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Abstract    A kinetic energy-operated quantum wave equation is used to formulate 
alternate quantum fields:  an alternate Klein-Gordon field, an alternate Dirac field, an 
alternate Proca field, and an alternate Higgs field. 

Unlike the original Dirac field equations, the alternate Dirac field equations are shown 
to include a vacuum state solution apart from the particle and anti-particle solutions, 
lending support to the alternate formulation.  The alternate Klein-Gordon field shows 
scalar bosons transforming between a massive state and a massless, charged state 
whenever the vector potential vanishes.  A local U(1) gauge transformation of the 
alternate Klein-Gordon Lagrangian directly leads to both the alternate Proca field and the 
alternate Higgs field.  These fields show vector bosons transforming between a massive 
state and a massless, charged state by a spontaneous breakdown of symmetry at a 
minimum potential trough similar to that of a Mexican hat or wine bottle potential in the 
Brout, Englert, and Higgs (BEH) mechanism, but more generally leaving open a possible 
presence of entirely different or many alternate Higgs bosons. 
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1.  Motivation 
The Lagrangian formalism in quantum field theory describes the massive scalar boson 

field by the Klein-Gordon equation, the spin half fermion field by the Dirac equation, and 
the massive vector boson field by the Proca equation, etc.  These relativistic quantum 
wave equations apply the quantum prescriptions to the total energy, E, which is the sum 
of the relativistic external kinetic energy and the internal (rest) energy, and to the 
relativistic momentum, P.  In general, however, the external kinetic energy and the 
internal energy, for instance spin energy, originate from two different motions that may 
be difficult to describe by a single set of wave equations.  In this paper we re-examine the 
marriage of quantum mechanics and special relativity and present an alternate 
formulation to resolve this fundamental problem. 
2.  Relativistic Energy-Momentum Relation 

 In this section and Section 3.1 that follows, we extract some of the prerequisite from 
the author’s previous paper [1].  We can write the relativistic energy–momentum relation 
in terms of the total energy, E, and momentum, P, of a particle [2-10],  

 42222 cMcPE   (1) 
where c is the speed of light and M the mass of the particle.   

Now the relativistic kinetic energy, T, may be written as  
 2McET  . (2) 

We can then rewrite the energy-momentum relation, Eq. (1), in terms of the kinetic 
energy and momentum in an alternate form,  

 2222 2 cPTMcT  . (3) 
If we define 2McE , the internal energy (many authors call this the rest energy) and 

MP  to be the non-relativistic momentum, we can then call E  2McE  to be the 
relativistic total energy and P  MP  to be the relativistic momentum where 

2
211 c

   is the Lorentz factor, v is the velocity of the particle.  
The energy-momentum relation, Eq. (1), may then be rewritten,  
 4

2
222 cMc 


 PE , (4) 

in terms of the internal energy, non-relativistic momentum, and mass. We note that the 
equations (1) and (4) are of the same form except the mass M is replaced with M/γ, a 
relativistic mass or the mass normalized by the Lorentz factor, with 0 ≤ 1/γ ≤ 1.  As the 
velocity of the particle approaches the speed of light, Eq. (1) may blow up but Eq. (4) 
behaves well as the relativistic mass term goes to zero.  The 1/γ appears as a 
normalization factor; for instance each of the electron’s orbits in an atom has a particular 
angular velocity and radius hence a characteristic γ and 1/γ values.  It is crucial 
information for characterizing particles.   

In the same way, Eq. (3) may be rewritten as 
 2222 2 cMc PTT   , (5) 
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where T ≡ T/γ.  If a quantum wave equation is built based upon Eq. (4) or (5), the 
‘observable’ counterpart for a scripted quantity, for instance T for T or E for E, may easily 
be recovered by multiplying γ appropriately. 
3. Alternate Klein-Gordon Equation 

The quantum prescriptions are based upon de Broglie’s theory [8] that may be 
expressed by P = ħk and E = ħω where ħ is the reduced Planck constant, k is the wave 
number and ω is the angular frequency [11].  The bold face indicates a 3-vector.   

