭ is a 

much better candidate. 

10.6 Gluon related field 
Quaternions exist that can rotate another quaternion or even an entire swarm of quaternions over 
𝜋/2 radians. The size of the real part of these special quaternionic rotators equals the size of their 
imaginary part. These quaternions act in pairs. These special quaternions can switch an anisotropy to 
another dimension. In other words, they may switch the symmetry related charge of an anisotropic 
elementary module to a different value (color). Isotropic objects stay unaffected. 

The presence of these quaternions during the generation of the swarm of an anisotropic elementary 

module can interfere with this building process. Thus, the presence of the color shifting quaternions 

affects the persistence of the anisotropic elementary module. Isotropic objects are not affected.  

The mechanisms that ensure the coherence of the swarms of anisotropic elementary modules 

respond by colluding with other mechanisms that also manage anisotropic elementary modules by 
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jointly generating isotropic composite objects. The composite will be characterized by a single 

location swarm, but that swarm will reflect the landing locations of multiple hopping paths. The 

constituting hopping paths are anisotropic, but the result of the merge will be that the swarm is 

effectively isotropic. In physics the phenomenon of color neutralization is called "color confinement". 

This phenomenon has a binding effect. The process binds quarks into hadrons. The color shifting 

quaternions play the role of the gluons. That is why we will use the name “gluon” for the pairs of 

color shifting quaternions. The gluons give raise to a third basic field. They are governed by a special 

mechanism that controls their presence and their activity. We will use symbol ℨ for the gluon related 

field. 

This interpretation distinguishes the Hilbert Book Test Model from Quantum Chromo Dynamics that 

introduces a force field in order to explain the binding between quarks. 

10.7 Free space 

In the separable Hilbert space, the eigenvectors of the Cartesian-ordered reference operator ℛ⓪ 

that do not belong to a module subspace together span free space. The elementary modules reside 

on symmetry centers whose center locations float on the eigenspace of ℛ⓪.  

At every progression instant, only one element of the swarm {𝑎𝑗
𝑥} is used. Thus “free space” 

surrounds all elements of the swarm. It forms most of the continuum ℭ, which is deformed by the 

embedding of the currently selected swarm elements.   
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11 Field dynamics 
With respect to quaternionic differential calculus the basic fields behave in a similar way. This 

especially holds in the absence of continuity disrupting discrete artifacts. We will use a more general 

symbol for the investigated field to analyze behavior of the fields under differentiation and 

integration. In the appendix, we will describe the difference between quaternionic differential 

calculus and Maxwell based differential calculus. To support that comparison, we will define the 

derived subfields 𝔈 and 𝔅. Both ℭ and 𝔄 have such subfields! 

In this chapter the differential equations are all quaternionic differential equations. They are no Maxwell equations. 

Maxwell equations use coordinate time. The quaternionic Maxwell-like equations use progression rather than coordinate 

time. Progression conforms to proper time. 

11.1 Differentiation 
In the model that we selected, the dynamics of the fields can be described by quaternionic 

differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers 

we encountered three basic fields that are defined by quaternionic functions and corresponding 

operators. One is the symmetry related field 𝔄, another is the embedding field ℭ and the third field 

ℨ is caused by the activity of the gluons.  

𝔄 determines the dynamics of the symmetry centers. ℭ gets deformed and vibrated by the recurrent 

embedding of point-like elementary particles that each reside on an individual symmetry center. 

Field ℨ gets deformed by the presence and the activity of gluons. 

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the 

field, the fields obey, under not too violent conditions and over not too large ranges, the same 

differential calculus. The main difference between the fields is the nature of the artifacts that disturb 

the continuity of the fields. Field ℭ exists always and everywhere except in some discrete spatial 

points and in some space cavities. 

Two quite similar, but still significantly different kinds of dynamic geometric differential calculus exist. One kind is the 

genuine quaternionic differential calculus. The other kind is known as Maxwell based differential calculus. These two kinds 

will appear to represent different views onto the basic fields. To perform the comparison, we must extend the set of 

Maxwell equations. In principle, this means that the Maxwell based set of differential equations is incomplete. However, in 

practice and to achieve certain goals the set of Maxwell equations is extended with equivalents of some gauge equations. In 

this chapter, only the quaternionic differential calculus will be treated. The Maxwell based differential equations and the 

comparison of the two kinds are treated in the appendix. 

11.2 Quaternionic differential calculus. 
First, we will investigate the validity range of our pack of pure quaternionic differential equations. 

We will only consider equations that do not surpass second order differentiation. This restricts 

application to not too violent changes of the investigated fields. 

Under rather general conditions the change of a quaternionic function 𝑓(𝑞) can be described by: 

 

𝑑𝑓(𝑞) ≈ ∑{
𝜕𝑓

𝜕𝑞𝜇
+ ∑

𝜕

𝜕ν

𝜕𝑓

𝜕𝑞𝜇
𝑑𝑞𝜈

𝜇=0…3

}

𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 + 𝑐𝜇𝜈(𝑞)𝑑𝑞𝜇𝑑𝑞𝜈 

Here the coefficients 𝑐𝜇(𝑞) and 𝑐𝜇𝜈(𝑞) are full quaternionic functions. 𝑑𝑞𝜇 are real numbers. 𝑒𝜈 are 

quaternionic base vectors. 

(1) 
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This covers first and second order differential terms. We ignore the higher order differentials. Thus, 

these conditions cannot be considered general conditions! Under more moderate and sufficiently 

short range conditions the differential function is supposed to behave more linearly.  

 

𝑑𝑓(𝑞) ≈ ∑
𝜕𝑓

𝜕𝑞𝜇
𝜇=0…3

𝑑𝑞𝜇 = 𝑐𝜇(𝑞)𝑑𝑞𝜇 

 

Under even stricter conditions the partial differential functions become real functions 𝑐0
𝜇(𝑞) that are 

attached to quaternionic base vectors: 

 

𝑑𝑓(𝑞) = 𝑐0
𝜏 𝑑𝑞𝜏 + 𝑐0

𝑥 𝒊 𝑑𝑞𝑥 + 𝑐0
𝑦
 𝒋 𝑑𝑞𝑦 + 𝑐0

𝑧 𝒌 𝑑𝑞𝑧 = 𝑐0
𝜇(𝑞) 𝑒𝜇 𝑑𝑞𝜇 

= ∑(∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍)𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

= ∑ 𝛷𝜇𝑒𝜇𝑑𝑞𝜇

3

𝜇=0…3

 

𝛷𝜇 = 𝑐0
𝜇

= ∑
𝜕𝑓𝜍

𝜕𝑞𝜇

3

𝜍=0

𝑒𝜍 =
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜍 =

𝜕𝑓

𝜕𝑞𝜇
 

 

Thus, in a rather flat continuum we can use the quaternionic nabla ∇. This is the situation that we 

want to explore with our set of pure quaternionic equations. The resulting conditions are very 

restrictive! These conditions are far from general conditions. However, these restrictions still tolerate 

point-like disturbances of the continuity of the original function 𝑓. 

 

∇= {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} =  

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 +  𝜵 

 

∇𝑓 = ∑
𝜕𝑓

𝜕𝑞𝜇
𝑒𝜇

3

𝜇=0

 

 

This form of the partial differential equation highlights the fact that in first order and second order 

partial differential equations the nabla operator can be applied as a multiplier. This means that we 

can apply the quaternionic multiplication rule. 

 

𝛷0 = 𝛻0𝜓0 − ⟨𝜵,𝝍⟩ 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵×𝝍 

 

The ± sign indicates that the nabla operator is also afflicted by symmetry properties of the applied 

quaternionic number system. The above equations represent only low order partial differential 

equations. In this form the equations can still describe point-like disruptions of the continuity of the 

field. We can take the conjugate: 

 

𝛷∗ = (𝛻𝜓)∗ = 𝛻∗𝜓∗ ∓ 2 𝜵×𝝍 

 

𝛻∗(𝛻∗𝜓∗)∗ = 𝛻∗𝛷 = 𝛻∗𝛻𝜓 

 

 Useful formulas 
The following formulas are just mathematical facts that generally hold for vector differential calculus: 

 

𝜵 ≡  {
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} ≡ +𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
 

 

〈𝜵, 𝜵𝒂〉 ≡ 〈𝜵, 𝜵〉𝒂 

 

〈𝜵, 𝜵𝛼〉 ≡ 〈𝜵, 𝜵〉𝛼 

 

𝜵×𝜵𝛼 = 𝟎 

 

〈𝜵, 𝜵×𝒂〉 = 0 

 

〈𝜵×𝜵,𝒂〉 = 𝟎 

 

(𝜵×𝜵)𝒂 = 𝜵×(𝜵×𝒂) =  𝜵〈𝜵, 𝒂〉 − 〈𝜵, 𝜵〉𝒂 

 

(𝜵𝜵)𝒂 = (𝜵×𝜵 − 〈𝜵, 𝜵〉)𝒂 = 𝜵〈𝜵, 𝒂〉 − 2〈𝜵,𝜵〉𝒂 

 

(𝜵𝜵)𝛼 = (𝜵×𝜵 − 〈𝜵, 𝜵〉)𝛼 = −〈𝜵, 𝜵〉𝛼 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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(𝜵𝜵)𝑎 = (𝜵×𝜵)𝑎 − 〈𝜵, 𝜵〉𝑎 = (𝜵×𝜵)𝒂 − 〈𝜵, 𝜵〉𝑎 

 

= 𝜵〈𝜵, 𝒂〉 − 2〈𝜵, 𝜵〉𝒂 − 〈𝜵, 𝜵〉𝑎0 

 

 Special formulas 
We list a series of interesting formulas that hold generally for the nabla operator 𝜵. 

 

𝜵〈𝒌, 𝒙〉 = 𝒌 

 

𝒌 is constant. 

 

〈𝛁, 𝐱〉 = 𝟑 

 

𝛁×𝐱 = 𝟎 

 

𝛁|𝐱| =
𝐱

|𝐱|
 

 

𝛁
1

|𝐱 − 𝐱′|
= −

𝐱 − 𝐱′

|𝐱 − 𝐱′|3
 

 

〈𝛁,
𝐱 − 𝐱′

|𝐱 − 𝐱′|3
〉 = 〈𝛁,𝛁〉

1

|𝐱 − 𝐱′|
= 〈𝛁, 𝛁

1

|𝐱 − 𝐱′|
〉 = 4𝜋 𝛿(𝐱 − 𝐱′) 

 

Similar formulas apply to the quaternionic nabla and parameter values. 

 

𝛻𝑥 = 1 − 3 ;  𝛻∗𝑥 = 1 + 3;  𝛻𝑥∗ = 1 + 3 

 

𝛻(𝑥∗𝑥) = 𝑥 

 

𝛻|𝑥| = 𝛻√(𝑥∗𝑥) =
𝑥

|𝑥|
 

 

(10) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝛻
1

|𝑥 − 𝑥′|
= −

𝑥 − 𝑥′

|𝑥 − 𝑥′|3
 

 

 𝛻∗
𝑥 − 𝑥′

|𝑥 − 𝑥′|3
= 𝛻 𝛻∗

1

|𝑥 − 𝑥′|
= (

𝜕

𝜕𝜏

𝜕

𝜕𝜏
+ 〈𝛁,𝛁〉)

1

|𝑥 − 𝑥′|
≠ 4𝜋 𝛿(𝑥 − 𝑥′) 

 

Instead: 

 

(∇0∇0 + 〈𝜵, 𝜵〉)
1

|𝑥|
=

3𝜏2

|𝑥|5
−

1

|𝑥|3
+

3𝜏2

|𝑥|5
=

6𝜏2 − |𝑥|2

|𝑥|5
=

5𝜏2 − |𝒙|2

|𝑥|5
 

 

(∇0∇0 − 〈𝜵, 𝜵〉)
1

|𝑥|
= −

1

|𝑥|3
 

 

〈𝜵, 𝜵〉
1

|𝒙|
= 4𝜋 𝛿(𝒙) 

 

Thus, with spherical boundary conditions, 
1

4𝜋 |𝒙−𝒙′|
 is suitable as the Green’s function for the Poisson 

equation, but 
1

4𝜋 |𝑥−𝑥′|
 does not represent a Green’s function for the quaternionic operator 

(∇0∇0 + 〈𝛁, 𝛁〉) ! 

For a homogeneous second order partial differential equation a Green’s function is not required. 

Thus, the deficit of a green’s function does not forbid the existence of a quaternionic homogeneous 

second order partial differential equation. Still equation (6) forms the base of the Poisson equation. 

 The first kind of second order quaternionic partial differential equation 
This kind of double partial differentiation will then result in the following quaternionic non-

homogeneous second order partial differentiation equation: 

 

𝜉 = 𝜉0 + 𝝃 = 𝛻∗𝛻𝜓 = (𝛻0 −  𝜵)(𝛻0 +  𝜵)(𝜓0 + 𝝍) 

 

= {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜓 =
𝜕2𝜓

𝜕𝜏2
+

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

We can split the above equation in a real (scalar) part and an imaginary (vector) part.  

Investigation of the details shows that the 𝛻∗𝛻 operator has a rather simple consequence that is 

shown in formula (1) 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 
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𝜁0 = 𝛻0𝜙0 + 〈𝜵,𝝓〉 

= 𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ± 〈𝜵, 𝜵×𝝋〉 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵×𝝓 

= −𝜵𝛻0𝜑0 + 𝜵〈𝜵,𝝋〉 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵×𝝋 

∓𝜵×𝜵𝜑0 ∓ 𝜵×𝛻0𝝋 − 𝜵×𝜵×𝝋 

= −𝜵𝛻0𝜑0 + 𝜵×𝜵×𝝋 + 〈𝜵, 𝜵〉𝝋 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵×𝝋 

∓𝜵×𝜵𝜑0 ∓ 𝜵×𝛻0𝝋 − 𝜵×𝜵×𝝋 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝝋 

 

Here 𝜉 is a quaternionic function that for a part 𝜌 describes the density distribution of a set of point-

like artifacts that disrupt the continuity of function 𝜓(𝑞).  

 

𝜌 = 𝜌0 + 𝝆 = 〈𝜵, 𝜵〉𝜓 =
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
 

 

𝜉 − 𝜌 = 𝛻0𝛻0𝜓 

 

In case of a single static point-like artifact, the solution 𝜓 will describe the corresponding Green’s 

function. Its actual form depends on the boundary conditions. 

Function 𝜓(𝑞) describes the mostly continuous field 𝜓. 

The second order partial differential equation that is based on the double quaternionic nabla can be 

split into two continuity equations, which are quaternionic first order partial differential equations: 

 

𝛷 = 𝛻𝜓 

 

𝜌 = 𝛻∗𝛷 

 

If 𝜓 and Φ are normalizable functions and ‖𝜓‖ = 1, then with real 𝑚 and ‖𝜁‖ = 1 follows: 

 

𝛻𝜓 = 𝑚 𝜁 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(9) 
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The formula  

 

⊡= 𝛻𝛻∗ = 𝛻∗𝛻 =  𝛻0𝛻0 + 〈𝜵, 𝜵〉  

 

holds independent of the functions on which these operators work.  

The operator ⊡ characterizes the quaternionic field variance. 

 The other second order partial differential equation 
We encounter another quaternionic second order partial differential equation, but this one 

cannot be split into two first order quaternionic partial differential equations. It is based on 

d’Alembert’s operator 𝔒=(−𝛻0𝛻0 + 〈𝜵, 𝜵〉). This quaternionic operator applies proper time 

rather than coordinate time. 

 

𝜁 = 𝜁0 + 𝜻 = 𝔒𝜑 = 𝔒(𝜑0 + 𝝋) = {−𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑  

 

Dirac has shown that it can be split into two biquaternionic partial differential equations. This fact is 

treated in the appendix. 

In contrast to the first kind of second order quaternionic partial differential equation, the second 

kind accepts waves as solutions of the homogeneous version of the equation. The waves are 

eigenfunctions of differential operator 𝔒. All superpositions of such eigenfunctions are again 

solutions of the homogeneous equation and can be added to the solutions of the inhomogeneous 

equation. These superpositions form so called wave packages. When they move, wave packages 

tend to disperse. 

 

𝛻0𝛻0𝑓 = ⟨𝛻, 𝛻⟩𝑓 = −𝜔2𝑓 

 

𝑓(𝜏, 𝑥) = 𝑎 exp(𝑖𝜔(𝑐𝜏 − |𝒙 − 𝒙′|)) ; 𝑐 = ±1 

 

This leads to a category of solutions that are known as solutions of the Helmholtz equation. These 

solutions characterize the behavior of constituents of atomic modular systems. The original 

Helmholtz equations use coordinate time 𝑡 instead of proper time 𝜏. 

11.3 Fourier equivalents 
In this quaternionic differential calculus, differentiation is implemented as multiplication. 

The Fourier equivalents of the equations (4) through (10) in the previous paragraph reveal this: 

�̃� = �̃�0 + �̃� = 𝑝 �̃� = (𝑝0 +  𝒑)(�̃�0 + �̃�) 

 

(10) 

(1) 

(2) 

(3) 

(1) 
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The nabla 𝛻 is replaced by operator 𝑝. �̃� is the Fourier transform of 𝛷. 

 

�̃�0 = 𝑝0�̃�0 − ⟨𝒑, �̃�⟩ 

 

�̃� = 𝑝0�̃� + 𝒑�̃�0 ± 𝒑×�̃� 

 

The equivalent of the quaternionic second order partial differential equation that is based on ⊡ is: 

 

𝜉 = 𝜉0 + �̃� = 𝑝∗𝑝 �̃� = {𝑝0𝑝0 + 〈𝒑, 𝒑〉}�̃� 

 

�̃� = �̃�0 + �̃� = 〈𝒑, 𝒑〉�̃� 

 

The continuity equations result in: 

�̃� = 𝑝�̃� 

 

�̃� = 𝑝∗�̃� 

11.4 Poisson equations 
The screened Poisson equation is a special condition of the non-homogeneous second order partial 

differential equation in which some terms are zero or have a special value.  

 

∇∗∇𝜓 = ∇0∇0𝜓 + ⟨𝛁, 𝛁⟩𝜓 = 𝜉 

 

∇0∇0𝜓 = −𝜆2 𝜓 

 

⟨𝛁, 𝛁⟩𝜓 − 𝜆2𝜓 = 𝜉 

 

The screened Green’s function 𝐺(𝑟) determines the 3D solution of this equation. 

Green functions represent solutions for point sources. In spherical symmetric boundary conditions 

the Green’s function becomes: 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 
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𝜓 =  ∭𝐺(𝒓 − 𝒓′) 𝜌(𝒓′) 𝑑3𝒓 ′ 

 

G(r) has the shape of the Yukawa potential [13] 

In case of 𝜆 = 0 it resembles the Coulomb or gravitation potential of a point source. 

If 𝜆 ≠ 0, then a solution of equation (3) is: 

 

𝜓 = 𝑎(𝒙) exp (± 𝑖 𝜔 𝜏); 𝜆 = ± 𝑖 𝜔 

 

These solutions concern a screened Poisson equation that is based on the first version of the second 

order partial differential equation. The equation that is based on d’Alembert’s operator delivers:  

 

𝔒𝜑 = 𝔒(𝜑0 + 𝝋) = {−𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑 =  𝜁 

 

∇0∇0𝜑 =
𝜕2𝜑

𝜕𝜏2
= 𝜆2 𝜑 

 

(⟨𝛁, 𝛁⟩ − 𝜆2)𝜑 =
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
− 𝜆𝜑 =  𝜁 

 

𝜑 = 𝑎(𝒙) exp (±𝜆𝜏) 

 

The Green’s function is the same, but solution (9) differs significantly from solution (6). The 

difference only concerns the temporal behavior of the field. 

11.5 Special solutions of the homogeneous partial differential equations 
The fact that the wave equation has waves as its solution is the cause that d’Alembert’s equation has obtained this 

additional name. The fact that both homogeneous second order partial differential equations possess special solutions for 

odd numbers of participating dimensions is much less known. 

Here we focus on these special solutions of the quaternionic homogeneous second order partial 

differential equations. These solutions are of special interest because for odd numbers of 

participating dimensions these equations have solutions in the form of shape-keeping fronts.  

The homogeneous equations run as: 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 
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𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
+

𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
=

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) ±

𝜕2𝜓

𝜕𝜏2
= 0 

 

Here we treat the two kinds of homogeneous equations together. 

First, we focus on the solutions that vary in one dimension. Thus: 

 

𝜕2𝜓

𝜕𝑧2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

We try a solution in the form 𝜑 = 𝑓(𝛼𝑧 + 𝛽𝜏): 

 

𝜕𝑓

𝜕𝑧
= 𝛼𝑓′;

𝜕2𝑓

𝜕𝑧
= 𝛼

𝜕𝑓′

𝜕𝑧
= 𝛼2𝑓′′ 

𝜕𝑓

𝜕𝜏
= 𝛽𝑓′;

𝜕2𝑓

𝜕𝜏2
= 𝛽

𝜕𝑓′

𝜕𝜏
= 𝛽2𝑓′′ 

𝛼2𝑓′′ ± 𝛽2𝑓′′ = 0 

 

This is solved when 𝛼2 = ∓𝛽2. 

