Every large prime must lie on a Diriclet's arithmetic sequence and a simple method to identify such arithmetic progressions Prashanth R. Rao

Results:

.....

Let p be a very large prime. Then there must exists primes $p_1, p_2, ..., p_k$ that are less than p. Therefore for every such prime we may express p as the following combination of positive integers

 $p=p_1q_1+r_1$ such that $0 < r_1 < p_1$ $p=p_2q_2+r_2$ such that $0 < r_2 < p_2$

 $p=p_kq_k+r_k$ such that $0 < r_k < p_k$

Each of these expressions for p represent an arithmetic progression of the form a+nb where $a=r_i$, $b=p_i$ and $n=q_i$ and where i=1,2,...,k

Alternatively we can also consider the arithmetic progressions where $a=r_{i,} n=p_{i}$ and $b=q_{i}$ where i=1,2,...,k

For every p_i,q_i,r_i, gcd(p_i,q_i,r_i)=1

Thus every large prime must lie on a Diriclet's arithmetic sequence.