All we are doing is to separate the external motion from the internal motion of a 
particle.  In Eq. (5), substituting T by ti 


  and P by i  and operating on a scalar 

function Φ, we  then obtain, 
 




 


t
Mitc 21 2

2
2

2 . (6) 
The above may be rewritten as 

 (□  0)  i . (7) 
where □≡  , the d'Alembertian and 

 


Mc2 . (8) 
This is the kinetic energy-operated, mass-normalized, relativistic quantum wave equation, 
an extension of the Schrödinger equation in the free field.  Note that if we replace the 
d'Alembertian with 2  and take the non-relativistic limit of the relativistic mass M/γ → 
M we recover the Schrödinger equation.  Conversely, the relativistic extension of the 
Schrödinger equation may be simply constructed by replacing 2  in the Schrödinger 
equation with □≡   and the mass M with the relativistic mass M/γ. 

We now define a unit four vector,  
 

3210 IIIII   (9) 
where  

 

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3210
 IIIII . (10) 

When applied to the four derivative, it is understood that  
 etc.  ;  ; 1100

3210






II
I  (11) 

This allows Eq. (7) to be rewritten in a more maneuverable form,  
    0Ii  (12) 
The above is an alternate Klein-Gordon equation, a new relativistic quantum wave 

equation for spin zero massive particles that reduces to the Schrödinger equation in the 
nonrelativistic limit.  In the present formulation, it replaces the Klein-Gordon equation  
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 0
2 





Mc . (13) 
Now that we have an alternate Klein-Gordon equation, Eq. (12), it is a daunting task to 

reformulate the entire quantum field theory based upon the alternate equation.  Why do 
we want to do that?  After all, both Eq. (1) and (3) express the same relativistic energy-
momentum relation.  The difference, however, is where we apply the de Broglie’s theory  
and the author hopes to find if accounting for this difference may help simplifying some 
of the peculiar treatments in our quantum theories, such as renormalization and Higgs 
mechanism.  This paper focuses on formulating alternate Lagrangian densities for the 
quantum fields and some preliminary consequence of the new formulation. 
4. Spin ½ Fermion 
4.1 Alternate Dirac Equation 

The alternate Klein-Gordon equation, Eq. (12), may be decoupled into the bi-spinor 
equations by deploying the Dirac formalism [12].  This was done in the author’s previous 
work [1] and here we only state the result.   

We define I (or simply 1) to be a 2x2 unit matrix, and σi to be 2 x 2 Pauli matrices, γ0 to 
be the first of the 4x4 Dirac matrices (the others are γ,i; i = 1,2,3.)  By using the first of 
the following relationships, 

 










00
0121

10
0021

0

0




, (14) 

the quantum wave equation describing the spin half fermion may be written, 
   010  Ψγ

McγΨγi μ
μ . (15) 

This is the kinetic energy-operated, alternate Dirac equation compared to the Dirac 
equation,  

 0 ΨMcΨiγ μ
μ


. (16) 

4.2 Lagrangian for the Alternate Dirac Equation 
A Dirac Lagrangian may be written as  
  2Mcci L . (17) 
The Euler-Lagrange equations for the above are 

 
.0)( :EL2

and ,0 :EL1



ΨMcγΨi

ΨMcΨiγ
μ

μ

μ
μ



  (18) 

The two Euler-Lagrange equations represent a particle and its anti-particle, respectively.   
A local U(1) gauge transformation may be performed to Eq. (17) and the result is  
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   





AqFF
Mcci




16
1                        

2L
 (19) 

which then yields three Euler-Lagrange equations 

 
.04

1 :EL3
0 :EL2
0 :EL1














qF
AqΨMcγΨi
AqMcΨΨγi

μ
μ

μ
μ





 (20) 

Similarly, a Lagrangian for the alternate Dirac Equation may be constructed as  
      20 1 McciL  (21) 

of which the Euler-Lagrange equations are 

 
 

  .01)(:EL2

and ,01:EL1
0

0




Ψγ
McγμγΨi

Ψγ
McγΨγi μ

μ





 (22) 

The two Euler-Lagrange equations represent a particle and its anti-particle, respectively.  
The Euler-Lagrange equations, Eq. (22), of the alternate Dirac Lagrangian closely match  
those of the Dirac Lagrangian, Eq. (18), the only but critical difference being each of Eq. 
(22) includes both the massive and massless interaction between spinors.  For the 
particles at rest, the massless interaction leads to a constant solution which can be set to 
zero representing a vacuum state. This was discussed in [1] for EL1 of Eq. (22).  Eq. (18) 
lacks this solution and to resolve the absence of the vacuum state, Dirac then 
hypothesized the existence of the so-called Dirac ‘sea’ [13].  The vacuum state solution 
of Eq. (22) removes this difficulty and this fact lends support to the present formulation. 