For the first kind of the second order partial differential equation this means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a 

normalized imaginary quaternion. With 𝑔(𝑧) = 𝑓(𝛽 𝑧) follows: 

 

𝜑 = 𝑔(𝑧 𝒊 ± 𝜏) 

 

The function 𝑔 represents a shape-keeping front. It is not a wave. 

The imaginary 𝒊 represents the base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a function of 

𝑧. 

That orientation determines the polarization of the one-dimensional shape-keeping front. The 

messengers that are mentioned earlier are constituted of strings of these one-dimensional shape-

keeping fronts. The string members are equidistant. The messengers travel with a fixed speed. They 

feature a fixed shape and a fixed amplitude. The equidistance results in a characteristic frequency. 

 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑧) = 𝑓(𝛽 𝑧) follows:  

𝜑 = 𝑔(𝑧 ± 𝜏) 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Next, we focus on the three-dimensional spherical symmetric condition. In that case, writing 𝜓 =

𝑟 𝜑(𝑟, 𝜏) separates the equations. 

 

𝜕2𝜑

𝜕𝑟2
+

2

𝑟

𝜕𝜑

𝜕𝑟
±

𝜕2𝜑

𝜕𝜏2
= 0 ⟹

𝜕2𝜓

𝜕𝑟2
±

𝜕2𝜓

𝜕𝜏2
= 0 

 

With other words 𝜓 fulfills the conditions of the one-dimensional case. Thus, solutions in the form 

𝜑 = 𝑓(𝛼𝑟 + 𝛽𝜏)/𝑟 will fit. 

For the first kind of the second order partial differential equation this means: 𝛽 = ±𝛼 𝒊, where 𝒊 is a 

normalized imaginary quaternion. With 𝑔(𝑥) = 𝑓(𝛽 𝑥) follows: 

 

𝜑 = 𝑔(𝑟 𝒊 ± 𝜏)/𝑟 

 

𝒊 represents a base vector in radial direction. 

For the second kind of the second order partial differential equation this means: 𝛽 = ±𝛼. With 

𝑔(𝑥) = 𝑓(𝛽 𝑥) follows: 

 

𝜑 = 𝑔(𝑥 ± 𝜏)/𝑟 

 

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminishes as 1/𝑟 

with distance 𝑟 from the sources. When integrated over a long enough period of progression the 

result takes the form of the fields Green’s function.  

The shape-keeping fronts are not waves and do not form wave packages. They do not feature a 

frequency. In order to obtain a frequency, the fronts must be emitted at regular equidistant instants. 

In that case the shape-keeping fronts occur in strings and do not disperse. If these strings obey the 

Planck-Einstein relation, then their temporal duration and their spatial length must be fixed at 

constants that are independent of the frequency. 

11.6 Differential field equations 
By introducing new symbols 𝕰 and 𝕭 we will keep the quaternionic differential equations closer to 

the Maxwell differential equations. Still essential differences exist between these two sets of 

differential equations. This will be elucidated in detail in the appendix.  

Like the quaternions themselves the quaternionic nabla can be split in a scalar part and a vector part. 

The quaternionic nabla acts as a multiplying operator and this means that the first order partial 

differential equation splits in five terms. Part of these terms are scalars. The other terms are vectors. 

The following formulas are not Maxwell equations. At the utmost the formulas are Maxwell-like. 

 

𝜙 = ∇ 𝜑 = (∇0 + 𝛁) (𝜑0 + 𝝋) = ∇0𝜑0 − 〈𝜵,𝝋〉 + ∇0𝝋 +  𝛁𝜑0 ± 𝛁×𝝋 

(8) 

(9) 

(10) 

(1) 
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= ∇0𝜑0 − 〈𝜵,𝝋〉 − 𝕰 ± 𝕭 

 

𝕰 ≝ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≝ 𝜵×𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 ≟ 0 

 

∇0𝕭 = −𝜵×𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵×𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

The Maxwell equations ignore the real part of 𝜙. 

 

𝜙0 = ∇0𝜙0 = ∇0∇0 𝜑0 − ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 −  𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 − 𝜵×𝜵× 𝝋 − 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = 𝜁0 + 𝜻 = (∇0 + 〈𝛁, 𝛁〉)𝜑 

 

𝜁0 = (∇0∇0 + 〈𝛁, 𝛁〉)𝜑0 = ∇0 𝜙0 − 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 + 〈𝛁,𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 − 𝜵×𝓑 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



85 
 

 

More in detail the equations mean: 

 

𝜁0 = 𝛻0𝜙0 + 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉} + {〈𝜵,𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ± 〈𝜵, 𝜵×𝝋〉} 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵×𝝓 

= {−𝜵𝛻0𝜑0 + 𝜵×𝜵×𝝋 + 〈𝜵, 𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵×𝝋} 

{∓𝜵×𝜵𝜑0 ∓ 𝜵×𝛻0𝝋 − 𝜵×𝜵×𝝋} 

= (𝛻0𝛻0 + 〈𝜵, 𝜵〉)𝝋 + 𝜵×𝜵×𝝋 − 𝜵×𝜵×𝝋 

 

𝜌0 = 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 = 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0𝛁𝟎𝝋 

 

11.7 Poynting vector 
The definitions of 𝕰 and 𝓑 invite the definition of the Poynting vector 𝑺: 

 

𝑺 = 𝕰×𝓑 

𝑢 =  ½(〈𝕰,𝕰〉 + 〈𝓑,𝓑〉) 

𝜕𝑢

𝜕𝜏
=  〈𝜵, 𝑺〉 + 〈𝑱,𝕰〉 

 

Where 𝜌 represents the presence of charges will 𝑱 represent the flow of charges. 

11.8 Quaternionic differential operators 
When applied to quaternionic functions, quaternionic differential operators result in another 

quaternionic function that uses the same parameter space. 

The operators 𝛻0,𝜵,𝛻 = 𝛻0 + 𝜵 , 𝛻∗ = 𝛻0 − 𝜵, 〈𝜵, 𝜵〉, 𝛻𝛻∗ = 𝛻∗𝛻 =  𝛻0𝛻0 + 〈𝜵, 𝜵〉 and  

𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 are all quaternionic differential operators. 

𝛻 is the quaternionic nabla operator.  

𝛻∗ is its quaternionic conjugate. 

The Dirac nabla operators 𝒟 = 𝕚 𝛻0 + 𝜵 and 𝒟∗ = 𝕚 𝛻0 − 𝛻 convert quaternionic functions into 

biquaternionic functions. The equation 

(15) 

(16) 

(17) 

(18) 

(1) 

(2) 

(3) 
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𝒟𝒟∗ 𝑓 = 𝔒 𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 𝑓 = 𝑔  

 

represents a wave equation and is a pure quaternionic equation! The Dirac operator and the Dirac 

equation are treated in detail in the appendix.  

(19) 
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12 Double differentiation 

12.1 Right and left sided nabla 
The quaternionic nabla can be split into a right sided version and a left sided version. Without further 

indication, we consider the right version as the current version. The imaginary part determines the 

version, which is linked with the handedness of the product rule. 

∇𝑟𝑓 = 𝑒𝜇
𝜕𝑓

𝜕𝑥𝜇
= 𝑒𝜇𝑒𝜈

𝜕𝑓𝜈
𝜕𝑥𝜇

= 𝑒𝜇𝑒𝜈∇𝜇𝑓𝜈 = ∇𝑓 

∇𝑙𝑓 =
𝜕𝑓

𝜕𝑥𝜇
𝑒𝜇 = 𝑒𝜈𝑒𝜇

𝜕𝑓𝜈
𝜕𝑥𝜇

= 𝑒𝜈𝑒𝜇∇𝜇𝑓𝜈 = (𝑒𝜇𝑒𝜈)∗∇𝜇𝑓𝜈 = (∇𝑟𝑓)∗ = (∇𝑓)∗ = ∇𝑓 − 2𝛁×𝒇 

∇𝑟(∇𝑙𝑓) = 𝑒𝜌𝑒𝜈𝑒𝜇∇𝜌∇𝜇𝑓𝜈 

12.2 Double partial differentiation 
The partial differential equations hide that they are part of a differential equation. 

 

𝛻′𝛻𝑓 = 𝜉 = ∑𝑒𝜈
′

𝜕

𝜕𝑞𝜈
′ (∑ 𝑒𝜇

𝜕𝑓

𝜕𝑞𝜇

3

𝜇=0

)

3

𝜈=0

= (𝑒𝜈
′𝑒𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ )𝑓 

 

12.3 Single difference 
Single difference is defined by 

𝑑𝑓(𝑞) = ∑∑
𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍  𝑑𝑞𝜇

3

𝜍=0

 

3

𝜇=0

= ∑ 𝜙𝜈𝑒𝜈𝑑𝑞𝜈

3

𝜈=0

 

 

𝜕𝑓𝜍

𝜕𝑞𝜇
𝑒𝜇𝑒𝜍 =

[
 
 
 
 
 
 
 
 
 

𝜕𝑓0

𝜕𝑞0

𝜕𝑓1

𝜕𝑞0
𝒊

𝜕𝑓2

𝜕𝑞0
𝒋

𝜕𝑓3

𝜕𝑞0
𝒌

𝜕𝑓0

𝜕𝑞1
𝒊

𝜕𝑓1

𝜕𝑞1

𝜕𝑓2

𝜕𝑞1
𝒌 −

𝜕𝑓3

𝜕𝑞1
𝒋

𝜕𝑓0

𝜕𝑞2
𝒋 −

𝜕𝑓1

𝜕𝑞2
𝒌

𝜕𝑓2

𝜕𝑞2

𝜕𝑓3

𝜕𝑞2
𝒊

𝜕𝑓0

𝜕𝑞3
𝒌

𝜕𝑓1

𝜕𝑞3
𝒋 −

𝜕𝑓2

𝜕𝑞3
𝒊

𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

 

(1) 

(2) 

(3) 
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=

[
 
 
 
 
 
 
 
 
 
𝜕𝑓0

𝜕𝑞0
−ℰ𝑥𝒊 −ℰ𝑦𝒋 −ℰ𝑧𝒌

ℰ𝑥𝒊
𝜕𝑓1

𝜕𝑞1
−ℬ𝑧1𝒌 −ℬ𝑦2𝒋

ℰ𝑦𝒋 −ℬ𝑧2𝒌
𝜕𝑓2

𝜕𝑞2
−ℬ𝑥1𝒊

ℰ𝑧𝒌 −ℬ𝑦1𝒋 −ℬ𝑥2𝒊
𝜕𝑓3

𝜕𝑞3 ]
 
 
 
 
 
 
 
 
 

 

Here  

ℬ𝑥 = ℬ𝑥1 − ℬ𝑥2;  ℬ𝑦 = ℬ𝑦1 − ℬ𝑦2;  ℬ𝑧 = ℬ𝑧1 − ℬ𝑧2 

 

𝑓̇ =
𝑑𝑓

𝑑𝜆
= ∑𝜙𝜇𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

= ∑ 𝜙𝜇𝑒𝜇�̇�𝜇

3

𝜇=0

 

 

The scalar 𝜆 is can be a linear function of τ or a scalar function of q. 

�̇� ≝
𝑑𝑞

𝑑𝜆
= 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆
= 𝑒𝜇�̇�𝜇 

 

Double difference is defined by: 

𝑑2𝑓(𝑞) = ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇𝑑𝑞𝜇

3

𝜇=0

)𝑒𝜍𝑑𝑞′𝜈

3

𝜈=0

 

 

𝑓̈ ≝
𝑑2𝑓(𝑞)

𝑑𝜆2
= 𝑒𝜚𝑓̈𝜚 = ∑𝑒𝜈

′ (∑
𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇

𝑑𝑞𝜇

𝑑𝜆

3

𝜇=0

)𝑒𝜍

𝑑𝑞′𝜈

𝑑𝜆

3

𝜈=0

 

= ∑𝑒𝜈
′ (∑

𝜕2𝑓𝜍

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜇�̇�𝜇

3

𝜇=0

)𝑒𝜍�̇�
′𝜈

3

𝜈=0

= (�̇�𝜇�̇�′𝜈
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ 𝑒𝜈

′𝑒𝜇)𝑓 = 𝜁𝜈𝜇 𝑓 

 

𝜁𝜈𝜇 = 𝑒𝜈
′𝑒𝜇 �̇�′𝜈 �̇�𝜇

𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′ = 𝑒𝜈

′𝑒𝜇Υ𝜈𝜇 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Υ𝜈𝜇 =  �̇�′𝜈 �̇�𝜇
𝜕2

𝜕𝑞𝜇𝜕𝑞𝜈
′  

 

If we apply 𝜙 = 𝛻𝑓as the first differential operation and 𝜉 = 𝛻∗𝜙 as the second differential 

operation, then 𝑒 = {1,+𝒊, +𝒋,+𝒌} and 𝑒′ = {1 − 𝒊,−𝒋,−𝒌} and 

 

Υ𝜈𝜇 = [

+Υ00 +Υ01𝒊 +Υ02𝒋 +Υ03𝒌
−Υ10𝒊 ⊛ Υ11 +Υ12𝒌 +Υ13𝒋
−Υ20𝒋 −Υ21𝒌 ⊛ Υ22 −Υ23𝒊
−Υ30𝒌 −Υ31𝒋 +Υ32𝒊 ⊛ Υ33

] 

 

Here the switch ⊛ distinguishes between quaternionic differential calculus and Maxwell based 

differential calculus. See the appendix. 

12.4 Deformed space 
If the investigated field represents deformed space ℭ, then the field ℜ, which represents the 

parameter space of function ℭ(𝑞) represents the virgin state of that deformed space. 

Further, the equation 
𝑑2ℭ(𝑞)

𝑑𝜆2 = 0 represents a local condition in which ℭ is not affected by external 

influences. Here 𝜆 can be any linear combination of progression τ or it can represent the equivalent 

of local quaternionic distance: 

 

𝜆 = 𝑎 𝑞0 + 𝑏 

or 

𝜆 = |𝑞|  

  

(11) 
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13 Information transfer 
In the model, the fields with which discrete objects interact implement the information transfer 

between these discrete objects. Interaction means that the location of the object or the state of the 

object is affected by the field and/or that the presence of the object deforms the field. The state of 

the object is its assembly of discernable properties. These properties may depend on the mechanism 

that governs the behavior and the existence of the object.  

Solutions of the second order partial differential equation of the field play an important role in these 

interactions. Especially the information messengers play a major role in the transfer of information. 

13.1 Messengers 
Solutions of the quaternionic second order partial differential equation configure the messengers. 

For odd numbers of participating dimensions some of the solutions of the homogeneous second 

order partial differential equation are combinations of shape-keeping fronts.  

In three dimensions the spherical shape-keeping fronts diminish their amplitude as 1/𝑟 with distance 

𝑟 of the trigger point. In this paper the spherical fronts are called clamps. Each clamp carries a bit of 

mass. 

One-dimensional shape keeping fronts also keep their amplitude. Consequently, these shape-

keeping fronts can travel huge distances through the field that supports them. In this paper the one-

dimensional shape and amplitude keeping fronts are called warps. Each warp carries a bit of energy 

and represents a bit of information. 

Warps can travel huge distances without losing their integrity. In order to travel those huge distance 

the carrying field must exist during the trip and along the full path. The Palestra ℭ exists always and 

everywhere. The Electra 𝔄 depends on the nearby existence of symmetry related charges. The 

amplitude of the potential of the charge diminishes as 1/r with distance from this charge. 

The embedding field ℭ is a better candidate for long distance transfer of energy and information. 

Warps vibrate the ℭ field, but do not deform this field. They just follow existing deformations.  

Creating a string of warps requires a recurrent warp generation process. Such processes do not 

underlay the generation of symmetry related charges that support the 𝔄 field. However, such 

processes exist during the recurrent embedding of artifacts that occurs in the ℭ field. 

Recurrent regeneration of clamps is capable to deform the corresponding field. It has similar effects 

as a stationary deformation by a point-like artifact has. 

13.1 The Planck-Einstein relation 
The information messengers are strings of equidistant warps. These one-dimensional shape and 

amplitude keeping fronts are solutions of a homogeneous second order partial differential equation. 

Each of the fronts carries a standard bit of information and that information corresponds to a 

standard bit of energy. According to the Planck-Einstein relation the energy equivalent of the 

information that is contained in the messenger is proportional to the frequency of the information 

messenger. The energy of the messenger is proportional to the number of fronts in the messenger. 

All fronts travel with the same speed. The homogeneous second order partial differential equation 

sets this speed. So, this speed, the duration of the emission of the messenger and the spatial length 

of the messenger are independent of the frequency of the messenger. In the same way, these values 

must be independent of the energy of the messenger. 
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The number of warps that the annihilation of an elementary module emits in a messenger equals the 

number of clamps in the annihilated elementary module. The mass of the elementary module is 

proportional to that number. 

The mass of the elementary module depends on its type. The regeneration cycle of all elementary 

module types must take the same duration. This means that the generation of elementary modules 

can be synchronized. The locations of more massive elementary modules must be generated at a 

faster rate. 

All processes that emit information messengers must feature the same emission duration and the 

same spatial length of the emitted messenger. Thus, the emission of messengers by atoms must 

feature this same duration. 

13.1 Photons 
The fixed speed of warps translates in the same fixed speed for the messengers. A string of warps can 

carry a quantized amount of energy. Photons appear to be the physical realizations of the 

information messengers. The relation 𝐸 = ℎ 𝜈 and the fixed speed of photons indicate that at least 

at relative short range the string of warps takes a fixed amount of progression steps for its creation, 

for its passage and for its absorption.  

However, observations of long range effects over cosmological distances reveal that these relations 

do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted by atoms 

and arrive from distant galaxies indicate that the spatial part of field ℭ is extending as a function of 

progression. 

With the interpretation of photons as strings of warps this means that the duration of emission and 

the duration of absorption are also functions of progression. Locally and at the same instant, these 

durations are the same. Consequently, some of the emitted warps are “missed” at a much later 

absorption. In that case the detected photon corresponds to a lower energy and is accounted for a 

lower frequency than the emitted photon has. According to relation 𝐸 = ℎ 𝜈 that holds locally, the 

detected photon appears to be red-shifted. The energy of the “missed” warps is converted into other 

kinds of energy or strings of missed warps keep proceeding as lower energy photons. Spurious warps 

may stay undetected. 

In a similar way photon detectors may catch only part of the energy of a photon and then the other 

part of the energy is converted into other kinds of energy or strings of missed warps keep proceeding 

as lower energy photons. 

13.2 Frenet Serret path 
The fixed speed of the messengers represents an interesting case. The change of a field has five 

components that cover four dimensions. However, the path 𝜸(𝜏) of an object in the spatial part of 

that field can be characterized by three mutually independent figures. 

The first figure is called the unit tangent vector 𝒆1(𝜏). The vector is directed along the tangent that 

departs at a selected location 𝜏 on that path. 

𝒆1(𝜏) = 𝜸′(𝜏)/‖𝜸′(𝜏)‖ 

The second figure is called the normal vector 𝒆2(𝜏).  

𝒇(𝜏) = 𝜸′′(𝜏) − 〈𝜸′′(𝜏), 𝒆1(𝜏)〉 𝒆1(𝜏) 

(1) 

(2) 

(3) 
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𝒆2(𝜏) =
𝒇(𝜏)

‖𝒇(𝜏)‖
 

The size ‖𝒇(𝜏)‖ of vector 𝒇(𝜏) is not equal to unity and the direction of 𝒇(𝜏) is perpendicular to the 

unit tangent vector. The inverse of the size is an indication of the local curvature of the field that acts 

as the transport medium for the messenger. It is called the local curvature 𝜅 of the path 𝜸(𝜏). 

𝜅 =
1

〈𝒇(𝜏), 𝒆2(𝜏)〉
 

The third figure is called the bi-normal vector 𝒆3(𝜏). 

𝒈(𝜏) = 𝜸′′′(𝜏) − 〈𝜸′′′(𝜏), 𝒆1(𝜏)〉 𝒆1(𝜏) − 〈𝜸′′′(𝜏), 𝒆2(𝜏)〉 𝒆2(𝜏) 

𝒆3(𝜏) =
𝒈(𝜏)

‖𝒈(𝜏)‖
= 𝒆1(𝜏)×𝒆2(𝜏) 

The size ‖𝒈(𝜏)‖ of vector 𝒈(𝜏) is not equal to unity and the direction of 𝒈(𝜏) is perpendicular to 

both the unit tangent vector and the normal vector. The size is an indication of the local curl of the 

field that acts as the transport medium for the messenger. It is called the torque 𝓉 of the path 𝜸(𝜏). 

Since the speed ‖𝜸′(𝜏)‖ is constant the right-side term in equation (2) is zero. We take the speed 

equal to unity. This reduces the path to a natural path, which is described by three orthonormal 

frame vectors. 𝑻,𝑵 and 𝑩. 