The alternate Dirac Lagrangian, Eq. (21), may be gauge-transformed to,  

 
 

  ,16
1                       

1 20








AqFF

Mcci


 L

 (23) 

which then yields three Euler-Lagrange equations 

 
 
 

.04
1 :EL3

01 :EL2

01 :EL1
0

0
















qF

AqΨMcγΨi

AqΨMcΨγi
μ

μ

μ
μ





 (24) 

The Euler-Lagrange equations, Eq. (24), of the alternate Dirac Lagrangian closely match  
those of the Dirac Lagrangian, Eq. (20), with the only but critical difference being that 
the first two of Eq. (24) include both the massive and massless interactions between 
spinors.  The gauge fields (EL3 of each) are exactly the same.  
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5.  Scalar Boson 
5.1  Lagrangian for the Alternate Klein-Gordon Equation 

Now let 21  i and 21*  i  where ϕ1 and ϕ2 are two real fields.  We can then 
write a Lagrangian for the alternate Klein-Gordon equation, Eq. (12), 

     *
0

* IiL . (25) 
of which the Euler-Lagrange equations are,   

 . :EL2
and , :EL1

*
0

*
0









Ii

Ii  (26) 
EL1 in the above is the same as Eq. (12).  EL2 represents its anti-particle.  The alternate 
Klein-Gordon Lagrangian, Eq. (25), describes a massive, scalar, spin-zero boson with 
mass  

 cM 


 2
  (27) 

carried by Φ* times the time derivative of Φ.  Note that the ‘observable’ mass M includes 
a boost factor, γ, owing to its velocity. 
5.2  Massive and Massless Scalar Boson by Gauge Transformation 

A local U(1) gauge transformation may be performed for Eq. (25) via  
*for  

for  









Bi
Ai

D
D  (28) 

where  
 c

q


 , (29) 
q is the charge of the particle, and Aμ and Bμ are some vector fields associated with Φ and 
Φ*, respectively. This leads to the gauge transformed, alternate Klein-Gordon Lagrangian 
density, 

     ,)()()(          **
0

*

*
0

*







BAiABI
Ii


L  (30) 

where α represents the mass, β represents the charge.   
It is interesting to note that when  
   0IB   (31) 

i.e., Bμ = ( q
Mc22 , 0, 0, 0), the second term then vanishes and Eq. (30) reduces to,  

  )( **  AiL . (32) 
This represents a massless scalar boson with charge q in the vector field, Aμ.  The 

Euler-Lagrange equations of it are 
 .0:EL2

and ,0:EL1
** 








Ai
Ai  (33) 
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Note that we can always select a particular Bμ without losing generality to obtain an Aμ 
field equation.  Hence if we choose Bμ = (V, 0, 0, 0) with q

McV 
22 , where V is a scalar 

potential, then the massive scalar boson, Eq. (25), transforms into a massless scalar 
boson, Eq. (32).  We will bring γ to the left hand side and rewrite this condition to note 
that γV is the ‘observable’ potential, 

 q
McV 22 . (34) 

Conversely, a massless scalar boson, Eq. (32) may be shown to transform to a massive 
scalar boson, Eq. (25), by assuming Aμ = Bμ, then gauge transforming via 

,for  
for  

*
0

0









Ii
Ii

D
D  (35) 

and finally taking a similar condition as Eq. (31),  
   0IA  . (36) 
If further we choose Aμ = (V, 0, 0, 0) with V, a scalar potential, we then get 
 22 c

qVM 


   (37) 
and we can say the massless boson, Eq. (32), acquired mass M from charge q.  In 

Section 6.3, we will compare this to the acquired mass in the Higgs field.  Thus we see 
that scalar bosons transform between a massive state, Eq. (25), and a massless, charged 
state, Eq. (32), whenever the vector potential vanishes.  We note that a Goldstone boson 
is not present.   

We note that the Lagrangian for the complex-valued scalar field according to the Klein-
Gordon equation, Eq. (13), may be written,  

    


 *
2

*


McL
. (38) 

A local U(1) gauge transformation via Eqs. (28) and (29) leads to the gauge 
transformed,  Klein-Gordon Lagrangian, 

   
 .)()(          **

*2*
2

*








BAi
ABMc






 





L

 
(39) 

The above includes the Klein-Gordon Lagrangian, Eq. (38), as expected, and some 
terms showing the interaction among the scalar fields and the vector fields, but the mass 
term remains unchanged.  This presents a problem in the weak interactions where a 
transformation between massive and massless scalar field is required [14, 15].  In the 
following, the alternate formulation is shown to allow this to occur without resorting to a 
Higgs field. 
6.  Vector Boson 

We define the “Field Strength Tensors” for some vector fields, Aμ and Bμ, respectively,  
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 


BBG
AAF


  (40) 

and introduce a gauge field, FμνGμν, into the alternate Klein-Gordon Lagrangian, Eq. (25), 
to obtain 

      GFc
iIi
8

*
0

* L . (41) 
Gauge transformation of the above according to Eq. (28) results in the following by use 
of Eq. (30), 

   
 






BAiABI
GFc

iIi
)()()(    

8
**

0
*

*
0

*





L  (42) 

If Eq. (31) holds, then Eq. (42) reduces to  
     GFc

iAi
8)( ** L  (43) 

We see that, in effect, the gauge transformation allows the massive gauge field, Eq. (41) 
to transform into a massless gauge field, Eq. (43).  By the gauge transformation via Eq. 
(35), the reverse is also true. 

Eq. (42) may be rearranged to 

 
  

 . )()(         
)(216

12         
**

0
*

*
0

*











BAi
ABIqiGFc

i
Ii





 




L
 (44) 

Eq. (44) combines a massive scalar field in the first square bracket, a massive vector 
field in the second square bracket, and the interaction of the scalar and the vector fields 
in the third square bracket. The last is the Noether’s conserved current of the fields [14, 
15].  In general, the above Lagrangian yields the following four Euler-Lagrange 
equations carried by the scalar fields, Φ* and Φ, and the vector fields, Au and Bu, respectively: 

 

 
 

.0)(4
1:EL4

0)()(4
1:EL3

0)(           
)(:EL2

0)(            
)(:EL1

*

*
0

*

**
0

**
0

*

00





 



























qF

qBIiqG
BAiBi

ABIIi
BAiAi

ABIIi

 (45) 

EL1 and EL2 include a scalar boson with the mass given by Eq. (27) and the scalar 
boson-vector boson interaction terms.  If the Lorentz condition,  

 0  BA , (46) 
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holds and if in addition the special gauge field condition, Eq. (31), is also met, these two 
transforms into a massless, charged scalar boson, Eq. (33).  If the special condition is not 
met, then the scalar boson interacts with the vector boson in the second term through 
both charge and mass, and in the fourth term through charge only.  EL3 describes a 
massive vector boson interacting with a scalar boson except for the special case, Eq. (31).  
EL4 is the Maxwell equation describing a massless vector boson with a current. 
6.1  Massless Gauge Vector Field 

From the second and the third term of Eq. (44), we can define a vector field, 

  

 
BAq

ABIqiGF
)()(2                       

)(216
1

**

0
*


L

. (47) 

We can obtain a pure vector field from this under certain conditions: for instance, if the 
vector fields satisfy Bμ = Aμ, the above then reads  

   

 
Aq

AAIqiFF
)()(2

)(216
1

**

0
*


L

. (48) 

The square bracket term appears to be a Noether’s current.  We can take the divergence 
of it and use Eq, (26) to find 

   0)()()( *
0

**   Ii  (49) 
since the Noether’s current is a conserved quantity.  Hence  

 )()()( *
0

**   Ii = Constant. (50) 
Eq. (48) then reduces to 

   AAqiFF 216
1 L  (51) 

after constant) a(2
2

2
1

* K  is absorbed by Aμ.  This is a massless gauge boson 
field, or an alternate massless Proca Lagrangian, of which the Euler-Lagrange equation is 

 EL1: 04
1    AiqF . (52) 

Note that qβ = q2/(ħc), but we keep β since it appears often separately in the following.   
6.2  Massive Gauge Vector Field 

We can obtain another pure vector field if the vector fields satisfy Bμ =  ̶ Aμ, Eq. (47) 
then reads  

 
.)(2)(216

1
or ,)(2)(216

1

*
0

*

*
0

*








BqBBIqiGG
AqAAIqiFF




L
L

 (53) 
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If further the scalar field satisfies 0)( *  , then again  
constant) a(2