𝑻(𝜏) = 𝜸′(𝜏) 

𝑻′(𝜏) = 𝜅 𝑵(𝜏) 

𝑵′(𝜏) = −𝜅 𝑻(𝜏) + 𝓉 𝑩(𝜏) 

𝑩′(𝜏) = −𝓉 𝑵(𝜏) 

𝑩 = 𝑻×𝑵 

Due to the curvature and the curl of the carrying field the path becomes the base of a geodesic. In a 

geodesic, the path length is a local minimum. In the parameter space of the describing function the 

object travels with constant speed. It means that along the parameter space version of the geodesic 

the progression steps are equal to the spatial steps. The carrying field deforms to support the 

sidesteps due to the non-zero curvature 𝜅 and the non-zero torque 𝓉 of the path of the messenger. 

13.3 Consequences for our model 
Thus, the quaternionic second order partial differential equation may be valid in the vicinity of the 

images of symmetry centers inside ℭ, but does not properly describe the long-range behavior of ℭ. 

Due to its restricted range and the non-recurrent generation of its charges, the 𝔄 field does not show 

the equivalents of photons and red-shift phenomena. 

The long-range phenomena of photons indicate that the parameter space ℜ⓪ of ℭ may actually own 

an origin. For higher progression values and for most of the spatial reach of field ℭ, that origin is 

located at huge distances. Information coming from low progression values arrives with photons that 

have travelled huge distances. They report about a situation in which symmetry centers were located 

on average at much smaller inter-distances. 

Instead of photons the 𝔄 field may support waves, such as radio waves and microwaves. These 

waves are solutions of the wave equation, which is part of Maxwell based differential calculus. 
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On the other hand, the wave equation also has shape-keeping fronts as its solutions. 

13.4 Energy-mass equivalence 
The enormous number of elements in the swarms that represent elementary modules causes at least 

for a part the self-coherence of the swarm. For another part the effects of inertia cause the self-

coherence of the swarm. Inside the swarm, it leads on the one hand to the assumption that the mass 

of elementary modules is directly proportional to the number of elements inside the swarm. The 

creation and annihilation events of elementary modules then lead to the conclusion that during 

these events the solutions of the homogeneous second order differential equations convert from 

clamps to warps or vice versa. This process occurs stepwise. The conservation of symmetry 

conditions restricts what happens during each step. During the life of the elementary module what 

happens can and will be integrated over the regeneration cycle of the swarm that represents the 

elementary module. The integration converts the spherical solutions into the Green’s function of the 

field. It converts the homogeneous second order partial differential equation into an inhomogeneous 

equation. The new term represents the Green’s function. 

The one-dimensional solutions will be combined in a one-dimensional string of equidistant elements. 

For each element of the swarm and thus for each solution in the form of a clamp, an element of the 

string of equidistant warps is generated. At particle annihilation, the photons leave in a direction that 

is perpendicular to the direction in which the swarm is/was moving. This indicates that some other 

object that is active in a third direction is also involved in the process. 
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14 Zigzag tube 
The symmetry center 𝕾𝑛

𝑥  that conforms to encapsulated region H𝑛
𝑥, keeps its private symmetry 

flavor. The eigenspace of operator ℴ𝑛
𝑥 is represented by a tube that contains a series of sheets that 

each represent a static status quo. 

The dynamic dual Hilbert space model offers two interesting views. One view is the observer's 
view. The observers are modules that travel with the vane. The observers have no access to the 

future part of the model. They get their information via information messengers. These 
information messengers travel in the field in which the modules live.  
The other view is the creator's view. The creator's view has access to all dynamic geometric data 
that are stored in the Hilbert spaces. In the creator's view, the elementary modules live in a tube 

that may zigzag over the Hilbert space. The tube may reflect at some instants against the vane. 
This may happen at the history side and it may happen at the future side. Thus, the tube may pass 
the vane several times.  

An elementary module for which the trajectory of the tube keeps the same time direction in the 

creator’s view represents for the observers a period in time that the elementary particle exists in the 

same mode. If in the creator’s view the elementary module reflects against the vane at the history 

side, then in the observer’s view the elementary module annihilates and encounters its anti-module 

that equals the module as if it travels back in time. In the creator’s view the module does not 

annihilate. It reflects against the vane. The creator does not distinguish between elementary 

modules and their anti-module versions. These versions only differ in their direction of time travel. 

If the tube reflects against the future side of the vane, then for the observers two elementary 

modules that are each other’s anti-module are created. In the creator’s view the modules are not 

created. The module just switches its direction of time travel. With the switch of time travel switches 

the symmetry flavor of the module. 

The reflection of the symmetry centers against the vane goes for observers together with 

annihilation and creation phenomena for the objects that reside on these platforms. Thus, this 

passage is related to the annihilation or the creation of elementary modules. These exceptional 

occurrences are known as pair production and pair annihilation. At most instances, the tube just 

passes the vane and the behavior mode of the concerned elementary module persists. 

The result of these reflections is that in the creator’s view the tube of the same elementary module 

can pass the vane multiple times. Observers cannot observe the zigzag of elementary modules. They 

might notice entanglement of elementary modules that occupy the same tube. In the creator’s view 

the entangled elementary modules concern the same object. 

In the quaternionic space-progression model the existence of symmetry centers is independent of 

progression. With other words the number of symmetry centers is a model constant. The passage 

through the rim and the reflection against the rim does not influence this number. The passage only 

affects the characteristics of the combination of the symmetry center and the background parameter 

space. 

In the observer’s view, annihilation of elementary modules goes together with the emission of 

information messengers. Similarly, the creation of elementary modules goes together with the 

absorption of information messengers. At the reflection instants, the number of involved warps 

equals the number of involved clamps. The conversion process takes a certain duration. That 

duration equals the recycle period of the involved swarm. 
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At the reflection instants, the mechanism that generates the locations for its client elementary 

module reverses its progression dependence and therefore the location generation algorithm 

generates the locations in the reverse sequence. This means that in free space the elementary 

module behaves as if it is an antiparticle. The antiparticle has reversed properties. Its electric charge 

has changed sign.  

15 Actions of the fields 
For all fields the homogeneous second order partial differential equations are the same. Thus, the 

differences between fields are located in the inhomogeneous part. The influences of disturbances of 

the continuity of the field are gathered in this inhomogeneous part. Without these disturbances, 

most of the fields would be flat and their defining function would be equal to its parameter space. 

In this view, many of the fields are blurred representations of discrete distributions, where the elements of the distribution 

are target values of a function that has rational quaternions as its parameter space. In some cases, the discrete distribution 

represents a dynamic location density distribution. In fact, two views are possible, either the field influences the discrete 

objects that correspond to location swarms or the swarms define the fields via their location density distribution. Smoothed 

fields are afflicted with extra blur. 

Apart from the symmetry related fields 𝔄𝑥 that are raised by the charges of the symmetry centers 

and the field ℨ ,that describes the gluons, at least one other field basic exists. That field is the 

embedding field ℭ. It represents the live space of the modules and modular systems. The origins of 

these fields differ fundamentally. The embedding field smoothly follows a distribution of discrete 

quaternionic values, which are eigenvalues of a series of operators. Some of these values do not fit 

properly in the set of values that surrounds them. In the special condition that these disparities 

appear in coherent swarms, we have indicated the swarm as the representative of an elementary 

particle. The disparities are due to difference in the symmetries of the underlying domains. These 

symmetries determine how the values cooperate in convolutions. If the disparities were not present, 

then the embedding field would be equal to the parameter space ℛ and that continuum would 

follow parameter space ℜ. 

The symmetry related charges of the symmetry centers do not directly affect the embedding field. It 

is indirectly affected, because the symmetry related fields affect the location of the symmetry 

centers that house the objects that can deform the embedding field. In principle, each disruption of 

the continuity of the field, thus each element of the swarm that represents an elementary module, 

affects the embedding field ℭ. The smoothed version 𝔘 of the embedding field is far less vigilant. 

Also, the symmetry related field 𝔄,which is coupled to the geometric center of the symmetry center 

reacts much less vigilant. The gluon field is related to locations where pairs of color shifting 

quaternions disturb the generation process of the anisotropic coherent swarms and causes the 

generation of hadrons, which are conglomerates of quarks. 

The embedding field ℭ is affected by the embedding of artifacts that are picked by a dedicated 

controlling mechanism that uses a symmetry center 𝕾𝑛
𝑥. as a resource. After selection of the location 

of the artifact, the controlling mechanism embeds this artifact into the embedding continuum ℭ. This 

continuum is represented by the continuum eigenspace of operator ℭ.  

Another interpretation is that this field describes the location swarms that are generated by the controlling mechanisms. 

Each of these mechanisms operates in a cyclic and stochastic fashion. The embedding events occur in 

the direct neighborhood of the geometric center of the corresponding symmetry center. The result is 

a recurrently regenerated coherent location swarm that also represent a stochastic hopping path. 

The swarm is centered around the geometric center of the symmetry center. Hopping means that 
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the controlling mechanism generates at the utmost one embedding location per progression step. 

This means that the hopping object can be considered as a point-like artifact. At the embedding 

instant, the artifact actually resides at the location that is represented by an element of the location 

swarm. Thus, the swarm represents the spatial map of a set of potential detection locations. The 

swarm is generated within the symmetry center 𝕾𝑛
𝑥  and is encapsulated by 𝜕H𝑛

𝑥. The actions of the 

mechanisms deform the field ℭ inside the floating regions H𝑛
𝑥. The deformation of ℭ reaches 

beyond the region H𝑛
𝑥.  

In this way, the mechanism creates an elementary module, which can deform the embedding 

field ℭ and inherits the symmetry related charge from the symmetry center. The deformation 

represents the local contribution to the embedding field by the elementary module that owns 

the swarm.  

On the other hand, the geometric center of the symmetry center houses the electric charge that 

influences field 𝔄. This view can be reversed. It is possible to consider the path that the 

geometric center of the symmetry center takes under the influence of both fields. This view 

requires an estimate of the results of the actions of these fields. This will be achieved via the path 
integral. First, we will investigate the influence of the embedding field ℭ. In a later phase, we will 

add the results of the much less vigilant actions of the symmetry related field 𝔄. 

As indicated beforehand a third basic field is the result of the activity of gluons. That activity 

disturbs the generation of anisotropic elementary modules. The controlling mechanisms react 

by assembling several partially generated anisotropic elementary modules into an isotropic 

composite. In this composite multiple symmetry centers are involved. Also, these symmetry 

centers join. Outside of the joined encapsulation the composite appears isotropic. The composite 

still may carry electric charge. But it no longer carries color charge. Inside the capsule multiple 

hopping paths walk and form a common location swarm. 

15.1 Multi-mix path algorithm 
In this primary investigation, we ignore the actions of the symmetry related potential. They are far 

less vigilant than the direct results of the embedding of individual locations. The name “multi-mix 

algorithm” stands for a similar algorithm that is known as “path integral”. “path integral” is in fact a 

misnomer. The algorithm concerns a sequence of multiplications. Since during the regeneration of 

the considered object the displacement of the object is rather stable, will part of the multiplication 

factors reduce to unity. The other factors are close to unity. The result is that the sequence reduces 

to a sequence of additions of many small contributions. These contributions are the actions of the 

individual hops of an elementary module. 

Elementary modules reside on an individual symmetry center. A dedicated mechanism controls its 

recurrent generation and embeds the object into the embedding field. The path of the symmetry 

center is the averaged path of the embedded object. The embedded object is hopping along the 

elements of the generated location swarm. The landing locations of the hops are generated by the 

controlling mechanism in a stochastic fashion, but such that at first approximation the swarm can be 

considered moving as one unit. This is possible when the swarm is characterized by a continuous 

location density distribution, which owns a displacement generator. That is the case when the 

location density distribution owns a Fourier transform. This fact enables the description of the path 

of the swarm by a “multi-mix algorithm”. The hopping of the embedded object can be described by a 

sequence of factors that after multiplication represent the whole path. Each factor represents three 

sub-factors. 
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The procedure that underlies the multi-mix algorithm depends on the fact that the multiplication of factors that are all very 

close to unity can be replaced by a summation.  

1. The first sub-factor represents the jump from configuration space to momentum space. This 

sub-factor is given by the inner product of the Hilbert vector that represents the current 

location and the Hilbert vector that represents the momentum of the swarm. This second 

Hilbert vector is assumed to be constant during the current regeneration of the location 

swarm. 

2. The second sub-factor represents the effect of the hop in momentum space.  

3. The third sub-factor represents the jump back from momentum space to configuration 

space. 

In the sequence of factors the third sub-factor of the current term compensates the effect of the first 

sub-factor of next term. Their product equals unity. 

What results is a sequence of factors that are very close to unity and that represent the effects of the 

hops in momentum space. Because the momentum is considered constant, the logarithms of the 

terms can be taken and added in an overall sum. In this way, the multiplication is equal to the sum of 

the logarithms of the factors.  

This summation approaches what is known as the “path integral”. In our interpretation, it is not an 

integral, but instead it is a finite summation. In more detail the procedure can be described as 

follows. 

We suppose that momentum 𝒑𝑛 is constant during the particle generation cycle in which the 

controlling mechanism produces the swarm {𝑎𝑖}. Every hop gives a contribution to the path. 

These contributions can be divided into three steps per contributing hop: 

1. Change to Fourier space. This involves as sub-factor the inner product 〈𝑎𝑖|𝑝𝑛〉. 

2. Evolve during an infinitesimal progression step into the future.  

a. Multiply with the corresponding displacement generator 𝒑𝑛.  

b. The generated step in configuration space is (𝒂𝑖+1 − 𝒂𝑖). 

c. The action contribution factor in Fourier space is 〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉. 

3. Change back to configuration space. This involves as sub-factor the inner product 
〈𝑝𝑛|𝑎𝑖+1〉 

The combined term contributes a factor 〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉. 

Two subsequent steps give: 

 

〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉〈𝑎𝑖+1|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+2 − 𝒂𝑖+1〉)〈𝑝𝑛|𝑎𝑖+2〉 

 

= 〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+2 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+2〉 

 

The red terms in the middle turn into unity. The other terms also join. 

Over a full particle generation cycle with N steps this results in: 

∏〈𝑎𝑖|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉)〈𝑝𝑛|𝑎𝑖+1〉

𝑁−1

𝑖=1

 

(1) 

(2) 
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= 〈𝑎1|𝑝𝑛〉exp(〈𝒑𝑛, 𝒂𝑁 − 𝒂1〉)〈𝑝𝑛|𝑎𝑁〉 = 〈𝑎1|𝑝𝑛〉 exp (∑〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁

𝑖=2

) 〈𝑝𝑛|𝑎𝑁〉 

= 〈𝑎1|𝑝𝑛〉 exp(𝐿 𝑑𝜏) 〈𝑝𝑛|𝑎𝑁〉 

 

𝐿 𝑑𝜏 = ∑〈𝒑𝑛, 𝒂𝑖+1 − 𝒂𝑖〉

𝑁−1

𝑖=2

= 〈𝒑𝑛, 𝑑𝒒〉 

𝐿 = 〈𝒑𝑛, �̇�〉 

 

𝐿 is known as the Lagrangian. 

Equation (4) holds for the special condition in which 𝒑𝑛 is constant. If 𝒑𝑛 is not constant, then 

the Hamiltonian 𝐻 varies with location. In the next equations, we ignore subscript  𝑛. 

 

𝜕𝐻

𝜕𝑞𝑖
= −�̇�𝑖 

 

𝜕𝐻

𝜕𝑝𝑖
= �̇�𝑖 

 

𝜕𝐿

𝜕𝑞𝑖
= �̇� 

 

𝜕𝐿

𝜕�̇�𝑖
= 𝑝𝑖 

 

𝜕𝐻

𝜕𝜏
= −

𝜕𝐻

𝜕𝜏
 

 

𝑑

𝑑𝜏

𝜕𝐿

𝜕�̇�𝑖
=

𝜕𝐿

𝜕𝑞𝑖
 

 

𝐻 + 𝐿 = ∑�̇�𝑖𝑝𝑖

3

𝑖=1

 

Here we used proper time 𝜏 rather than coordinate time 𝑡. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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The effect of the hopping path is that the geometric center of the symmetry center is moved over a 

small resulting distance 𝒂𝑁 − 𝒂1. Together with “charge” (𝑁 ∙ 𝑄𝑛) this move determines the next 

version of momentum 𝒑𝑛. 

The result is that both the symmetry related fields 𝔄𝑥 and the embedding field ℭ influence the 

location of the geometric center of the symmetry center 𝕾𝑛
𝑥. 

In this investigation, we ignored the influence of the symmetry related field 𝔄. This field influences 

momentum 𝒑𝑛 and the corresponding eigenvector |𝑝𝑛〉. This means that the product of the red 

colored middle terms is no longer equal to unity. Instead the product differs slightly from unity and 

the effect can be included in the path integral. In this way, a small slowly varying extra contribution is 

added to each subsequent term in the summation. This extra contribution is a smooth function of 

progression and thus, it is a smooth function of the index of the term. 

The result of the “multi-mix algorithm” is expectable. The “step” of the swarm equals the sum of the steps of the hops. The 

“multi-mix algorithm” is introduced to show the similarity with the “path integral”. The “path integral” is taken over all 

possible paths. The multi-mix algorithm only takes the actual hopping path. Usually the “path integral” algorithm is 

introduced by starting from the Lagrangian. Here we started the “multi-mix algorithm” from the hopping path and the 

“multi-mix algorithm” results in the Lagrangian. 

15.2 Gluon action 
The presence of gluons causes the disruption of the generation of anisotropic swarms of artifacts and 

the governing mechanisms will join their activity by generating isotropic swarms of artifacts that will 

represent conglomerates of the intended elementary modules. Therefore, separate anisotropic 

elementary modules will hardly ever reach the condition that a private swarm represents them. 

Instead the isotropic swarms will appear as persistent results. Thus, gluons combine multiple hopping 

paths into a single coherent swarm. This means that the “multi-mix algorithm” must be applied to 

each of the hopping paths and the result must be attached to a common location center. The 

number of hops in a hopping path can be used as a location weighting factor.  

15.3 Grouped isotropic artifacts 
Next, we consider grouped artifacts that cause discontinuities in the realm of a symmetry center. The 

concerned field is the embedding field. Since we do no longer focus on symmetry related charges, we 

will omit the superscript  𝑥. 

We consider the case that the locations of the artifacts form a coherent swarm {𝒄𝑛} that can be 

characterized by a continuous location density distribution 𝜌(𝒒).  

 

 𝜒(𝒒) = ∑ ∭𝜌(𝒒) 𝑄𝑛 𝛿(𝒒 − 𝒄𝑛)
𝑉

𝑁

𝑛=0

= −
1

4𝜋
∑ ∭ 𝜌(𝒒)𝑄𝑛 〈𝜵, 𝜵

1

|𝒒 − 𝒄|
〉

𝑉

𝑁

𝑛=0

 

 

If we use the spherical symmetric Gaussian location distribution of artifacts 𝜌(𝑟) that was 

introduced earlier as test function,  

 

𝜌(𝑟) = 〈𝜵, 𝜵〉𝔗(𝑟) = −
𝑄

(𝜎√2𝜋)
3  exp (− 

𝑟2

2𝜎2) 

(1) 

(2) 
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then a potential in the form of 

 

𝔗(𝑟) = −
𝑄

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

results.  

At somewhat larger distances the potential behaves like a single charge potential.  

 

𝜒(𝑟) ≈  
−𝑄

4𝜋𝑟
 

 

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry 

center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed 

by these artifacts.  

Even though it is constituted from a myriad of singular contributions, the potential in equation (3) is a 

continuous function and its gradient at the center point equals zero! Thus, the corresponding 

deformation has a “wide-spread” binding effect. 

15.4 Acceleration of the symmetry center 
Due to their actions, the fields 𝔄 and ℭ may accelerate the location of the symmetry center on which 

an elementary module resides. This occurs via the interaction of these fields with the contributions 

that the symmetry center and the recurrently embedded elementary module add to the influences of 

these fields. 

The symmetry center and with it the residing elementary module float over the background 

parameter space ℜ. This means that these items also float over the fields 𝔄 and ℭ.  

 The symmetry related field 
The symmetry related charge 𝑄𝑛

𝑥 of the symmetry center 𝕾𝑛
𝑥  contributes the local scalar potential 

𝜑𝑛0
 to the symmetry related field 𝔄.  