2
2

1
* K   and K can be absorbed by the vector field.  In this case, 

the above reduces to  

 







BBIqiGG
AAIqiFF

)(216
1

or ,)(216
1

0

0




L
L

 (54) 

which may be called an alternate Proca Lagrangians, special cases of Eq. (44).  We can 
show by use of Eqs. (26) and (50), 

 0)()(2
)(2)(

2
2

2
100

2
2211

*
00

2**









II
II  (55) 

so long as  both 1  and 2  are time-like, which we assume to be given. It is 
interesting to note that these scalar field conditions,  

 0)(
and ,0)(

*
*







 (56) 

define a local minimum potential along the circle, 02
2

2
1  , under which the above 

massive vector fields arise.  This is remarkably similar to the condition by which the 
Higgs boson field arises, i.e., the spontaneous symmetry breaking via the Mexican hat or 
wine bottle potential.  Eq. (56) does not exactly define Mexican hat potential but is more 
general in the sense that there may be many Φ*Φ circles that satisfy this. 

The Euler-Lagrange equations for Eq. (54), 

 
, 0)2(4

1:EL2
0)2(4

1:EL1

0

0














BIiqG
AIiqF

 (57) 

are the alternate Proca equations with a relativistic mass M/γ = αħ/(2c).   
6.3  Comparison with the Higgs Field 

For comparisons, the Proca Lagrangian may be written as 
   AAMcFF

2

8
1

16
1 





L  (58) 

with the Euler-Lagrange equation, 
 0

2 


  AMcF


. (59) 
According to the Proca Lagrangian, Eq. (58), mass is carried by the quadratic term of 

the vector field Aν and may be created by a mechanism known as Brout-Englert-Higgs 
(BEH) mechanism along with the Higgs boson.  For example, consider a Lagrangian 
with a self-interaction potential energy terms [14, 15, 16] 

 2*2*2* )(4
1

2
1

2
1  L . (60) 



 
Brian B.K. Min   Alternate Quantum Fields  

 11 

where μ and λ are real constants.  By defining η ≡ ϕ1 – μ/λ, a gage transformed and 
spontaneously symmetry-broken version of the above is the Lagrangian for the Higgs 
field, which may be written [14] 

 
    

224232
22

2
22

24
1

2
1

2
1

16
1

2
1







 










 





 













AAc
qAAc

q

AAc
qFF




L

. (61) 

where the first square bracket represents the Higgs scalar boson field with mass, 
  cMS

2 ,  (62) 
and the second square bracket a gauge boson field with mass,   

 22 c
qM A 


 

 .  (63) 
Its Euler-Lagrange equations are 

 
 

02
4
1 :EL2

03)( :EL1
22

2

32222




 



 

















AAF

AA
. (64) 

The square bracket term of the above EL1 is a Klein-Gordon equation defining the 
Higgs boson.  The square bracket term of the above EL2 is a Proca equation describing a 
massive gauge boson.   

Eq. (44) and Eq. (61) are similar in their structure, combining a massive scalar boson 
field and a massive gauge boson field.  Remarkably, Eq. (44) includes these fields as a 
result of the local U(1) gauge transformation of the alternate Klein-Gordon equation, Eq. 
(25), naturally without introducing an arbitrary symmetry breaking process.  The mass of 
the scalar boson given by Eq. (27) will be identical with that of Eq. (62) if  

  22   (65) 
and the mass of the gauge boson given by Eq. (37) will be identical with that of Eq. (63) 
if 

 
 22 V . (66) 

The Higgs scalar boson has been found experimentally [17-28].  It is interesting to see 
if the massive scalar boson in Eq. (44), which may be called an alternate Higgs boson, 
may also be found experimentally.  It is possible that the alternate Higgs boson in Eq. (44) 
is identical to the Higgs boson in Eq. (61), even though we arrive at them in quite 
different ways and now we see the possibility of multiple alternate Higgs bosons. 
7.   Maxwell Fields 

We can define a four vector potential [14], 
    3210 ,,,, AAAAAVA   , (67) 

where V is a scalar potential, A  is a three-vector potential, and   
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 ),( JcJ   , (68) 
where ρ is the charge density, J  is the current density. 