𝜑𝑛0
(𝒒) =

𝑄𝑛
𝑥

|𝒒 − 𝒄𝑛
𝑥|

 

 

On the other hand  

 

𝑬𝑛(𝒒) = 𝛁𝜑𝑛0
=

𝑄𝑛
𝑥(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

(3) 

(4) 

(1) 

(2) 
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Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜑𝑚0

 to the symmetry related field 𝔄. The force 

𝑭𝑛𝑚 between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝑬𝑛𝑄𝑚
𝑥 =

𝑄𝑛
𝑥𝑄𝑚

𝑥 (𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝑬𝑚𝑄𝑛

𝑥 

 

This need not correspond to an actual acceleration. On the other hand, if relative to the parameter 

space ℜ, the movement of the symmetry center 𝕾𝑛
𝑥  is uniform with speed 𝒗𝑛, then the scalar 

potential 𝜑𝑛0
 corresponds to a vector potential 𝝋𝑛 = 𝜑𝑛0

 𝒗𝑛. If relative to the parameter space ℜ, 

the symmetry center actually accelerates, then this goes together with an extra field 𝑬𝑛 = 𝝋�̇� =

 𝜑𝑛0
 𝒗�̇� that represents the corresponding change of field 𝔄. Thus. If the two forces 𝑭𝑛𝑚 and 𝑭𝑚𝑛 

do not hold each other in equilibrium, then the field 𝕬 will change dynamically with this extra 

contribution. 

 The embedding field 
The location swarms that are generated by dedicated controlling mechanisms produce a local 

potential that also can accelerate the symmetry center on which the location swarm resides relative 

to the parameter space ℜ. We analyze the situation in which a Gaussian location distribution 

represents the swarm. Thus, we use the corresponding artifact as a test particle. The corresponding 

local potential that contributes to field ℭ equals  

 

𝜒𝑛(𝑟) = −
𝑄𝑛

4𝜋
 
𝐸𝑅𝐹 (𝑟

𝜎√2⁄ )

𝑟
 

 

Here 𝑄𝑛 represents the strength of the local potential. At somewhat larger distances the potential 

behaves as a single “charge” potential.  

 

𝜒𝑛(𝒒) ≈
−𝑄𝑛

4𝜋|𝒒 − 𝒄𝑛
𝑥|

 

 

This virtual “charge” is located at the center of the symmetry center 𝕾𝑛
𝑥. The scalar potential 𝜒𝑛(𝒒) 

adds to the embedding field ℭ. The result is that ℭ gets deformed. 

The local scalar potential 𝜒𝑛(𝒒) corresponds to a derived field 𝓔𝑛(𝒒). 

 

𝓔𝑛(𝒒) = 𝛁𝜒𝑛 = −
𝑄𝑛(𝒒 − 𝒄𝑛

𝑥)

|𝒒 − 𝒄𝑛
𝑥|3

 

 

(3) 

(1) 

(2) 

(3) 
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Another symmetry center 𝕾𝑚
𝑥  contributes potential 𝜒𝑚(𝒒) to the embedding field ℭ. The force 𝑭𝑛𝑚 

between the two symmetry centers equals: 

 

𝑭𝑛𝑚 = 𝓔𝑛𝑄𝑚 = −
𝑄𝑛𝑄𝑚(𝒄𝑛

𝑥 − 𝒄𝑚
𝑥 )

|𝒄𝑛
𝑥 − 𝒄𝑚

𝑥 |3
= −𝑭𝑚𝑛 = −𝓔𝑚𝑄𝑛 

 

This need not correspond to an actual acceleration. The force raising field 𝓔𝑛 is treated in detail in a 

special section of this paper. 

If the platform 𝕾𝑚
𝑥  on which the swarm resides moves with uniform speed 𝒗, then the local potential 

corresponds to a local vector potential. 

 

𝝌𝑛 = 𝜒𝑛𝒗 

 

If this platform accelerates, then this goes together with an extra contribution to field 𝓔𝑛 that 

counteracts the acceleration. 

 

𝓔𝑛 = �̇�𝑛 = 𝜒𝑛�̇� 

 

This effect is known as inertia. 

15.5 The smoothed embedding field 
The embedding field ℭ is described by a mostly continuous function ℭ(𝑞). The convolution of 

ℭ(𝑞) with a blurring function transforms this function in an everywhere continuous function 

𝔘(𝑞). Space cavities exist where both ℭ(𝑞) and 𝔘(𝑞) are not defined. The blurring function 

integrates over the regeneration cycle of elementary modules in the progression part of the 

domain. If in the spatial domain, the test function 𝔗(𝑞) is used as the blurring function for 

isolated discontinuities and a Gaussian distribution is used for coherent swarms of 
discontinuities, then the function 𝔘(𝑞) defines the smoothed embedding field 𝔘. This field takes 

the role of a model-wide potential. In physics this is the role of the gravitation potential. In this 

model, we consider 𝔘 to represent the equivalent of universe, however it represents a blurred 

universe. 

The local contribution to the embedding field ℭ by the elementary module has a smoothed 

version, which is the equivalent of its individual potential. It contributes to field 𝔘. 

15.6 Spurious artifacts 
Due to their minor effect, spurious artifacts will be hidden for observers due to the blanket that is 

spread over the corresponding field by the smoothed version of this field that the observers will see. 

Only recurrent regeneration of the artifact can generate a reasonable detection probability. 

  

(4) 

(5) 

(6) 
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16 Free elementary modules 
Free elementary modules obey special differential equations. 

The landing locations of the hops that form the hopping path and the location swarm trigger the 

Palestra and that trigger starts a spherical shape-keeping front that we named a clamp. The 

integration of the clamp over the regeneration cycle period of the swarm results in the Green’s 

function of the field, which represents an averaged response of the Palestra on the trigger. The 

convolution of the Green’s function with the location density distribution of the swarm results in the 

contribution of the elementary module to the Palestra ℭ. For free elementary modules, this 

contribution equals the Palestra. 

The clamp is a solution of the homogeneous second order partial differential equation under 

isotropic conditions.  

𝛻𝛻∗𝜓 = 
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝜓

𝜕𝑟
) +

𝜕2𝜓

𝜕𝜏2
= 0 

𝜓 =
f(𝒊 𝑟 − 𝑐 𝑡)

𝑟
+ 

𝑔(𝒊 𝑟 + 𝑐 𝑡)

𝑟
 

We only use the left term and average over the cycle period. 

This results in the Green’s function: 

𝐺(𝑟) = 1/𝑟 

The integration converts the field 𝜓 into the Palestra ℭ. 

Next, we convolute the Green’s function with the location density distribution of the swarm. 

Locally, the result equals the Palestra. The integration converts the homogeneous equation into an 

inhomogeneous equation in which the added term equals the Palestra. 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕ℭ

𝜕𝑟
) +

𝜕2ℭ

𝜕𝜏2
= 𝐺(𝑟) ∘ 𝜌(𝑟) = 𝑚𝑛ℭ(𝑟) 

 

𝑚𝑛 is a real factor that is proportional with the number of hops. It corresponds to the strength of the 

deformation of C. 

This equation can be split into two first order partial differential equations. 

𝛻𝛻∗ℭ = 𝑚𝑛 ℭ 

φ = 𝛻∗ ℭ 

𝛻φ = 𝑚𝑛 ℭ 

  

(1) 

(2 

(3) 

(4) 

(5) 

(6) 

(7) 
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17 Force raising subfields 
The change of a field is represented by a partial differential equation 

 

𝛷 = 𝛻 𝜓 = 𝛷0 + 𝜱 = (𝛻0 + 𝜵)(𝜓0 + 𝝍) 

 

𝛷0 = 𝛻0𝜓0 − ⟨𝜵,𝝍⟩ 

 

𝜱 = 𝛻0𝝍 + 𝜵𝜓0 ± 𝜵×𝝍 = −𝕰 ± 𝕭 

 

Here we consider a situation in which the change of the total field is zero and more in detail: 

 

𝕰 = 𝕭 = 𝟎 

A temporal change of the scalar field 𝜓0 can be compensated by a divergence of the vector field 𝝍. 

Similarly, a temporal change of the vector field 𝝍 can be compensated by a gradient of the scalar 

field 𝜓0. The term 𝑬 = 𝛻0𝝍 represents a force raising field. 

17.1 Green’s function 
The Green’s function 𝐺(𝒓) of the field can be considered as the result of the integration of a clamp 

over a long enough period. Parameter 𝒓 is the displacement from the location of the trigger. 

 

𝐺(𝒓) =
1

4𝜋|𝒓|
  

 

However, 𝐺(𝒓) can also be considered as the effect on the field of a relative steady artifact. In that 

case the Green’s function can be interpreted as the scalar potential 𝜑(𝒓) of the artifact. The strength 

of the influence is characterized by a real number valued charge 𝑄1.  

 

𝜑(𝒓) = 𝑄1 𝐺(𝒓) =
𝑄1

4𝜋|𝒓|
  

 

As such, every clamp represents a unit charge. Also symmetry related charges represent point-like 

artifacts that characterize the strength of the corresponding potential. 

If the point-like artifact moves rather than hops and this movement occurs with a uniform speed 𝒗, 

then the scalar potential turns into a vector potential 𝑨(𝒓).  

𝑨(𝒓) = 𝜑(𝒓)𝒗 =
𝑄1

4𝜋|𝒓|
𝒗  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝜵(
𝑄1

4𝜋|𝒓|
) = −

𝑄1 

4𝜋|𝒓|𝟑
𝒓 

In the above formulas plays 𝜑(𝒓) the role of 𝜓0 and 𝑨(𝒓) plays the role of 𝜓. If the point-like artifact 

accelerates, then the change of the vector potential goes together with the existence of a new vector 

field 𝑬(𝒓) that acts as a force raising field. This follows from the fact that the total change of the field 

stays zero. 

𝛻0𝝍 + 𝜵𝜓0 = �̇�(𝒓) + 𝜵(
𝑄1

4𝜋|𝒓|
) =

𝑄1

4𝜋|𝒓|
�̇�  −

𝑄1 

4𝜋|𝒓|𝟑
𝒓 = 𝟎 

�̇�(𝒓) =  
𝒓

|𝒓|𝟐
 

If the acceleration occurs in radial direction, then this results in a force raising field 𝑬(𝒓): 

 

𝑬(𝒓) = �̇�(𝒓) =
𝑄1

4𝜋|𝒓|
�̇� =

𝑄1 

4𝜋|𝒓|𝟑
𝒓 

 

With respect to this force raising field another point-like charge with charge value 𝑄2 that is also 

embedded in the original field will sense a force 𝑭(𝒓) that equals the product of the force raising 

field and the charge of the second embedded point-like object. 

 

𝑭(𝒓𝟐 − 𝒓𝟏) = 𝑄2 𝑬(𝒓𝟐 − 𝒓𝟏) =
𝑄1𝑄2(𝒓𝟐 − 𝒓𝟏)

4𝜋|𝒓𝟐 − 𝒓𝟏|
𝟑

 

 

A force raising field 𝑬 = 𝜵𝜓0 is a component of a base field 𝜓 that can exert a force onto a charged 

object. The force raising field counteracts the change of the field when another component 𝝍 of that 

field is changed 𝛻0𝝍. 

For example, inertia is the result of a force raising field that counteracts the acceleration of massive 

objects. 

17.2 Module potential 
The same reasoning can be applied to an object that features a potential, which it contributes to a 

field, while it moves with uniform speed with respect to that field and it suddenly starts accelerating. 

Thus it applies to free elementary modules that suddenly accelerate. It also applies to modules or 

modular systems whose distribution of swarm elements own a continuous location density 

distribution that on its turn owns a Fourier transform. As a consequence, in first approximation, the 

module or modular system can be considered to be moving as one unit. If it starts accelerating, then 

that fact goes together with the existence of a force raising field. In this field a charged object will 

sense a force that is proportional to product of the local strength of the field and value of the charge. 

With respect to the Palestra the force raising field implements the phenomenon that physicists call 

inertia. 

(8) 

(9) 

(10) 

(11) 
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18 At the start of progression 
At progression value 𝜏 = 0, the mechanisms that generate the artifacts, which cause discontinuities 

in the embedding manifold ℭ have not yet done any work. It means that this manifold was flat and its 

defining function equaled its parameter space at instance 𝜏 = 0.  

At 𝜏 = 0 nothing arrives from the past. 

The model offers the possibility that the domain Ω expands as a function of 𝜏. In that case it is 

possible that domain Ω covers a growing amount of symmetry centers. 
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19 Low dose rate imaging 

19.1 Preface 
The author started his career in high-tech industry in the development of image intensifier devices. 

His job was to help optimizing the imaging quality of these image intensifier devices. This concerned 

both image intensifiers for night vision applications and x-ray image intensifiers that were aimed at 

medical applications. Both types of devices target low dose rate application conditions. These devices 

achieve image intensification in quite different ways. Both types can be considered to operate in a 

linear way. The qualification of the image intensifier is based on the fact that human image 

perception is optimized for low dose rate conditions.  

At low dose rates the author never perceived waves in the intensified images. At the utmost, he saw 

hail storms of impinging discrete particles and the corresponding detection patterns can simulate 

interference patterns. The conclusion is, that the waves that might be present in the observed image 

are probability waves. Individual photons are perceived as detected quanta. They are never 

perceived as waves. 

19.2 Human perception 
With respect to visual perception the human visual trajectory closely resembles the visual trajectory 

of all vertebrates. Hubel and Weisel discovered this. They got a Noble price for their work. 

The sensitivity of the human eye covers a huge range. The visual trajectory implements several 

special measures that help extending that range. At high dose rates the pupil of the eye acts as a 

diaphragm that partly closes the lens and in this way, it increases the sharpness of the picture on the 

retina. At such dose rates the cones perform the detection job. The cones are sensitive to colors and 

offer a quick response. In unaided conditions, the rods take over at low dose rates and they do not 

differentiate between colors. In contrast to the cones the rods apply a significant integration time. 

This integration diminishes the effects of quantum noise that becomes noticeable at low dose rates. 

The sequence of optimizations does not stop at the retina. In the trajectory from the retina to the 

fourth cortex of the brain several dedicated decision centers decode the received image by applying 

masks that trigger on special aspects of the image. For example, a dedicated mask can decide 

whether the local part of the image is an edge, in which direction this edge is oriented and in which 

direction the edge moves. Other masks can discern circular spots. Via such masks the image is 

encoded before the information reaches the fourth cortex. Somewhere in the trajectory the 

information of the right eye crosses the information that is contained in the left eye. The difference is 

used to construct three-dimensional vision. Quantum noise can easily disturb the delicate encoding 

process. That is why the decision centers do not pass their information when its signal to noise ratio 

is below a given level. The physical and mental condition of the observer influences that level. At low 

dose rates, this signal to noise ratio barrier prevents a psychotic view. The higher levels of the brain 

thus do not receive a copy of the image that was detected at the retina. Instead that part of the brain 

receives a set of quite trustworthy encoded image data that will be deciphered in an associative way. 

It is expected that other parts of the brain for a part act in a similar noise blocking way. 

The evolution of the vertebrates must have installed this delicate visual data processing subsystem in 

a period in which these vertebrates lived in rather dim circumstances, where visual perception of low 

dose rate images was of vital importance. 

This indicates that the signal to noise ratio in the image that arrives at the eyes pupil has significant 

influence on the perceptibility of the low dose image. At high dose rates the signal to noise ratio 

hardly plays a role. In those conditions the role of the spatial blur is far more important.  
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It is easy to measure the signal to noise ratio in the visual channel by applying a DC meter and an 

RMS meter. However, at very low dose rates, the damping of both meters might pose problems. 

What quickly becomes apparent is the relation of the signal to noise ratio and the number of the 

quanta that participate in the signal. The measured relation is typical for stochastic quantum 

generation processes that are classified as Poisson processes. 

It is also easy to comprehend that when the signal is spread over a spatial region, the number of 

quantal that participate per surface unit is diminishing. Thus, spatial blur has two influences. It lowers 

the local signal and at the other hand it increases the integration surface. Lowering the signal 

decreases the number of quanta. Enlarging the integration surface will increase the number of 

involved quanta. Thus, these two effects partly compensate each other. An optimum perceptibility 

condition exists that maximizes the signal to noise ratio in the visual trajectory. 

The Point Spread Function causes the blur. This function represents a spatially varying binomial 

process that attenuates the efficiency of the original Poisson process. This creates a new Poisson 

process that features a spatially varying efficiency. Several components in the imaging chain may 

contribute to the Point Spread Function such that the effective Point Spread Function equals the 

convolution of the Point Spread Functions of the components. Mathematically it can be shown that 

for linear image processors the Optical Transfer Functions form an easier applicable characteristic 

than the Point Spread Functions, because the Fourier transform that converts the Point Spread 

Function into the Optical Transfer Function converts the convolutions into simple multiplications. 

Several factors influence the Optical Transfer Function. Examples are the color distribution, the 

angular distribution, and the phase homogeneity of the impinging radiation. Also, veiling glare may 

hamper the imaging quality. 

The fact that the signal to noise ratio appears to be a deciding factor in the perception process has 

led to a second way of characterizing the relevant influences. The Detective Quantum Efficiency 

(DQE) characterizes the efficiency of the usage of the available quanta. It compares the actual 

situation with the hypothetical situation in which all generated quanta would be used in the 

information channel. Again, the measured signal noise ratio is compared to the ideal situation in 

which the stochastic generator is a Poisson process and no binomial processes will attenuate that 

primary Poisson process. This means that blurring and temporal integration must play no role in the 

determination of the DQE and the measured device will be compared to quantum detectors that will 

capture all available quanta. It also means that intensification processes will not add extra relative 

variance to the signal. The application of micro channel plates will certainly add extra relative 

variation. This effect will be accounted as a deterioration of the detection efficiency and not as a 

change of the stochastic process from a Poisson process to an exponential process. Mathematically 

this is an odd procedure, but it is a valid approach when the measurements are used to objectively 

evaluate perceptibility. 

19.3 Mechanisms 
The fact that the objective qualification of perceptibility can be performed by the Optical Transfer 

Function in combination with the Detective Quantum Efficiency indicates that the generation of the 

quanta is governed by a Poisson process that is coupled to a binomial process, where a spatial Point 

Spread Function implements the binomial process. 

The mechanisms that ensure dynamical coherence appear to apply stochastic processes whose signal 

to noise ratio is proportional to the square root of the number of generated quanta.  
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Quite probably the quantum generation process belongs to the category of Poisson point processes 

and in particular to the subcategory that are known as log Gaussian Cox point processes. 

20 Discussion 
This paper shifts the mystery that in current physical theories exist about the wave function to the 

mysteries that exist about the characteristic function of the stochastic processes that give the 

hopping path and the corresponding location swarm their location density distribution. The existence 

of that characteristic function means that this location density distribution must possess a Fourier 

transform and that therefore the swarm can be considered to behave as one unit. Some guesses are 

made about the nature of the stochastic processes. Nothing is said about how the corresponding 

mechanisms cooperate. This paper suggests that the mechanisms implement self-coherence and that 

this self-coherence relates to inertia. 

This paper only considers the divergence based version of the generalized Stokes theorem. The 

consequences for the curl based version are not investigated in detail. From fluid dynamics, it is 

known that artifacts that are embedded in a fluid may suffer from the vorticity of the embedding 

field [x]. 

This paper does not investigate the consequences of polar ordering. It probably relates to the spin 

properties of elementary modules. In that case the polar ordering of symmetry centers regulates the 

distinction between fermions and bosons. The half integer spin particles may use ordering of the 

azimuth, where the integer spin particles use the ordering of the polar angle. However, this does not 

explain the difference in behavior between these categories. The paper also does not investigate the 

origin of the Pauli principle, which is closely related to the notion of spin. 

Skillful mathematicians carefully designed the concept of exterior derivative, such that it becomes 

independent of the selection of parameter spaces. However, in a situation like the situation that is 

investigated by the Hilbert Book Test Model in which several parameter spaces float on top of a 

background parameter space, the selection of the ordering of the parameter spaces does matter. The 

symmetry flavors of the coupled parameter spaces determine the values of the integrals that account 

for the contributions of the artifacts. The symmetry related charges of these artifacts represent it. 

These symmetry related charges are supposed to be located at the geometric centers of the 

symmetry centers.  

As happens so often, physical reality reveals facts (such as the symmetry related charges) that cannot 

easily be discovered by skilled mathematicians. The standard model contains a short list of electric 

charges that correspond to the symmetry related charges. The standard model does not explain the 

existence of this short list. In the Hilbert Book Test Model, it becomes clear that the electric charge 

and the color charge are a properties of connected parameter spaces and not a property of the 

objects that use these parameter spaces. Instead, these objects inherit the charge properties from 

the platform on which they reside. 

Both the symmetry related fields and the embedding continuum affect the geometric location of the 

symmetry center. They do that in different ways. 

If electric charges are properties of the connection between spaces, then the fields to which these 

charges contribute implement the forces between these connections. No extra objects are needed 

to implement these forces! 
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It is sensible to expect that depending on the type of their “charges” all basic fields can attract or 

repel the spaces on which these “charges” reside. This behavior is described by the differential and 

integral equations that are obeyed by the considered field. 

The model does not dive deep into the binding process. In that respect, regular physical theories go 

much further. 

The Hilbert Book Test Model is no more and no less than a mathematical test case. The paper does 

not pretend that physical reality behaves like this model. But the methods used and the results 

obtained in this paper might learn more about how models of physical reality can be structured and 

how these can behave. 

21 Lessons 
Some interesting lessons can be derived from the model. At the first place the model introduces a 

commandment: 

“Thou shalt construct in a modular way”. 

This commandment enforces the constructors to construct in a very economical way that applies as 

littles resource as is possible. A problem occurs when the resources are limited. 

In the beginning, pure stochastic processes control the evolution. In that evolution process, 

increasingly complicated modular systems will be generated. This process depends on the availability 

of nearby resources. As soon as in a local environment the evolution reaches a level that intelligent 

species (read types) are formed, these species can take active part in the evolution process. In that 

environment, the stochastic modular design method turns into an intelligent design method. 

After investigation of the lifeforms that he discovered at the islands in the oceans and at the beaches 

of southern continents, Darwin concluded that only the fittest species can reach a longer existence in 

the evolution process. A similar rule exists for the modules and modular systems. However, this rule 

must be extended, because the survival struggle does not so much concern the individuals. Instead, it 

concerns the survival of module types and that survival is supported when the type promotes the 

survival of the community of the type to which the individual belongs. This often must include the 

care of the survival of the types that are used by the considered type as a resource. If a community 

grows so large that its resources become endangered, then the complete community is endangered. 

Thus, a second commandment follows the primal commandment: 

“Each individual must take care of the resources of the 

community of which that individual is a member”.  
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1 Lattices 
A lattice is a set of elements 𝑎, 𝑏, 𝑐, … that is closed for the connections ∩ and ∪. These connections 

obey: 

 The set is partially ordered.  
o This means that with each pair of elements 𝑎, 𝑏 belongs an element 𝑐, such that 

𝑎 ⊂  𝑐 and 𝑏 ⊂  𝑐.  

 The set is a ∩half lattice.  
o This means that with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such that 

𝑐 =  𝑎 ∩  𝑏.  
 The set is a ∪half lattice. 

o This means that with each pair of elements 𝑎, 𝑏 an element 𝑐 exists, such that 

𝑐 =  𝑎 ∪  𝑏.  
 The set is a lattice. 

o This means that the set is both a ∩half lattice and a ∪half lattice. 
 

The following relations hold in a lattice:  

 

𝑎 ∩  𝑏 =  𝑏 ∩  𝑎 

(𝑎 ∩  𝑏)  ∩  𝑐 =  𝑎 ∩  (𝑏 ∩  𝑐) 

𝑎 ∩  (𝑎 ∪  𝑏)  =  𝑎 

 

𝑎 ∪  𝑏 =  𝑏 ∪  𝑎 

(𝑎 ∪  𝑏)  ∪  𝑐 =  𝑎 ∪  (𝑏 ∪  𝑐) 

𝑎 ∪  (𝑎 ∩  𝑏)  =  𝑎 

 

The lattice has a partial order inclusion ⊂: 

 

𝑎 ⊂  𝑏 ⟺  𝑎 ∩  𝑏 =  𝑎 

 

A complementary lattice contains two elements 𝑛 and 𝑒 with each element 𝑎 a complementary 

element 𝑎′ such that: 

 

𝑎 ∩  𝑎′ =  𝑛 

𝑎 ∩  𝑛 =  𝑛 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝑎 ∩  𝑒 =  𝑎 

 

𝑎 ∪  𝑎′  =  𝑒 

𝑎 ∪  𝑒 =  𝑒 

𝑎 ∪  𝑛 =  𝑎 

 

An orthocomplemented lattice contains two elements 𝑛 and 𝑒 and with each element 𝑎 an element 

𝑎′′ such that: 

 

𝑎 ∪  𝑎′′   =  𝑒 

𝑎 ∩  𝑎′′  =  𝑛 

(𝑎′′)′′ = 𝑎 

𝑎 ⊂  𝑏 ⇔  𝑏′′  ⊂  𝑎′′ 

 

𝑒 is the unity element; 𝑛 is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

a ∩ (b ∪ c) = (a ∩ b) ∪ ( a ∩ c) 

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c) 

 

A modular lattice supports: 

 

(𝑎 ∩  𝑏)  ∪  (𝑎 ∩  𝑐)  =  𝑎 ∩  (𝑏 ∪  (𝑎 ∩  𝑐)) 

 

A weak modular lattice supports instead: 

  

There exists an element 𝑑 such that 

 

𝑎 ⊂  𝑐 ⇔  (𝑎 ∪  𝑏)  ∩  𝑐 =  𝑎 ∪  (𝑏 ∩  𝑐)  ∪  (𝑑 ∩  𝑐) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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where 𝑑 obeys: 

 

(𝑎 ∪  𝑏)  ∩  𝑑 =  𝑑 

𝑎 ∩  𝑑 =  𝑛 

𝑏 ∩  𝑑 =  𝑛 

(𝑎 ⊂  𝑔) 𝑎𝑛𝑑 (𝑏 ⊂  𝑔)  ⇔  𝑑 ⊂  𝑔 

 

In an atomic lattice holds  

 

∃𝑝 ∈ 𝐿 ∀𝑥 ∈ 𝐿 {𝑥 ⊂  𝑝 ⇒  𝑥 =  𝑛} 

 

∀𝑎 ∈ 𝐿 ∀𝑥 ∈ 𝐿 {(𝑎 <  𝑥 <  𝑎 ∩  𝑝)  ⇒  (𝑥 =  𝑎 𝑜𝑟 𝑥 =  𝑎 ∩  𝑝)} 

 

𝑝 is an atom 

1.1 Well known lattices 
Classical logic has the structure of an orthocomplemented distributive modular and atomic lattice. 

Quantum logic has the structure of an orthocomplemented weakly modular and atomic lattice.  

It is also called an orthomodular lattice. 

Both lattices are atomic lattices. 

  

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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Quaternion geometry and arithmetic 

Quaternions and quaternionic functions offer the advantage of a very compact notation of items that 

belong together [8]. 

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real 

coefficients. The vector forms the imaginary part of the quaternion. Quaternionic number systems 

are division rings. It means that all non-zero members have a unique inverse. Other division rings are 

real numbers and complex numbers. The separable Hilbert space only uses the rational subsets of 

these number systems. 

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex 

coefficients. Octonions and bi-quaternions do not form division rings. This paper does not use them. 

However, one exception is tolerated: in considering the Dirac equation, bi-quaternionic functions and 

bi-quaternionic differential operators are used. The Dirac equation is treated in the appendix. 

2 Quaternions 

2.1 Notation 
We indicate the real part of quaternion 𝑎 by the suffix 𝑎0. 

We indicate the imaginary part of quaternion 𝑎 by bold face 𝒂. 

 

𝑎 = 𝑎0 + 𝒂 

 

We indicate the quaternionic conjugate by a superscript in the form of a star. 

𝑎∗ = 𝑎0 − 𝒂 

 

We introduce the complex base number 𝕚 via 

𝕚 ∙ 𝕚 =  −1 

 

In bi-quaternionic equations, 𝕚 commutes with all quaternions. 

 

𝕚 ∙ 𝑎 = 𝑎 ∙ 𝕚 

 

However, the product is no longer a quaternion. Instead, it is a bi-quaternion. A beret indicates bi-

quaternions. 

 

𝑐⏞ = 𝑎 + 𝕚 ∙ 𝑏 

 

(1) 

(2) 

(3) 

(4) 

(5) 
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Here 𝑎 and 𝑏 are both regular quaternions. Complex conjugation is acting as: 

 

𝕚• = − 𝕚 

Complex conjugation is indicated with a superscript in the form of a filled circle. 

 

𝑐⏞
•
= 𝑎 − 𝕚 ∙ 𝑏 

 

Here we see bi-quaternions as hyper-complex numbers with quaternionic coefficients. These 

numbers do not form a division ring. These numbers are not equivalent to octonions. This paper does 

not apply Clifford algebra, Jordan algebra or other than the pure division ring algebra’s, because the 

author considers them to conceal more than they elucidate. 

2.2 Quaternionic sum 
 

𝑐 = 𝑐0 + 𝒄 = 𝑎 + 𝑏 

 

𝑐0 = 𝑎0 + 𝑏0 

 

𝒄 = 𝒂 + 𝒃 

 

2.3 Quaternionic product 
 

𝑓 = 𝑓0 + 𝒇 = 𝑑 ∙ 𝑒 

 

𝑓0 = 𝑑0 ∙ 𝑒0 − ⟨𝒅, 𝒆⟩ 

 

𝒇 = 𝑑0 ∙ 𝒆 + 𝑒0 ∙ 𝒅 ± 𝒅×𝒆 

 

Thus, the product contains five parts. The ± sign indicates the influence of right or left handedness of 

the version of the quaternionic number system.  

 

⟨𝒅, 𝒆⟩ is the inner product of 𝒅 and 𝒆. 

𝒅×𝒆 is the outer product of 𝒅 and 𝒆. 

We usually omit the multiplication sign ∙ . 

(6) 

(7) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 
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 Handedness 

We introduce by superscript  ≬ a switch in handedness of the quaternion. This does not touch the real 

part. 

 

𝑓≬ = 𝑑≬ ∙ 𝑒≬ = 𝑑0 ∙ 𝑒0 − ⟨𝒅≬, 𝒆≬⟩ + 𝑑0 ∙ 𝒆≬ + 𝑒0 ∙ 𝒅≬ ∓ 𝒅≬×𝒆≬ 

 

𝒅≬×𝒆≬ = −𝒅×𝒆 

 

𝑑 ∙ 𝑒≬ and  𝑑≬ ∙ 𝑒 𝒂𝒓𝒆 𝒖𝒏𝒅𝒆𝒇𝒊𝒏𝒆𝒅! 

Thus, a right handed quaternion cannot be multiplied with a left handed quaternion. Quaternionic 

conjugation switches the handedness. In addition: 

 

(𝑎 ∙ 𝑏)∗ = 𝑏∗ ∙ 𝑎∗ 

 

A continuous quaternionic function does not switch its handedness. Embedding a conflicting quaternion in the target space 

of a function produces a local artifact that produces a local discontinuity. This also holds for other aspects of the quaternion 

symmetries. 

2.4 Norm 
 

|𝑎| = √𝑎0𝑎0 + 〈𝒂, 𝒂〉 = √𝑎 ∙ 𝑎∗ 

 

2.5 Norm of quaternionic functions 
Square-integrable functions are normalizable. The norm is defined by: 

 

‖𝜓‖2 = ∫|𝜓|2 𝑑𝑉
𝑉

 

= ∫{|𝜓0|
2 + |𝝍|2 }𝑑𝑉

𝑉

 

 

= ‖𝜓0‖
2 + ‖𝝍‖2 

 

  

(1) 

(2) 

(3) 

(1) 

(1) 
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2.6 Quaternionic rotation 
In multiplication, quaternions do not commute. Thus, in general 𝑎 𝑏/𝑎 ≠ 𝑏. In this multiplication, 

the imaginary part of 𝑏 that is perpendicular to the imaginary part of 𝑎 is rotated over an angle 𝜑 

that is twice the complex phase of 𝑎. 

 

 

This means that if 𝜑 = 𝜋/4, then the rotation 𝑐 = 𝑎 𝑏/𝑎 shifts 𝒃⊥ to another dimension. This fact 

puts quaternions that feature the same size of the real part as the size of the imaginary part is in 

a special category. They can switch states of tri-state systems. In addition, they can switch the 

color charge of quarks. 

  

a 

b
||
 

2φ 

ab⊥a
-1
 

b 

b⊥ 

a a 

a
τ
 φ 

aba
-1
 

The transform aba
-1

 rotates the 

imaginary part b of b around an axis 

along the imaginary part a of a over 

an angle 2φ that is twice the 

argument φ of a in the complex field 

spanned by a and 1 

1 

a = |a|exp(iφ) 

Δb 

⊥ means perpendicular 
‖ means parallel  

i 
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3 The quaternionic separable Hilbert space 
We will specify the characteristics of a generalized quaternionic infinite dimensional separable 

Hilbert space ℌ. The adjective “quaternionic” indicates that the inner products of vectors and the 

eigenvalues of operators are taken from the number system of the quaternions. Separable Hilbert 

spaces can be using real numbers, complex numbers, or quaternions. These three number systems 

are division rings. In fact, the quaternionic number system comprises all division rings. 

3.1 Notations and naming conventions 
{𝑓𝑥}𝑥 means ordered set of 𝑓𝑥 . It is a way to define discrete functions. 

The use of bras and kets differs slightly from the way Dirac uses them. 

 

|𝑓〉 is a ket vector. 

〈𝑓| is a bra vector. 

 

𝐴 is an operator. 

𝐴† is the adjoint operator of operator 𝐴. 

| on its own, is a nil operator. 

 

We will use capitals for operators and lower case Greek characters for quaternions and eigenvalues. 

We use Latin characters for ket vectors, bra vectors and eigenvectors. Imaginary and anti-Hermitian 

objects will be indicated in bold text. Real numbers get subscript  0.  

Due to the non-commutative product of quaternions, special care must be paid to the ordering of 

factors inside products. In this paper a special ordering is selected. It is one out of a lager set of 

possibilities. 

3.2 Quaternionic Hilbert space 
The Hilbert space ℌ is a linear space. That means for the elements |𝑓〉, |𝑔〉 and |ℎ〉 of ℌ and 

quaternionic numbers 𝛼 and 𝛽 a linear space is defined. |𝑓〉, |𝑔〉 and |ℎ〉 are ket vectors. 

 Ket vectors 
For ket vectors hold 

 

|𝑓〉  + |𝑔〉  =  |𝑔〉  + |𝑓〉  =  |𝑔 + 𝑓〉 

 

(|𝑓〉  + |𝑔〉)  + |ℎ〉 =  |𝑓〉  + (|𝑔〉  + |ℎ〉) 

 

|𝛼𝑓〉 = |𝑓〉 𝛼 ;  |𝑓〉 = |𝛼𝑓〉 𝛼−1 

 

(1) 

(2) 

(3) 
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|( 𝛼 +  𝛽) 𝑓〉  =  |𝑓〉 𝛼 + |𝑓〉 𝛽 

 

(|𝑓〉  + |𝑔〉) 𝛼 =  |𝑓〉 𝛼 + |𝑔〉 𝛼 

 

|𝑓〉 0 =  |0〉 

 

|𝑓〉 1 =  |𝑓〉 

 

 Bra vectors 

The bra vectors form the dual Hilbert space ℌ† of ℌ . 

 

〈𝑓|  + 〈𝑔|  =  〈𝑔|  + 〈𝑓|  =  〈𝑓 + 𝑔|  

 

(〈𝑓|  + 〈𝑔|)  + 〈ℎ|  =  〈𝑓|  + (〈𝑔|  +  〈ℎ|) 

 

〈𝛼𝑓| = 𝛼∗〈𝑓| ;   〈𝑓| = (𝛼∗)−1 〈𝛼𝑓| 

 

〈𝑓 (𝛼 +  𝛽)| =  𝛼∗〈𝑓|  + 𝛽∗ 〈𝑓|  

 

Notice the quaternionic conjugation that affects the coefficients of bra vectors. 

 

(〈𝑓|  + 〈𝑔|)𝛼 =  〈𝑓| 𝛼 + 〈𝑔| 𝛼  

 

0 〈𝑓|  =  〈0| 

 

1 〈𝑓|  =  〈𝑓| 

 

 Scalar product 

The scalar product couples Hilbert space ℌ† to its dual ℌ. 

 

〈𝑓|𝑔〉 = 〈𝑔|𝑓〉∗ 

 

(4) 

(5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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〈𝑓 + 𝑔|ℎ〉 = 〈𝑓|ℎ〉 + 〈𝑔|ℎ〉 

 

〈𝛼𝑓|𝑔〉 = 𝛼∗〈𝑓|𝑔〉 = 𝛼∗〈𝑔|𝑓〉∗ = 〈𝑔|𝛼𝑓〉∗ 

 

〈𝑓|𝛼𝑔〉 = 〈𝑓|𝑔〉 𝛼 = 〈𝑔|𝑓〉∗ 𝛼 = 〈𝛼𝑔|𝑓〉∗  

 

〈𝑓| is a bra vector. |𝑔〉 is a ket vector.  𝛼 is a quaternion. 〈𝑓|𝑔〉 is quaternion valued. 

If the Hilbert space represents both dual spaces, then the scalar product is also called an inner 

product. 

 Separable 
In mathematics a topological space is called separable if it contains a countable dense subset; that is, 

there exists a sequence {|𝑥𝑛〉}𝑛=1
∞  of elements of the space such that every nonempty open subset of 

the space contains at least one element of the sequence. 

Every continuous function on the separable space ℌ is determined by its values on this countable 

dense subset. 

 Base vectors 
The Hilbert space ℌ is separable. That means that a countable row of elements {|𝑓𝑛〉} exists that 

spans the whole space. 

  

If 〈𝑓𝑛|𝑓𝑚〉  =  𝛿(𝑚, 𝑛)  =  [1 when 𝑛 =  𝑚;  0 otherwise] then {|𝑓𝑛〉} forms an orthonormal base of 

the Hilbert space. 

A ket base {|𝑘〉} of ℌ is a minimal set of ket vectors |𝑘〉 that together span the Hilbert space ℌ. 

Any ket vector |𝑓〉 in ℌ can be written as a linear combination of elements of {|𝑘〉}. 

 

|𝑓〉  =  ∑(|𝑘〉 〈𝑘|𝑓〉)

𝑘

 

 

A bra base {〈𝑏|} of ℌ† is a minimal set of bra vectors 〈𝑏| that together span the Hilbert space ℌ†. 

Any bra vector 〈𝑓| in ℌ† can be written as a linear combination of elements of {〈𝑏|}. 

 

〈𝑓|  = ∑(〈𝑘|𝑓〉 〈𝑏|)

𝑘

  

 

Usually base vectors are taken such that their norm equals 1. Such a base is called an orthonormal 

base. 

(2) 

(5) 

(6) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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 Operators 
Operators act on a subset of the elements of the Hilbert space.  

3.2.6.1 Linear operators 

An operator 𝑄 is linear when for all vectors |𝑓〉 and |𝑔〉 for which 𝑄 is defined and for all quaternionic 

numbers 𝛼 and 𝛽: 

 

|𝑄 𝛼 𝑓〉  + |𝑄 𝛽 𝑔〉 = |𝑄 𝑓〉𝛼 + |𝑄 𝑔〉 𝛽 =  

𝑄(|𝛼 𝑓〉  + |𝛽 𝑔〉) = 𝑄(|𝑓〉𝛼 + |𝑔〉𝛽) 

 

Operator 𝐵 is colinear when for all vectors |𝑓〉 for which 𝐵 is defined and for all quaternionic 

numbers 𝛼 there exists a quaternionic number 𝛾 such that: 

 

|𝛼 𝐵 𝑓〉  =  |𝐵 𝑓〉 𝛾𝛼𝛾−1  ≝ |𝐵 𝛾𝛼𝛾−1 𝑓〉  

 

If |𝑓〉 is an eigenvector of operator 𝐴 with quaternionic eigenvalue 𝑎,  

 

𝐴|𝑓〉 =  |𝑓〉𝑎   

 

then |𝑏 𝑓〉 is an eigenvector of 𝐴 with quaternionic eigenvalue 𝑏−1𝑎 𝑏. 

 

𝐴|𝑏 𝑓〉 = |𝐴 𝑏 𝑓〉 =  |𝐴 𝑓〉 𝑏 = |𝑓〉𝑎 𝑏 =  |𝑏 𝑓〉 𝑏−1𝑎 𝑏  

 

𝐴† is the adjoint of the normal operator 𝐴.  

  

〈𝑓 |𝐴 𝑔〉 =  〈𝑓 𝐴†|𝑔〉 = 〈𝑔 |𝐴† 𝑓〉∗ 

 

𝐴† †  =  𝐴 

 

(𝐴 + 𝐵)†   =  𝐵† + 𝐴† 

 

(𝐴 · 𝐵)†   =  𝐵†𝐴† 

(1) 

(2) 

(4) 

(5) 

(6) 

(7) 
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If 𝐴 = 𝐴†, then 𝐴 is a self adjoint operator. 

| is a nil operator.  

3.2.6.2 Operator construction 

The construct |𝑓〉〈𝑔| acts as a linear operator. |𝑔〉〈𝑓| is its adjoint operator. 

The reverse bra-ket method uses an orthonormal base {|𝑞𝑖〉} that belongs to quaternionic 

eigenvalues {𝑞𝑖} and a quaternionic function 𝐹(𝑞) and in this way a linear operator 𝐹 can be defined 

such that for all vectors |𝑔〉 and |ℎ〉 holds: 

〈𝑔|𝐹 ℎ〉 = ∑{〈𝑔|𝑞𝑖〉𝐹(𝑞𝑖)〈𝑞𝑖|ℎ〉}

𝑖

 

 

𝐹 ≝ ∑{|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|}

𝑖

 

 

If no confusion arises, then the same symbol is used for the function F(q), the operator F and the set 

of eigenvalues F. For the orthonormal base {|𝑞𝑖〉} holds: 

 

〈𝑞𝑗|𝑞𝑘〉 = 𝛿𝑗𝑘  

 

We will use  

 

𝐹 ≝ |𝑞𝑖〉𝐹(𝑞𝑖)〈𝑞𝑖| 

 

as a shorthand for equations (7) and (8). 