The Lagrangian for the Maxwell equation may be written as 
  AJcFF 1

16
1 L , (69) 

and we can then write the Maxwell equation, 
 01

4
1   JcF . (70) 

This is the electromagnetic field equation with a source current, Jν.   
Maxwell field Lagrangians are embedded in the alternate Dirac Lagrangian, Eq. (23), 

alternate Klein-Gordon Lagrangian, Eq. (44), and alternate Proca Lagrangian, Eq. (51), 
respectively.  EL3 of Eq. (24) is the Maxwell equation under fermion fields.   EL4 of Eq. 
(45) is the Maxwell equation under scalar boson fields.   EL1 of Eq.(52) is the Maxwell 
equation under vector boson fields. Comparing these with Eq. (70), one gets 

   Aiqqqc
J

A  )(*  (71) 
where qΨ, qΦ, and qA are the charges in their respective fields. 
8. Conclusion 

We have critically reviewed the marriage of a quantum wave equation and the special 
relativity.  In our standard physics, the relativistic quantum wave equations are obtained 
by applying the quantum prescriptions to the total energy, E, and to the relativistic 
boosted momentum, P.  E is the sum of the relativistic boosted kinetic energy and the 
internal (rest) energy.  An elementary particle, however, in general has some internal 
motion, for example at least that causing spins which contributes to the unique rest mass 
energy, and an external motion, for example a translational or rotational motion that 
manifests the external kinetic energy.  Since they involve two different mechanisms, it 
may be difficult to describe both by a single set of wave equations; but this is precisely 
what we do.  This paper presents an alternate approach to resolve this fundamental 
problem. 

External kinetic energy-operated quantum wave equations are used to formulate 
alternate quantum fields.  This leads to an alternate Klein-Gordon field for a massive 
scalar boson, an alternate Dirac field for a spin half fermion, an alternate Proca field for  
a massive vector boson, and an alternate Higgs field for a massive scalar boson and 
massive gauge vector boson.  The main results are summarized in the Appendix.   

For example, the Klein-Gordon equation is a total energy-operated quantum wave 
equation while the alternate Klein Gordon equation derived by the present approach is a 
kinetic energy-operated quantum wave equation.  From the alternate Klein-Gordon field, 
also derived are an alternate Dirac, alternate Proca, and alternate Higgs field.     

The alternate Dirac field thus derived closely matches that of the Dirac field, the only 
but crucial difference being each of the alternates includes both the massive and massless 
interaction between spinors.  The equations of motion then yield the particles-at-rest 
solutions that include a constant solution, which can be set to zero representing a vacuum 
state.  The original Dirac equation lacks this solution and to resolve this Dirac then 
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hypothesized an existence of the so-called Dirac ‘sea’.  The vacuum state solution of the 
alternate formulation removes this difficulty.  We now see the difficulty arose because 
the Klein-Gordon equation upon which Dirac equation is based uses the total energy as 
the basis of quantum prescription.  This fact lends a strong support to the present 
formulation over the original formulation. 

The alternate Klein-Gordon field shows scalar bosons transforming whenever the 
vector potential vanishes between a massive state and a massless, charged state.  The 
mass comes from the charge, the charge comes from the mass, and i.e., mass and charge 
are interchangeable under this condition.   

The alternate Klein-Gordon Lagrangian directly leads to both the alternate Proca field 
and the alternate Higgs field by a local U(1) gauge transformation.  The result shows 
vector bosons transforming between a massive state and a massless, charged state by a 
spontaneous breakdown of symmetry at a minimum potential trough similar to, but more 
generally than that of a Mexican hat or wine bottle potential in the Brout, Englert, and 
Higgs (BEH) mechanism. 

The Higgs and alternate Higgs fields are similar in their structure, combining a massive 
scalar boson and a massive gauge boson.  Remarkably, the alternate Higgs field includes 
these bosons as a result of the local U(1) gauge transformation of the alternate Klein-
Gordon Lagrangian without introducing an arbitrary symmetry breaking process.   

It is probable that the scalar bosons in both fields are identical, even though we arrive 
at them in quite different ways.  The Higgs scalar boson has been found experimentally.  
It will be interesting to see if the alternate scalar boson may also be found experimentally, 
if not identical to the Higgs boson.  Finally, it should be noted that the present theory 
leaves open a possible presence of entirely different or many “alternate Higgs bosons”.  
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APPENDIX.  Lagrangian Density for Quantum Fields - Standard Formulation vs. Alternate   
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