 

𝐹† ≝ |𝑞𝑖〉𝐹(𝑞𝑖)
∗〈𝑞𝑖| 

 

|𝑞𝑖〉𝐹(𝑞𝑖)〈𝑞𝑖| = |𝑞𝑖 𝐹(𝑞𝑖)〉〈𝑞𝑖| = |𝑞𝑖〉〈𝐹(𝑞𝑖)
∗ 𝑞𝑖| 

 

The eigenspace of reference operator ℛ defined by 

 

ℛ ≝ ∑{|𝑞𝑖〉𝑞𝑖〈𝑞𝑖|}

𝑖

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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represents the countable parameter space of discrete function 𝐹(𝑞𝑖). 

𝐹 and ℛ are constructed operators. 

If collection {𝑞𝑖} covers all rational members of a quaternionic number system then this definition 

specifies a reference operator for which the eigenspace represents the parameter space of all 

discrete functions that can be defined with this number system. 

Quaternionic number systems exist in several versions that only differ in the way that the elements 

are ordered. We will identify these different versions with special superscripts. When relevant, this 

will also be done with the number systems, with the operators, with the eigenvectors and with the 

eigenvalues. 

 

ℛ⓪ ≝ ∑{|𝑞𝑖
⓪〉 𝑞𝑖

⓪ 〈𝑞𝑖
⓪

|}

𝑖

 

 

ℛ⓪ is a member of a set of reference operators {ℛ𝑥}. The superscript  𝑥 specifies the symmetry 

flavor of the number system {𝑞𝑥}. 

The superscript  𝑥 can be  ⓪,  ①,  ②,  ③,  ④,  ⑤,  ⑥,  ⑦,  ⑧,  ⑨,  ⑩,  ⑪,  ⑫,  ⑬,  ⑭, or ⑮.  

Often, we will use the same character for identifying eigenvectors, eigenvalues and the 

corresponding operator. 

Definition 8 specifies a normal operator. The set of eigenvectors of a normal operator form an 

orthonormal base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. If 𝑇 is a normal operator, then 𝑇0 =

(𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. Self 

adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-Hermitian 

operators. 

 

 

3.2.6.3 Normal operators 

The most common definition of continuous operators is: 

 

A continuous operator is an operator that creates images such that the inverse images of open sets 

are open.  

 

Similarly, a continuous operator creates images such that the inverse images of closed sets are 

closed. 

If |𝑎〉 is an eigenvector of normal operator 𝐴 with eigenvalue 𝑎 then  

(14) 
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〈𝑎|𝐴|𝑎〉  =  〈𝑎|𝑎|𝑎〉  =  〈𝑎|𝑎〉 𝑎 

indicates that the eigenvalues are taken from the same number system as the inner products. 

 

A normal operator is a continuous linear operator. 

A normal operator in ℌ creates an image of ℌ onto ℌ. It transfers closed subspaces of ℌ into closed 

subspaces of ℌ.  

 

The normal operators 𝑁 have the following property. 

  

𝑁: ℌ ⇒  ℌ 

Thus, the normal operator 𝑁 maps separable Hilbert space ℌ onto itself. 

𝑁 commutes with its (Hermitian) adjoint 𝑁†: 

  

𝑁𝑁†  =  𝑁†𝑁 

 

Normal operators are important because the spectral theorem holds for them.  

Examples of normal operators are 

  

 unitary operators: 𝑈† = 𝑈−1, unitary operators are bounded; 

 Hermitian operators (i.e., self-adjoint operators): 𝑁† = 𝑁 ;  

 Anti-Hermitian or anti-self-adjoint operators: 𝑁† = −𝑁;  

 Anti-unitary operators: 𝑈† = −𝑈−1 , anti-unitary operators are bounded;  

 positive operators: 𝑁 = 𝑀𝑀†  

 orthogonal projection operators: 𝑃† = 𝑃 = 𝑃2. 
 
For normal operators hold: 
 

𝐴𝐵 = 𝐴0𝐵0 − 〈𝑨,𝑩〉 + 𝐴0𝑩 + 𝑨𝐵0 ± 𝑨×𝑩 
 

𝑁0 = ½(𝑁+𝑁†) 

 

𝑵 = ½(𝑁−𝑁†) 

 

𝑁𝑁† = 𝑁0𝑁0 + 〈𝑵,𝑵〉 = 𝑁0
2 − 𝑵2 

 

3.2.6.4 Spectral theorem 

For every compact self-adjoint operator 𝑇 on a real, complex or quaternionic Hilbert space ℌ, there 

exists an orthonormal basis of ℌ consisting of eigenvectors of 𝑇. More specifically, the orthogonal 

complement of the kernel (null space) of 𝑇 admits, either a finite orthonormal basis of eigenvectors 

(1) 

(2) 

(2) 

(3) 

(4) 

(5) 

(6) 

http://en.wikipedia.org/wiki/Orthonormal_basis
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of 𝑇, or a countable infinite orthonormal basis of eigenvectors of 𝑇, with corresponding eigenvalues 

{𝜆𝑛}  ⊂  ℝ, such that 𝜆𝑛  →  0. Because ℌ is separable the set of eigenvectors of 𝑇 can be extended 

with a base of the kernel to form a complete orthonormal base of ℌ. 

 

If 𝑇 is compact on an infinite dimensional Hilbert space ℌ, then 𝑇 is not invertible, hence 𝜎(𝑇), the 

spectrum of 𝑇, always contains 0. The spectral theorem shows that 𝜎(𝑇) consists of the eigenvalues 

{𝜆𝑛} of 𝑇, and of 0 (if 0 is not already an eigenvalue). The set 𝜎(𝑇) is a compact subset of the real 

line, and the eigenvalues are dense in 𝜎(𝑇). 

 

A normal operator has a set of eigenvectors that spans the whole Hilbert space ℌ.  

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues. 

 

The set of eigenvalues of a normal operator is NOT compact. This is because ℌ is separable. 

Therefore, the set of eigenvectors is countable. Consequently, the set of eigenvalues is countable. 

Further, in general the eigenspace of normal operators has no finite diameter.  

 

A continuous bounded linear operator on ℌ has a compact eigenspace. The set of eigenvalues has a 

closure and it has a finite diameter.  

3.2.6.5 Eigenspace 

The set of eigenvalues {𝑞} of the operator 𝑄 form the eigenspace of 𝑄. 

3.2.6.6 Eigenvectors and eigenvalues 

For the eigenvector |𝑞〉 of normal operator 𝑄 holds  

 

|𝑄 𝑞〉 = |𝑞 𝑞〉 = |𝑞〉𝑞 

 

〈𝑞 𝑄†| = 〈𝑞 𝑞| = 𝑞∗〈𝑞| 

 

∀|𝑓〉 ∈ ℌ  [{〈𝑓|𝑄 𝑞〉}𝑞 = {〈𝑓|𝑞〉𝑞}𝑞 = {〈𝑞 𝑄†|𝑓〉∗}
𝑞

= {(𝑞∗〈𝑞|𝑓〉)∗}𝑞] 

 

The eigenvalues of 2n-on normal operator are 2n-ons. For Hilbert spaces the eigenvalues are 

restricted to elements of a division ring. 

  

𝑄 = ∑ I𝑗𝑄𝑖

𝑛−1

𝑗=0

 

 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Countable_set
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The 𝑄𝑗 are self-adjoint operators. 
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3.2.6.7 Unitary operators 

For unitary operators holds: 

  

𝑈† = 𝑈−1 

Thus 

  

𝑈𝑈†  = 𝑈†𝑈 = 𝐼 

 

Suppose 𝑈 = 𝐼 + 𝐶 where 𝑈 is unitary and 𝐶 is compact. The equations (2) and 𝐶 = 𝑈 −  𝐼 show 

that 𝐶 is normal. The spectrum of 𝐶 contains 0, and possibly, a finite set or a sequence tending to 0. 

Since 𝑈 = 𝐼 + 𝐶, the spectrum of 𝑈 is obtained by shifting the spectrum of 𝐶 by 1. 

The unitary transform can be expressed as: 

 

𝑈 = 𝑒𝑥𝑝(Ĩ 𝛷/ℏ) 

 

ℏ =  ℎ/(2 𝜋) 

 

𝛷 is Hermitian. The constant ℎ refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

𝑢 =  𝑒𝑥𝑝(𝒊 𝜑/ℏ) 

 

𝜑 is real. 𝒊 is a unit length imaginary number in 2n-on space. It represents a direction.  

𝑢 spans a sphere in 2n-on space. For constant 𝒊, 𝑢 spans a circle in a complex subspace.  

3.2.6.7.1 Polar decomposition 
Normal operators 𝑁 can be split into a real operator 𝐴 and a unitary operator 𝑈. 𝑈 and 𝐴 have the 

same set of eigenvectors as 𝑁. 

  

𝑁 = ‖𝑁‖ 𝑈 = 𝐴 𝑈 = 𝑈 𝐴 = 𝐴 𝑒𝑥𝑝 (Ĩ
𝛷

ℏ
) = 𝑒𝑥𝑝 (𝛷𝑟 + Ĩ

𝛷

ℏ
) 

 

𝛷𝑟  is a positive normal operator. 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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3.2.6.8 Ladder operator 

3.2.6.8.1 General formulation 

Suppose that two operators 𝑋 and 𝑁 have the commutation relation: 

[𝑁, 𝑋] = 𝑐 𝑋 

for some scalar 𝑐. If |𝑛〉 is an eigenstate of 𝑁 with eigenvalue equation, 

 

|𝑁 𝑛〉 =  |𝑛〉 𝑛 

 

then the operator 𝑋 acts on |𝑛〉 in such a way as to shift the eigenvalue by 𝑐: 

 

|𝑁 𝑋 𝑛〉 =  |(𝑋 𝑁 + [𝑁, 𝑋])𝑛〉 = |(𝑋 𝑁 +  𝑐 𝑋)𝑛〉 

= |𝑋 𝑁 𝑛〉 + |𝑋 𝑛〉 𝑐 = |𝑋 𝑛〉 𝑛 + |𝑋 𝑛〉 𝑐 = |𝑋 𝑛〉(𝑛 + 𝑐) 

 

In other words, if |𝑛〉 is an eigenstate of 𝑁 with eigenvalue 𝑛 then |𝑋 𝑛〉 is an eigenstate of 𝑁 with 

eigenvalue 𝑛 + 𝑐.  

The operator 𝑋 is a raising operator for 𝑁 if 𝑐 is real and positive, and a lowering operator for 𝑁 if 𝑐 is 

real and negative. 

If 𝑁 is a Hermitian operator, then 𝑐 must be real and the Hermitian adjoint of 𝑋 obeys the 

commutation relation: 

[𝑁,  𝑋†] = − c  𝑋† 

If 𝑋 is a lowering operator for 𝑁 then  𝑋† is a raising operator for 𝑁 and vice-versa. 

 Unit sphere of ℌ 

The ket vectors in ℌ that have their norm equal to one form together the unit sphere  of ℌ. 

The orthonormal base vectors are all member of the unit sphere.  

 Bra-ket in four-dimensional space 
The Bra-ket formulation can also be used in transformations of the four dimensional curved spaces. 

The bra 〈𝑓| is then a covariant vector and the ket |𝑔〉 is a contra-variant vector. The inner product 

acts as a metric.  

𝑠 = 〈𝑓|𝑔〉 

The effect of a linear transformation 𝐿 is then given by 

𝑠𝐿 = 〈𝑓|𝐿𝑔〉 

The effect of the transpose transformation 𝐿† is then given by 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 
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〈𝑓𝐿† |𝑔〉 = 〈𝑓|𝐿𝑔〉 

For a unitary transformation 𝑈 holds: 

 

〈𝑁𝑓|𝑁𝑔〉 = 〈𝑓|𝑁†𝑁𝑔〉 = 〈𝑓|𝑁𝑁†𝑔〉 = 〈𝑁𝑁†𝑓|𝑔〉 = 〈𝑁†𝑁𝑓|𝑔〉 

 

〈𝑈𝑓|𝑈𝑔〉 = 〈𝑓|𝑔〉 

 

〈∇𝑓|∇𝑔〉 = 〈𝑓|∇†∇g〉 = 〈𝑓|∇∇†g〉 = 〈∇∇†𝑓|g〉 = 〈∇†∇𝑓|g〉 

 

Notice that 

∇∇†= ∇†∇= ∇0∇0 + 〈𝛁,𝛁〉 = ∇0
2 − 𝛁2 

 Closure 
The closure of ℌ means that converging rows of vectors converge to a vector of ℌ. 

  

In general converging rows of eigenvalues of 𝑄 do not converge to an eigenvalue of 𝑄. 

Thus, the set of eigenvalues of 𝑄 is open.  

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2n-ons that 

have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue spectrum of 𝑄 has holes. 

The set of eigenvalues of operator 𝑄 includes 0. This means that 𝑄 does not have an inverse. 

 

The rigged Hilbert space ℋ can offer a solution, but then the direct relation with quantum logic is 

lost. 

 

 Canonical conjugate operator P 
The existence of a canonical conjugate represents a stronger requirement on the continuity of the 

eigenvalues of canonical eigenvalues.  

𝑄 has eigenvectors {|𝑞〉}𝑞 and eigenvalues 𝑞𝑠. 

𝑃 has eigenvectors {|𝑝〉}𝑝 and eigenvalues 𝑝𝑠. 

For each eigenvector |𝑞〉 of 𝑄 we define an eigenvector |𝑝〉 and eigenvalues 𝑝𝑠 of 𝑃 such that: 

  

〈𝑞|𝑝〉 = 〈𝑝|𝑞〉∗ = 𝑒𝑥𝑝 (𝒊 𝑝𝑠 𝑞𝑠/ℏ) 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 
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ℏ =  ℎ/(2𝜋) is a scaling factor. 〈𝑞|𝑝〉 is a quaternion. 𝒊 is a unit length imaginary quaternion. 𝑞𝑠 and 

𝑝𝑠 are quaternionic (eigen)values corresponding to |𝑞〉 𝑎𝑛𝑑 |𝑝〉. 

 Displacement generators 
Variance of the scalar product gives: 

 

𝒊 ℏ 𝛿〈𝑞|𝑝〉  =  −𝑝𝑠〈𝑞|𝑝〉𝛿𝑞 

 

𝒊 ℏ 𝛿〈𝑝|𝑞〉  =  −𝑞𝑠〈𝑝|𝑞〉𝛿𝑝 

 

In the rigged Hilbert space ℋ, differentiation can replace the variance.  

Partial differentiation of the function 〈𝑞|𝑝〉 gives: 

 

𝒊 ℏ 
𝜕

𝜕𝑞𝑠

〈𝑞|𝑝〉  =  −𝑝𝑠〈𝑞|𝑝〉 

 

𝒊 ℏ
𝜕

𝜕𝑝𝑠

〈𝑝|𝑞〉 = −𝑞𝑠〈𝑝|𝑞〉 

  

(1) 

(2) 

(3) 

(4) 
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4 Gelfand triple 

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces. 

The rigged Hilbert space ℋ that belongs to an infinite dimensional separable Hilbert space ℌ is a 

Gelfand triple. It supports non-countable orthonormal bases and continuum eigenspaces. 

A rigged Hilbert space is a pair (ℌ,𝛷) with ℌ a Hilbert space, 𝛷 a dense subspace, such that 𝛷 is given a 

topological vector space structure for which the inclusion map i is continuous.  

Identifying ℌ with its dual space ℌ†, the adjoint to i is the map 

𝑖∗: ℌ = ℌ† → 𝛷† 

The duality pairing between 𝛷 and 𝛷† has to be compatible with the inner product on ℌ, in the sense 

that: 

 

〈𝑢, 𝑣〉𝛷×𝛷† = (𝑢, 𝑣)ℌ 

 

whenever 𝑢 ∈ 𝛷 ⊂ ℌ and 𝑣 ∈ ℌ = ℌ† ⊂ 𝛷†. 

 

The specific triple (𝛷 ⊂ ℌ ⊂ 𝛷†) is often named after the mathematician Israel Gelfand). 

Note that even though 𝛷 is isomorphic to 𝛷† if 𝛷 is a Hilbert space in its own right, this 

isomorphism is different from the composition of the inclusion 𝑖 with its adjoint 𝑖† 

𝑖†𝑖: 𝛷 ⊂ ℌ = ℌ† → 𝛷† 

4.1 Understanding the Gelfand triple 
The Gelfand triple of a real separable Hilbert space can be understood via the enumeration model of 

the real separable Hilbert space. This enumeration is obtained by taking the set of eigenvectors of a 

normal operator that has rational numbers as its eigenvalues. Let the smallest enumeration value of 

the rational enumerators approach zero. Even when zero is reached, then still the set of enumerators 

is countable. Now add all limits of converging rows of rational enumerators to the enumeration set. 

After this operation, the enumeration set has become a continuum and has the same cardinality as 

the set of the real numbers. This operation converts the Hilbert space ℌ into its Gelfand triple ℋ and 

it converts the normal operator in a new operator that has the real numbers as its eigenspace. It 

means that the orthonormal base of the Gelfand triple that is formed by the eigenvectors of the new 

normal operator has the cardinality of the real numbers. It also means that linear operators in this 

Gelfand triple have eigenspaces that are continuums and have the cardinality of the real numbers1. 

The same reasoning holds for complex number based Hilbert spaces and quaternionic Hilbert spaces 

and their respective Gelfand triples. 

                                                           
1 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand 

triples. 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Topological_vector_space
http://en.wikipedia.org/wiki/Inclusion_map
http://en.wikipedia.org/wiki/Israel_Gelfand
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A similar insight can be obtained via the reverse bra-ket method. The (mostly) continuous function 

F(q) can relate a continuum parameter space {q} to a closed set {|𝑞〉} of Hilbert vectors that form an 

orthonormal base of the rigged Hilbert space ℋ. In this way, a normal operator F is defined via: 

 

〈𝑥|F 𝑦〉 = ∫〈𝑥|𝑞〉F(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

The relation between the infinite dimensional separable Hilbert space and its non-separable 

companion follows from: 

 

〈𝑥|F 𝑦〉 = ∑〈𝑥|𝑞𝑖〉F(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖=∞

𝑖=0

≈ ∫〈𝑥|𝑞〉F(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

This can be interpreted by the view that the separable Hilbert space is embedded within its non-

separable companion. 

Formula (2) also reveals how summation of sets {𝑞𝑖} is related to integration of corresponding 

continuums {q}. 

  

(1) 

(2) 
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5 Quaternionic and Maxwell field equations 
In this section, we will compare two sets of differential equations. Both sets use pure space as part of 

the parameter space. 

 Quaternionic differential equations 

o These equations use progression as one of its parameters. 

 Maxwell based differential equations 

o These equations use quaternionic distance as one of its parameters. 

In this chapter, we will use a switch ⊛ = ±1 that selects between two different sets of differential 

calculus. One set concerns low order quaternionic differential calculus. The other set concerns 

Maxwell based differential calculus. The switch will be used to highlight the great similarity and the 

significant differences between these sets. 

 

By introducing new symbols 𝕰 and 𝕭 we will turn the quaternionic differential equations into 

Maxwell-like quaternionic differential equations. We introduced a simple switch ⊛= ±1 that apart 

from the difference between the parameter spaces, will turn one set of equations into the other set.  

Maxwell based differential calculus splits quaternionic functions into a scalar function and a vector 

function. Instead of the quaternionic nabla ∇= ∇0 + 𝛁 the Maxwell based equations use the scalar 

operator ∇0=
𝜕

𝜕𝑡
 and the vector nabla 𝛁 as separate operators. Maxwell equations use a switch 𝛼 

that controls the structure of a gauge equation. 

 

𝜘 = 𝛼
𝜕

𝜕𝑡
 𝜑0 + 〈𝜵,𝝋〉 

 

For Maxwell based differential calculus is 𝛼 = +1 and ∇0=
𝜕

𝜕𝑡
. The switch value is ⊛ −1. 

For quaternionic differential calculus is 𝛼 = −1 and ∇0=
𝜕

𝜕𝜏
. The switch value is ⊛= +1. 

In the book EMFT the scalar field 𝜘 is taken as a gauge with 

𝛼 = 1; Lorentz gauge 

𝛼 = 0; Coulomb gauge 

 𝛼 = −1; Kirchhoff gauge.  

We will use the definition of a scalar field 𝜘: 

 

𝜘 ≝ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 ⟺ 𝜙0 =  𝛻𝜏𝜑0 − 〈𝛁,𝝋〉 

 

In Maxwell based differential calculus the scalar field 𝜘 is ignored or it is taken equal to zero. As will 

be shown, zeroing 𝜘 is not necessary for the derivation of the Maxwell based wave equation [14]. 

(1) 

(2) 
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Maxwell equations split the considered functions in scalar functions and vector functions. The 

Maxwell differential operators are also split and consequently they cannot be treated as multiplying 

operators. We keep them together with curly brackets.  

 

𝜙 = {𝜙0, 𝝓} = {∇0, 𝛁}{𝜑0, 𝝋} 

 

𝜙0 = ∇0 𝜑0 −⊛ 〈𝜵,𝝋〉 

 

𝝓 = ∇0𝝋 + 𝜵𝜑0 ± 𝜵×𝝋 

 

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell 

equations. Choice ⊛= −1 conforms to the Lorenz gauge. We define extra symbols 𝕰  and 𝕭 for 

parts of the first order partial differential equation. 

 

𝕰 ≝ −∇0𝝋 − 𝜵𝜑0 

 

∇0𝕰 = −∇0∇0 𝝋 − ∇0𝜵𝜑0 

 

〈𝜵, 𝕰〉 = −∇0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 

 

𝕭 ≝ 𝜵×𝝋 

 

These definitions imply: 

 

〈𝕰,𝕭〉 ≟ 0 , this equation not correct in quaternionic differential 

calculus, but it is a postulate in Maxwell equations. 

 

∇0𝕭 = −𝜵×𝕰 

 

〈𝜵,𝕭〉 = 0 

 

𝜵×𝕭 = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Also, the following two equations are not genuine Maxwell equations, but they relate to the gauge 

equation. 

 

∇0𝜙0 = ∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉 

 

𝜵𝜙0 = ∇0 𝜵𝜑0 − ⊛ 𝜵〈𝜵,𝝋〉 = ∇0 𝜵𝜑0 −⊛ 𝜵×𝜵× 𝝋 − ⊛ 〈𝜵, 𝜵〉 𝝋 

 

𝜁 = (∇0 +⊛ 〈𝛁,𝛁〉)𝜑 = 𝜁0 + 𝜻 ⟺ {𝜁0, 𝜻} = {∇0, −𝛁}{𝜙0, 𝜙} 

 

𝜁0 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝜑0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

 

𝜻 = (∇0∇0 +⊛ 〈𝛁, 𝛁〉)𝝋 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵×𝓑 

 

More in detail, the equations mean: 

 

𝜁0 = 𝛻0𝜙0 +⊛ 〈𝜵,𝝓〉 

= {𝛻0𝛻0𝜑0 −⊛ 𝛻0〈𝜵,𝝋〉} + {⊛ 〈𝜵, 𝜵〉𝜑0 +⊛ 𝛻0〈𝜵,𝝋〉 ±⊛ 〈𝜵, 𝜵×𝝋〉} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜁0 = ∇0 𝜙0 −⊛ 〈𝛁,𝕰〉 

= {∇0∇0 𝜑0 −⊛ ∇0〈𝜵,𝝋〉} + {⊛ ∇0〈𝜵,𝝋〉 +⊛ 〈𝜵, 𝜵〉𝜑0} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝜑0 

 

𝜻 = −𝜵𝜙0 + 𝛻0𝝓 ∓ 𝜵×𝝓 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵×𝜵×𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵×𝝋} 

{∓𝜵×𝜵𝜑0 ∓ 𝜵×𝛻0𝝋 − 𝜵×𝜵×𝝋} 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 +⊛ 𝜵×𝜵×𝝋 − 𝜵×𝜵×𝝋 

 

𝜻 = −𝜵𝜙0 − ∇0𝕰 −⊛ 𝜵×𝓑 

= {−𝜵𝛻0𝜑0 +⊛ 𝜵×𝜵×𝝋 +⊛ 〈𝜵,𝜵〉𝝋} + {∇0∇0 𝝋 + ∇0𝜵𝜑0} −⊛ 𝜵×𝜵×𝝋 

= (𝛻0𝛻0 +⊛ 〈𝜵,𝜵〉)𝝋 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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Equation (21) reveals why Maxwell based differential equations use the gauge 𝜘 rather than accept 

equation (4) as a genuine Maxwell equation. 

 

𝜌0 =⊛ 〈𝛁,𝛁〉𝜑0 = 𝜁0 − ∇0∇0𝜑0 

𝝆 =⊛ 〈𝛁, 𝛁〉𝝋 = 𝜻 − ∇0𝛁𝟎𝝋 

 

Thus, a simple change of a parameter and the control switch ⊛ turn quaternionic differential 

equations into equivalent Maxwell differential equations and vice versa. This makes clear that both 

sets represent two different views from the same subject, which is a field that can be stored in the 

eigenspace of an operator that resides in the Gelfand triple. 

Still the comparison shows an anomaly in equation (21) that represents a significant difference 

between the two sets of differential equations that goes beyond the difference between the 

parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes 

down to the conclusion that the Maxwell based equations do not lead via the coupling of two first 

order quaternionic partial differential equations to a regular second order partial quaternionic 

differential equation, but instead the wave equation represents a coupling between two solutions of 

different first order biquaternionic differential equations that use different parameter spaces. In the 

Dirac equation, these solutions represent either particle behavior or antiparticle behavior. 

  

(23) 

(24) 



140 
 

6 Genuine Maxwell wave equations 
The scalar part of the genuine Maxwell based differential equals zero. The Lorenz gauge oppresses 

this. 

The genuine Maxwell differential equations deliver different inhomogeneous wave equations: 

 

𝕰 ≝ −𝛻0𝜑 − 𝜵𝜑0 

 

𝕭 ≝ 𝜵×𝝋 

 

The following definitions follow from the definitions of 𝕰 and 𝕭. 

 

𝛻0𝕰 ≝ −𝛻0𝛻0 𝝋 − 𝛻0𝜵𝜑0 

 

〈𝜵, 𝕰〉 ≝ −𝛻0〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0  

 

𝛻0𝕭 ≝ −𝜵×𝕰 

 

〈𝜵,𝕭〉 ≝ 𝟎 

 

𝜵×𝕭 ≝ 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

The Lorenz gauge means: 

 

𝛻0𝝋𝟎 + 〈𝜵,𝝋〉 = 0 

 

The genuine Maxwell based wave equations are: 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 = 〈𝜵,𝕰〉 

 

(𝛻0𝛻0 − 〈𝜵, 𝜵〉)𝝋 = 𝐽 = 𝜵×𝕭 − ∇0𝕰 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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7 Dirac equation 

7.1 The Dirac equation in original format 
In its original form the Dirac equation is a complex equation that uses spinors, matrices, and partial 

derivatives.  

Instead of the usual {
𝜕𝑓

𝜕𝑡
 , 𝒊

𝜕𝑓

𝜕𝑥
, 𝒋

𝜕𝑓

𝜕𝑦
, 𝒌

𝜕𝑓

𝜕𝑧
} we want to use operators 𝛻 = {∇0, 𝛁} 

The subscript 0 indicates the scalar part. Bold face indicates the vector part. 

The operator 𝛻 relates to the applied parameter space. This means that the parameter space is also 

configured of combinations 𝑥 = {𝑥0, 𝒙 } of a scalar 𝑥0 and a vector 𝒙. Also the functions 𝑓 = {𝑓0, 𝒇 } 

can be split in scalar functions 𝑓0 and vector functions 𝒇.  

The local parameter 𝑡 = 𝑥0 represents the scalar part of the applied parameter space. 

 

Dirac was searching for a split of the Klein-Gordon equation into two first order differential 

equations.  

 

𝜕2𝑓

𝜕𝑡2
−

𝜕2𝑓

𝜕𝑥2
−

𝜕2𝑓

𝜕𝑦2
−

𝜕2𝑓

𝜕𝑧2
= −𝑚2𝑓 

 

(∇0∇0 − 〈𝛁, 𝛁〉)𝑓 = 𝔒𝑓 = −𝑚2𝑓 

 

Here 𝔒 = ∇0∇0 − 〈𝛁, 𝛁〉 is the d’Alembert operator. 

 

Dirac used a combination of matrices and spinors to reach this result. He applied the Pauli matrices 

to simulate the behavior of vector functions under differentiation. 

The unity matrix 𝐼 and the Pauli matrices  𝜎1, 𝜎2, 𝜎3 are given by [15]: 

 

𝐼 = [
1  0
0 1

] , 𝜎1 = [
0  1
1 0

] , 𝜎2 = [ 
0 −𝕚 
𝕚 0

] , 𝜎3 = [
1 0
0 −1

] 

 

For one of the potential orderings of the quaternionic number system, the Pauli matrices together 

with the unity matrix 𝐼 relate to the quaternionic base vectors 1, 𝒊, 𝒋 and 𝒌 

 

1 ⟼ 𝐼, 𝒊 ⟼  𝕚 𝜎1, 𝒋 ⟼ 𝕚 𝜎2, 𝒌 ⟼ 𝕚 𝜎3 

 

𝜎1𝜎2 − 𝜎2𝜎1 = 2 𝕚 𝜎3;  𝜎2𝜎3 − 𝜎3𝜎2 = 2 𝕚 𝜎1;  𝜎3𝜎1 − 𝜎1𝜎3 = 2 𝕚 𝜎2 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝜎1𝜎1 = 𝜎2𝜎2 = 𝜎3𝜎3 = 𝐼 

 

The different ordering possibilities of the quaternionic number system correspond to different 

symmetry flavors. Half of these possibilities offer a right handed external vector product. The other 

half offer a left handed external vector product. 

 

We will regularly use: 

 

〈𝕚 𝝈, 𝜵〉 = 𝜵 ; 𝕚 = √−1 

 

With 

 

𝑝𝜇 = −𝕚 𝛻𝜇  

 

follow 

 

𝑝𝜇𝜎𝜇 = −𝕚 𝑒𝜇𝛻𝜇 

 

〈𝝈, 𝒑〉 ↔ 𝕚 𝜵 

 

7.2 Dirac’s approach 
The original Dirac equation uses 4x4 matrices 𝛂 and β. [7]: 

𝜶 and 𝛽 are matrices that implement the quaternion arithmetic behavior including the possible 

symmetry flavors of quaternionic number systems and continuums.  

 

𝛼𝜇 = [
0 𝜎𝜇

𝜎𝜇 0
] 

 

𝛽 = [
1 0
0 −1

] 

 

𝛽𝛽 = 𝐼 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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The interpretation of the Pauli matrices as representation of a special kind of angular momentum has 

led to the half integer eigenvalue of the corresponding spin operator. 

Dirac’s selection leads to 

 

(𝑝0 − 〈𝜶,𝒑〉 − 𝛽𝑚𝑐){𝜑} = 0 

 

{𝜑} is a four-component spinor. 

Which splits into 

 

(𝑝0 − 〈𝝈, 𝒑〉 − 𝑚𝑐)𝜑𝐴 = 0 

 

and 

 

(𝑝0 − 〈𝝈, 𝒑〉 + 𝑚𝑐)𝜑𝐵 = 0 

 

𝜑𝐴 and 𝜑𝐵 are spinor components. Thus, the original Dirac equation splits into: 

 

(𝛻0 − 𝜵 − 𝕚 𝑚𝑐)𝜑𝐴 = 0 

 

(𝛻0 − 𝜵 + 𝕚 𝑚𝑐)𝜑𝐵 = 0 

 

This split does not lead easily to a second order partial differential equation that looks like the Klein 

Gordon equation. 

7.3 Relativistic formulation 
Instead of Dirac’s original formulation, usually the relativistic formulation is used [16]. 

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different 

choice influences the form of the equations that result for the two spinor components. 

 

𝛾𝜇 = 𝛽 𝛼𝜇 = [
0 𝜎1

−𝜎𝜇 0 ] ; 𝜇 = 1,2,3 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(1) 

(2) 
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𝛾0 = 𝛽 = [
1 0
0 −1

] 

 

𝛾5 = 𝑖0𝛾0𝛾1𝛾2𝛾3 = [
0 1
1 0

] 

The matrix 𝛾5 anti-commutes with all other gamma matrices. 

Several different sets of gamma matrices are possible. The choice above leads to a “Dirac equation” 

of the form  

 

(𝕚 𝛾𝜇𝛻𝜇 − 𝑚𝑐)𝜑 = 0 

 

More extended: 

(𝛾0

𝜕

𝜕𝑡
+ 〈𝜸, 𝜵〉 −

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

([
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 〈𝝈, 𝜵〉

−〈𝝈,𝜵〉 0
] −

 𝑚

𝕚 ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

(𝕚 [
1 0
0 −1

]
𝜕

𝜕𝑡
+ [

0 𝜵
−𝜵 0

] −
 𝑚

ℏ
[
1 0
0 1

]) [
𝜑𝐴

𝜑𝐵
] = 0 

 

𝕚 
𝜕

𝜕𝑡
𝜑𝐴 + 𝛁𝜑𝐵 −

 𝑚

𝕚 ℏ
𝜑𝐴 = 0 

 

−𝕚 
𝜕

𝜕𝑡
𝜑𝐵 − 𝛁𝜑𝐴 −

 𝑚

𝕚 ℏ
𝜑𝐵 = 0 

 

Also this split does not easily lead to a second order partial differential equation that looks like the 

Klein Gordon equation. 

7.4 A better choice 
Another interpretation of the Dirac approach replaces 𝛾0 with 𝛾5 [17]: 

 

(𝛾5

𝜕

𝜕𝑡
− 𝛾1

𝜕

𝜕𝑥
− 𝛾2

𝜕

𝜕𝑦
− 𝛾3

𝜕

𝜕𝑧
−

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

(3) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(1) 

(2) 
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(𝛾5

𝜕

𝜕𝑡
− 〈𝜸, 𝜵〉 −

 𝑚

𝕚 ℏ
) {𝜓} = 0 

 

([
0 1
1 0

]
𝜕

𝜕𝑡
− [

0 〈𝝈, 𝜵〉

−〈𝝈,𝜵〉 0
] −

 𝑚

𝕚 ℏ
[
1 0
0 1

]) [
𝜓𝐴

𝜓𝐵
] = 0 

 

This invites splitting of the four-component spinor equation into two equations for the two 

components 𝜓𝐴 and 𝜓𝐵 of the spinor: 

 

𝕚 ∇0𝜓𝐴 + 𝕚 〈𝝈, 𝜵〉𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

𝕚 ∇0𝜑𝐵 − 𝕚 〈𝝈, 𝜵〉𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

(𝕚 𝛻0 + 𝜵)𝜓𝐴 =
 𝑚

ℏ
 𝜓𝐵 

 

(𝕚 𝛻0 − 𝜵)𝜓𝐵 =
 𝑚

ℏ
 𝜓𝐴 

 

This looks far more promising. We can insert the right part of the first equation into the left part of 

the second equation. 

 

(𝕚 𝛻0 − 𝜵)(𝕚 𝛻0 + 𝜵)𝜓𝐴 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐴 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 

 

=
 𝑚

ℏ
(𝕚 𝛻0 − 𝜵) 𝜓𝐵 =

 𝑚2

ℏ2
 𝜓𝐴 

 

(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐴 =
 𝑚2

ℏ2
 𝜓𝐴 

 

(𝕚 𝛻0 + 𝜵)(𝕚 𝛻0 − 𝜵)𝜓𝐵 = (−𝛻0𝛻0 − 𝜵𝜵)𝜓𝐵 = (〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 

=
 𝑚

ℏ
(𝕚 𝛻0 + 𝜵) 𝜓𝐴 =

 𝑚2

ℏ2
 𝜓𝐵 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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(〈𝜵, 𝜵〉−𝛻0𝛻0)𝜓𝐵 =
 𝑚2

ℏ2
 𝜓𝐵 

 

This is what Dirac wanted to achieve. The two first order differential equations couple into a second 

order differential equation that is equivalent to a Klein Gordon equation. The homogeneous version 

of this second order partial differential equation is a wave equation and offers solutions that are 

waves. 

The nabla operator acts differently onto the two component spinors  𝜓𝐴 and  𝜓𝐵. 

7.5 The quaternionic nabla and the Dirac nabla 
The modified Pauli matrices together with a 2×2 identity matrix implement the equivalent of a 

quaternionic number system with a selected symmetry flavor.  

 

𝐼 = [
1  0
0 1

] ; 𝕚 𝜎1 = [
0  𝕚 
𝕚 0

] ;  𝕚 𝜎2 = [ 
0 1

−1 0
] ; 𝕚 𝜎3 = [

𝕚 0
0 −𝕚 

] 

 

The modified Pauli matrices together with the 𝐼0 matrix implements another structure, which is not a 

version of a quaternionic number system. 

 

𝐼0 = [
𝕚 0
0 𝕚

] ;   𝕚 𝜎1 = [
0  𝕚 
𝕚 0

] ;   𝕚 𝜎2 = [ 
0 1

−1 0
] ;  𝕚 𝜎3 = [

𝕚 0
0 −𝕚 

] 

 

Both the quaternionic nabla and the Dirac nabla implement a way to let these differential operators 

act as multipliers. 

The quaternionic nabla is defined as 

 

𝛻 = 𝛻0 + 𝜵 = 𝑒𝜇𝛻𝜇 = 𝛻0 + 𝕚 〈𝝈, 𝜵〉 

 

𝛻∗ = 𝛻0 − 𝜵  

 

For scalar functions and for vector functions hold: 

 

𝛻∗𝛻 = 𝛻𝛻∗ = 𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

The Dirac nabla is defined as 

 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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𝒟 = 𝕚 𝛻0 + 𝜵 = 𝕚 𝛻0 + 𝕚 〈𝝈, 𝜵〉 

 

𝒟∗ = 𝕚 𝛻0 − 𝜵 

 

𝒟∗𝒟 = 𝒟 𝒟∗ = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 

 

 Prove 
We use  

 

𝛻0𝜵𝑓0 = 𝜵𝛻0𝑓0 

 

𝛻0𝜵𝒇 = 𝜵𝛻0𝒇 = −𝛻0〈𝜵, 𝒇〉 + 𝛻0𝜵×𝒇 

 

𝜵𝜵𝑓0 = −〈𝜵,𝜵〉𝑓0 + 𝜵×𝜵𝑓0 = −〈𝜵, 𝜵〉𝑓0 

 

𝜵(𝜵𝒇) = −𝜵〈𝜵, 𝒇〉 + 𝜵×𝜵×𝒇 = −〈𝜵, 𝜵〉𝒇 = (𝜵𝜵)𝒇 

 

𝜵×𝜵×𝒇 = 𝜵〈𝜵, 𝒇〉 − 〈𝜵, 𝜵〉𝒇 

 

〈𝜵, 𝜵×𝒇〉 = 0 

 

𝜵×𝜵 𝑓0 = 𝟎 

 

This results in 

 

(𝛼𝛻0 + 𝜵)𝑓0 = 𝛼𝛻0𝑓0 + 𝜵𝑓0 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0 + 𝛼𝛻0𝜵𝑓0 − 𝛼𝜵𝛻0𝑓0 + 〈𝜵, 𝜵〉𝑓0 − 𝜵×𝜵𝑓0 

 

= 𝛼2𝛻0𝛻0 + 〈𝜵, 𝜵〉𝑓0 

(6) 

7) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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(𝛼𝛻0 + 𝜵)𝒇 = 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵×𝒇 

 

(𝛼𝛻0 − 𝛼𝛻0𝒇 − 〈𝜵, 𝒇〉 + 𝜵×𝒇)(𝛼𝛻0 + 𝜵)𝒇 

 

(𝛼𝛻0 − 𝜵)(𝛼𝛻0 + 𝜵)𝑓0 

 

= 𝛼2𝛻0𝛻0𝒇 − 𝛼𝛻0〈𝜵, 𝒇〉 + 𝛼𝛻0𝜵×𝒇 + 𝛼𝛻0〈𝛁, 𝒇〉 

 

−𝛼𝛻0𝛁×𝒇 + 𝛁〈𝜵, 𝒇〉 + 〈𝛁,𝜵×𝒇〉 − 𝛁×𝜵×𝒇 

 

= 𝛼2𝛻0𝛻0𝒇 + 〈𝜵, 𝜵〉𝒇 

 

 Discussion 
For 𝛼 = 1 the equations  

 

(𝛻∗𝛻 𝑓0 = 𝛻𝛻∗ 𝑓0 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝛻∗𝛻 𝒇 = 𝛻𝛻∗ 𝒇 = 𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work for both parts of a quaternionic function 𝑓 = 𝑓0 + 𝒇. 

 

For 𝛼 = 𝕚  the equations  

 

(𝒟∗𝒟 𝑓0 = 𝒟𝒟∗ 𝑓0 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓0 

 

(𝒟∗𝒟 𝒇 = 𝒟𝒟∗𝒇 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝒇 

 

work separately for scalar function 𝑓0.and vector function 𝒇. The right sides of the equations work for 

quaternionic functions. Thus 

 

(𝑔 = 𝔒𝑓 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝑓 

(10) 

(11) 

(1) 

(2) 

(3) 

(4) 

(5) 
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is a valid equation for quaternionic functions 𝑓 and 𝑔. 

Thus, the d’Alembert operator 𝔒 = −𝛻0𝛻0 + 〈𝜵, 𝜵〉 is a valid quaternionic operator. 

The nabla operators reflects the structure of the parameter space of the functions on which they 

work. Thus, the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla 

operator reflects the structure of the parameters of the two component spinors that figure in the 

modified Dirac equation. 

Between the two spinor components 𝜓𝐴 and 𝜓𝐵, the scalar part of the parameter space appears to 

change sign with respect to the vector part. 

Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic function. 

 

𝜙 = 𝜙0 + 𝝓 = (𝛻0 + 𝜵)(𝑓0 + 𝒇) = 𝛻0𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 +  𝛻0𝒇 + 𝜵×𝒇 

 

Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function. 

 

(𝕚 𝛻0 + 𝜵)(𝑓0 + 𝒇) =  𝛻0 𝕚 𝑓0 − 〈𝜵, 𝒇〉 + 𝜵𝑓0 + 𝕚 𝛻0𝒇 + 𝜵×𝒇 

 

Neither the Dirac nabla 𝒟 nor its conjugate 𝒟∗ delivers quaternionic functions from quaternionic 

functions. They are not proper quaternionic operators. 

Thus, the d’Alembert operator cannot be split into two operators that map quaternionic functions 

onto quaternionic functions. 

In contrast the operators 𝛻∗𝛻, 𝛻 and 𝛻∗ are all three proper quaternionic operators. 

7.6 Quaternionic format of Dirac equation 
The initial goal of Dirac was to split the Klein Gordon equation into two first order differential 

equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result 

that does not lead to an actual second order differential equation, but instead it leads to two 

different first order differential equations for two different spinors that can be coupled into a second 

order partial differential equation that looks like a Klein Gordon equation. The homogeneous version 

of the Klein Gordon equation is a wave equation. However, that equation misses an essential right 

part of the Klein-Gordon equation. 

 

Quaternionic differential calculus supports first order differential equations that in a natural way lead 

to a second order partial differential equation that differs significantly from a wave equation. 

The closest quaternionic equivalents of the first order Dirac equations for the electron and the 

positron are: 

 

(6) 

(7) 
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∇𝜓 = (𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚𝜑 

 

∇∗𝜑 = (𝛻0 − 𝜵)(𝜑0 + 𝝋) = 𝑚𝜓 

 

𝛻∗𝛻𝜓 = (𝛻0 − 𝜵)(𝛻0 + 𝜵)(𝜓0 + 𝝍) = 𝑚2𝜓 

 

𝛻∗𝛻𝜓 = 𝛻∗𝛻𝜓 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜓 = 𝑚2𝜓 

 

𝛻𝛻∗𝜑 = 𝛻∗𝛻𝜑 = (𝛻0𝛻0 + 〈𝜵, 𝜵〉) 𝜑 = 𝑚2𝜑 

 

A similar equation exists for spherical coordinates. 

 

These second order equations are not wave equations. Their set of solutions does not include waves. 

7.7 Interpretation of the Dirac equation 
The original Dirac equation can be split into two equations. One of them describes the behavior of 

the electron. The other equation describes the behavior of the positron.  

The positron is the anti-particle of the electron. These particles feature the same rest mass, but other 

characteristics such as their electric charge differ in sign. The positron can be interpreted as an 

electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of 

positrons. These interpretations indicate that the functions that describe these particles feature 

different parameter spaces that differ in the sign of the scalar part. 

 Particle fields 
The fields that characterize different types of particles can be related to parameter spaces that 

belong to different versions of the quaternionic number system. These fields are coupled to an 

embedding field on which the particles and their private parameter spaces float. 

The reverse bra-ket method shows how fields can on the one hand be coupled to eigenspaces and 

eigenvectors of operators which reside in quaternionic non-separable Hilbert spaces and on the 

other hand can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic 

functions can be split into scalar functions and vector functions. In a quaternionic Hilbert space 

several different natural parameter spaces can coexist. Natural parameter spaces are formed by 

versions of the quaternionic number system. These versions differ in the way that these number 

systems are ordered. 

The original Dirac equations might represent this coupling between the particle field and the 

embedding field. 

(1) 

(2) 

(3) 

(4) 

(5) 
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7.8 Alternatives 

 Minkowski parameter space 
In quaternionic differential calculus the local quaternionic distance can represent a scalar that is 

independent of the direction of progression. It corresponds to the notion of coordinate time 𝑡. This 

means that a small coordinate time step ∆𝑡 equals the sum of a small proper time step ∆𝜏 and a 

small pure space step ∆𝒙. In quaternionic format the step ∆𝜏 is a real number. The space step ∆𝒙 is 

an imaginary quaternionic number. The original Dirac equation does not pay attention to the 

difference between coordinate time and proper time, but the quaternionic presentation of these 

equations show that a progression independent scalar can be useful as the scalar part of the 

parameter space. This holds especially for solutions of the homogeneous wave equation. 

In this way coordinate time is a function of proper time 𝜏 and distance in pure space |∆𝒙|. 

 

|∆𝑡|2 = |∆𝜏|2 + |∆𝒙|2 

 

Together 𝑡 and 𝒙 deliver a spacetime model that has a Minkowski signature. 

 

|∆𝜏|2 = |∆𝑡|2 − |∆𝒙|2 

 Other natural parameter spaces 
The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each 

other’s quaternionic conjugate. The 𝛽 matrix implements isotropic conjugation. An adapted 

conjugation matrix can apply anisotropic conjugation. This concerns conjugations in which only one 

or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of 

anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter 

spaces. Also for these quarks exist advanced particle solutions and retarded antiparticle solutions. 
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8 Lorentz transformation 

Differences between positions in subsequent members of the sequence of static status quos of the 

Hilbert Book Model can be interpreted as displacements. The displacement is a coordinate 

transformation. For the properties of this transformation it does not matter where the displacement 

starts or in which direction it is taken. 

To simplify the description, we will use the name Hilbert Book page or sheet for a static status quo of 

the Hilbert Book model.  

8.1 Lorentz transformation from group postulates 
The same holds for displacements that concern sequence members that are located further apart. 

The corresponding displacements form a group. The displacement is a function of both the position 

and the sequence number. The displacement 𝑧, 𝑡 → 𝑧′, 𝑡′ can be interpreted as a coordinate 

transformation and can be described by a matrix. Here 𝑡 is coordinate time. 

 

[
𝑡′

𝑧′] = [
𝛾 𝛿
𝛽 𝛼

] [
𝑡
𝑧
] 

 

The matrix elements are interrelated. When the displacement concerns a uniform movement, the 

interrelations of the matrix elements become a function of the speed 𝑣. Here 𝑣 is the speed 

measured as displacement per progression interval. The group properties together with the 

isomorphism of space fix the interrelations. 

 

[
𝑡′

𝑧′] = 1/√1 + 𝑘𝑣2 [
1 𝑘𝑣

−𝑣 1
] [

𝑡
𝑧
] 

 

If 𝑘 is positive, then there may be transformations with 𝑘𝑣2 ≫ 1 which transform progression into a 

spatial coordinate and vice versa. This is considered unphysical. The Hilbert book model also supports 

that vision. 

 

The condition 𝑘 =  0 corresponds to a Galilean transformation 

 

[
𝑡′

𝑧′] = [
1 0

−𝑣 1
] [

𝑡
𝑧
] 

 

The condition 𝑘 <  0 corresponds to a Lorentz transformation. We can set 𝑘𝑐2 = −1, where 𝑐 is an 

invariant speed that corresponds to the maximum of 𝑣. 

 

[
𝑡′

𝑧′] = 1/√1 − 𝑣2/𝑐2 [ 1 −𝑣/𝑐2

−𝑣 1
] [

𝑡
𝑧
] 

(1) 

(2) 

(3) 

(4) 
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The Lorentz transformation corresponds with the situation in which a maximum speed occurs.  

 

Since in each progression step photons step with a non-zero space step and both step sizes are fixed, 

the speed of the photon at quantum scale is fixed. No other particle goes faster, so in the model a 

maximum speed occurs. With other words when sequence members at different sequence number 

are compared, then Lorentz transformations can describe the corresponding displacements.  

 

Lorentz transformations introduce the phenomena that go together with relativity, such as length 

contraction, time dilatation and relativity of simultaneity that occur when two inertial reference 

frames are considered. 

 

∆𝑡𝑐 = (∆𝑡𝑝 − ∆𝑧𝑝 𝑣/𝑐2)/√1 − 𝑣2/𝑐2 

 

(∆𝑡𝑐)
2(1 − 𝑣2/𝑐2) = (∆𝑡𝑝 − ∆𝑧𝑝 𝑣/𝑐2)

2
 

 

The term ∆𝑧𝑝 𝑣/𝑐2 introduces time dilatation. If ∆𝑡𝑝 = 0 then depending on 𝑣 and ∆𝑧𝑝 the time 

difference ∆𝑡𝑐 is non-zero. 

 

Progression, interpreted as proper time, is a Lorentz invariant scalar. Therefore, the quaternionic first 

order partial differential equations are Lorentz covariant. The same holds for the quaternionic 

second order partial differential equations. 

8.2 The hyperbolic transformation 
In a field vibrations move with maximum speed. It means that  

𝑥 = 𝑐 𝑡 ⟹ 𝑥2 = 𝑐2 𝑡2 

This holds in all inertial frames. With other words, for frames {𝑥, 𝑡} and {𝑥′, 𝑡′} hold: 

𝑥2 − 𝑐2 𝑡2 = 𝑥′2 − 𝑐2 𝑡′2 

The equality also holds for transformations in which discrete objects move with a uniform velocity 𝑣, 

which is lower than c. This defines a transformation that can be implemented by a hyperbolic 

transformation: 

𝑐𝑡′ = 𝑐𝑡 cosh𝜔 − 𝑥 sinh𝜔 = 

𝑥′ = 𝑥 cosh𝜔 − 𝑐𝑡 sinh𝜔 

𝑐𝑜𝑠ℎ 𝜔 =
exp𝜔 + exp−𝜔 

2
=

𝑐

√𝑐2 − 𝑣2
 

(5) 
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𝑠𝑖𝑛ℎ 𝜔 =
exp𝜔 − exp−𝜔 

2
=

𝑣

√𝑐2 − 𝑣2
 

cosh2 𝜔 − sinh2 𝜔 = 1 

Parameter 𝜔 is the rapidity, also called the relativistic velocity. It only has the characteristics of a 

velocity when 𝜔 is very small. 

𝑑𝑠2 = 𝑑𝜏2 = 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 

Since {𝜏, 𝑥, 𝑦, 𝑧} is the Euclidean structure of the quaternions, in which 𝑡 plays the role of 

quaternionic distance, the world of the observers is a spacetime world with a Minkowski 

structure. 

9 Tensor differential calculus 
We restrict to 3+1 D parameter spaces. 

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to the 

spatial part. 

Fields are functions that have values, which are independent of the selected parameter space. Fields 

exist in scalar fields, vector fields and combined scalar and vector fields.  

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic non-

separable Hilbert spaces. These combined fields can be represented by quaternionic functions of 

quaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces 

of the Hermitian and anti-Hermitian parts of the normal operator. The quaternionic parameter space 

can be represented by a normal quaternionic reference operator that features a flat continuum 

eigenspace. This reference operator can be split in a Hermitian and an anti-Hermitian part. 

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number 

system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16 

versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each 

Cartesian start orderings two extra orderings are possible. All these choices correspond to different 

parameter spaces. 

Further it is possible to select a scalar part of the parameter space that is a scalar function of the 

quaternionic scalar part and the quaternionic vector part. For example, it is possible to use 

quaternionic distance as the scalar part of the new parameter space. 

Tensor differential calculus relates components of differentials with corresponding parameter 

spaces. 

Components of differentials are terms of the corresponding differential equation. These terms can be 

split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions 

different from vector functions. 

Quaternionic fields are special because the differential operators of their defining functions can be 

treated as multipliers. 

9.1 The metric tensor 
The metric tensor determines the local “distance”. 

(1) 
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𝑔𝜇𝜈 = [

𝑔00 𝑔01 𝑔02 𝑔03

𝑔10 𝑔11 𝑔12 𝑔13

𝑔20 𝑔21 𝑔22 𝑔23

𝑔30 𝑔31 𝑔32 𝑔33

] 

The consequences of coordinate transformations 𝑑𝑥𝜈 ⇒ 𝑑𝑋𝜈 define the elements 𝑔𝜇𝜈 as  

𝑔𝜇𝜈 =
𝑑𝑋𝜇

𝑑𝑥𝜈
 

9.2 Geodesic equation 
The geodesic equation describes the situation of a non-accelerated object. In terms of proper time 

this means: 

𝜕2𝑥𝜇

𝜕𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

In terms of coordinate time this means: 

𝜕2𝑥𝜇

𝜕𝑡2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡
+Г𝛼𝛽

0 𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

 Derivation: 
We start with the double differential. Let us investigate a function 𝑋 that has a parameter space 

existing of scalar 𝜏 and a three-dimensional vector 𝒙 = {𝑥1, 𝑥2, 𝑥3}. The function 𝑋 represents three-

dimensional curved space. The geodesic conditions are: 

𝜕2𝑋𝜆

𝜕𝜏2
= 0 ;  𝜆 = 1,2,3 

First, we derive the first order differential. 

𝑑𝑋𝜆 = ∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑𝑥𝛽

3

𝛽=1

 

We can use the summation convention for subscripts and superscripts. This avoids the requirement 

for summation symbols. 

𝑑𝑋𝜆

𝑑𝜏
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝜏
 

𝑑2𝑋𝜆 = ∑ (
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽 + 𝑑𝑥𝛽 ∑

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

3

𝛼=1

𝑑𝑥𝛼)

3

𝛽=1

 

Now we obtained the double differential equation. 

𝑑2𝑋𝜆

𝑑𝜏2
=

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
+

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
= 0 

The geodesic requirement results in: 

𝜕𝑋𝜆

𝜕𝑥𝛽

𝑑2𝑥𝛽

𝑑𝜏2
= −

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
 

If we use summation signs: 

(2) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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∑
𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

= − ∑ (𝑑𝑥𝛽 ∑ (
𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

 

Next, we multiply both sides with 
𝜕𝑋𝜆

𝜕𝑥𝛽 and sum again: 

∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
(∑

𝜕𝑋𝜆

𝜕𝑥𝛽
𝑑2𝑥𝛽

3

𝛽=1

))

3

𝜆=1

= − ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

 

We apply the fact: 

∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇

𝜕𝑋𝜆

𝜕𝑥𝛽
)

3

𝜆=1

= 𝛿𝛽
𝜇

 

This results into: 

𝑑2𝑥𝜇 = ∑ (
𝜕𝑥𝜆

𝜕𝑋𝜇
∑ (𝑑𝑥𝛽 ∑ (

𝜕2𝑋𝜆

𝜕𝑥𝛽𝜕𝑥𝛼
𝑑𝑥𝛼)

3

𝛼=1

)

3

𝛽=1

)

3

𝜆=1

= Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 

Without summation signs: 

Г𝛼𝛽
𝜇

𝑑𝑥𝛼𝑑𝑥𝛽 ≝ (
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)𝑑𝑥𝛼𝑑𝑥𝛽 

 

𝑑2𝑥𝜇

𝑑𝜏2
= −Г𝛼𝛽

𝜇 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝜏2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛼

𝑑𝜏
 

𝑑2𝑥𝜇

𝑑𝑡2
= −(

𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡
+ (

𝜕𝑥0

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
)

𝑑𝑥𝛽

𝑑𝑡

𝑑𝑥𝛼

𝑑𝑡

𝑑𝑥𝜇

𝑑𝑡
 

9.3 Toolbox 
Coordinate transformations: 

𝑆
𝜈′𝜌′
𝜇′

=
𝜕𝑥𝜇′

𝜕𝑥𝜇

𝜕𝑥𝜈

𝜕𝑥𝜈′

𝜕𝑥𝜌

𝜕𝑥𝜌′ 𝑆𝜈𝜌
𝜇

 

The Christoffel symbol plays an important role: 

2 𝑔𝛼𝛿 Г𝛽𝛼
𝛿 =

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
+

𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
+

𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
 

Г𝛼𝛽
𝜇

≝
𝜕𝑥𝜇

𝜕𝑋𝜆

𝜕2𝑋𝜆

𝜕𝑥𝛼𝜕𝑥𝛽
 

Г𝛽𝛼
𝛿 = Г𝛼𝛽

𝛿  

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(1) 

(2) 

(3) 

(4) 
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Covariant derivative 𝛻𝜇𝛼 and partial derivative 𝜕𝜇α of scalars 

𝜕𝜇′α =
𝜕𝑥𝜇′

𝜕𝑥𝜇
𝜕𝜇α 

Covariant derivative 𝛻𝜇𝑉𝜈 and partial derivative 𝜕𝜇𝑉𝜈of vectors 

𝛻𝜇𝑉𝜈 = 𝜕𝜇𝑉𝜈 + Г𝜇𝜆
𝜈 𝑉𝜆 

𝛻𝜇𝜑𝜈 = 𝜕𝜇𝜑𝜈 − Г𝜇𝜈
𝜆 𝜑𝜆 

𝛻𝜇𝑔𝛼𝛽 = 0 

𝛻𝜇𝑔𝛼𝛽 = 0 

𝑔𝜈𝜇𝑔𝜈𝜇 = 𝛿𝜈
𝜇

 

𝑔 = det(𝑔𝜈𝜇) 

𝑔′ = (det(
𝜕𝑥𝜇′

𝜕𝑥𝜇 ))

−2

𝑔 

det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 ) is Jacobian 

𝑑4𝑥 ≝ 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3 

𝑑4𝑥′ = det (
𝜕𝑥𝜇′

𝜕𝑥𝜇 )𝑑4𝑥 

 

Tensor 

𝑇 ⟹ 𝑥 frame 

𝑇′ ⟹ 𝑦 frame 

𝑇𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

(𝑊′)𝑛
𝑚 =

𝜕𝑦𝑚

𝜕𝑥𝑝

𝜕𝑥𝑛

𝜕𝑦𝑞
𝑊𝑞

𝑝
 

(𝑊′)𝑚𝑛 =
𝜕𝑥𝑝

𝜕𝑦𝑚

𝜕𝑥𝑞

𝜕𝑦𝑛
𝑊𝑝𝑞 

𝑉𝑞𝑊𝑝 = 𝑊𝑝𝑉𝑞 = 𝑇𝑝𝑞 

If a tensor is zero in one frame, then it is zero in all frames. 

𝑊𝑞
𝑝

= 𝑇𝑞
𝑝

⟹ (𝑊′)𝑞
𝑝

= (𝑇)𝑞
𝑝

 

∑
𝜕𝑥𝑏

𝜕𝑦𝑚

𝜕𝑦𝑚

𝜕𝑥𝑎

𝑚

= 𝛿𝑎
𝑏 

𝐷𝑟𝑉𝑚 = 𝜕𝑟𝑉𝑚 − Γ𝑟𝑚
𝑡 𝑉𝑡  

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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The derivative in another coordinate system is the derivative in a Gaussian coordinate system 

plus a term due to the influence of the difference in coordinates. 

𝜕𝑟 = 
𝜕

𝜕𝑥𝑟
 

Γ𝑟𝑚
𝑡 = Γ𝑚𝑟

𝑡  

𝐷𝑠𝑇𝑚𝑛 = 𝜕𝑠𝑇𝑚𝑛 − Γ𝑠𝑚
𝑡 𝑇𝑡𝑚 − Γ𝑠𝑛

𝑡 𝑇𝑛𝑡 

𝐷𝑠𝑔𝑚𝑛 = 𝜕𝑠𝑔𝑚𝑛 − Γ𝑠𝑚
𝑡 𝑔𝑡𝑚 − Γ𝑠𝑛

𝑡 𝑔𝑛𝑡 = 0 

𝜕𝑛𝑔𝑠𝑚 + 𝜕𝑚𝑔𝑠𝑛 − 𝜕𝑠𝑔𝑚𝑛 = 2Γ𝑚𝑛
𝑡 𝑔𝑠𝑡 

Γ𝑚𝑛
𝑡 = ½𝑔𝑠𝑡(𝜕𝑛𝑔𝑠𝑚 + 𝜕𝑚𝑔𝑠𝑛 − 𝜕𝑠𝑔𝑚𝑛) 

the covariant derivatives of 𝑔𝑚𝑛 are always zero 

𝑅𝑠𝑟𝑚
𝑡 = 𝐷𝑠𝐷𝑟𝑉𝑚 − 𝐷𝑟𝐷𝑠𝑉𝑚 = 𝜕𝑟Γ𝑠𝑚

𝑡 − 𝜕𝑠Γ𝑟𝑚
𝑡 + Γ𝑠𝑚

𝑝
Γ𝑝𝑟

𝑡 − Γ𝑟𝑚
𝑝

Γ𝑝𝑠
𝑡 ≠ 0 

Tidal forces Riemannian curvature 

𝐷𝑚𝑉𝑛 = 𝜕𝑚𝑉𝑛 + Γ𝑚𝑟
𝑛 𝑉𝑟  
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