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Abstract 

 

 A QRN simulating human decision making process is introduced.  

It consists of quantum recurrent nets generating stochastic processes 

which represent the motor dynamics, and of classical neural nets 

describing evolution of probabilities of these processes which represent 

the mental dynamics.  The autonomy of the decision making process is 

achieved by a feedback from mental to motor dynamics which changes 

the stochastic matrix based upon the probability distributions.  This 

feedback replaces an unavailable external information by an internal 

knowledgebase stored in the mental model in the form of probability 

distributions.  As a result, the coupled motor-mental dynamics is 

described by a nonlinear version of Markov chains which can decrease 

entropy without an external source of information.  Applications to 

common sense based decisions as well as to evolutionary games are 

discussed. 

 

1. Introduction 

 

 A human common sense has always been a mystery for physicists, and an 

obstacle for artificial intelligence.  It was well understood that human behavior, and in 

particular, the decision making process, is governed by feedbacks from the external 

world, and this part of the problem was successfully simulated in the most sophisticated 

way by control systems.  However, in addition to that, when the external world does not 

provide sufficient information, a human turns for “advise” to his experience, and that is  
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associated with a common sense.  In this paper, by common sense we will understand a 

feedback from the self-image (a concept adapted from psychology), and based upon that, 

we will propose a physical model of common sense in connection with the decision 

making process. 

  

 A decision making process can be modeled by a time evolution of a vector π  

whose components   πi i = 1,2…N( )  represent a probability distribution over N different 

choices.  The evolution of this vector can be written in the form of a Markov chain: 

 

 πi t +τ( ) = π i t( )P, πi
i=1

N

∑ = 1, pij
j=1

N

∑ = 1, 0 ≤ πi ≤ 1, 0 ≤ pij < 1   (1) 

  

where P is the transition matrix representing a decision making policy.  If P = Const , the 

process (1) approaches some final distribution π∞  regardless of the initial state π o .  In 

particular, in the case of doubly-stochastic transition matrix, i.e., when 

 

 pij
j=1

N

∑ = 1, and pij = 1
i=1

N

∑        (2) 

 

all the final choices become equally probable: 

 

  πi = π j = 1 / N        (3) 

 

i.e., the system approaches its thermodynamics limit which is characterized by the 

maximum entropy.  When the external world is changing, such a rigid behavior is 

unsatisfactory, and the matrix P has to be changed accordingly, i.e., P = P t( ) .  Obviously 

this change can be implemented only if the external information is available, and there 

are certain sets of rules for correct responses.  However, in real world situations, the 

number of rules grows exponentially with the dimensionalities of external factors, and 

therefore, any man-made device fails to implement such rules in full. 
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 The main departure from this strategy can be observed in human approach to 

decision making process.  Indeed, faced with an uncertainty, a human uses a “common 

sense” approach based upon his previous experience and knowledge in the form of 

certain invariants or patterns of behavior which are suitable for the whole class of similar 

situations.  Such an ability follows from the fact that a human possesses a self-image, and 

interacts with it.  This concept which is widely exploited in psychology has been known 

as far back as to ancient philosophers, but so far its mathematical  formalization has never 

been linked to the decision making model (1). 

 First we will start with an abstract mathematical question:  can the system (1) 

change its evolution, and consequently, its limit distribution, without any external 

“forces”?  The formal answer is definitely positive.  Indeed, if the transition matrix 

depends upon the current probability distribution 

 

   )(πp        (4) 

 

then the evolution (1) becomes nonlinear, and it may have many different scenarios 

depending upon the initial state  

. 

 

 

 

 

 

 

 

 

 

 

. 0π .  In particular case (2), it can “overcome” the second law of thermodynamics 

decreasing its final entropy by using only the “internal” resources.  The last conclusion 

illuminates the Schrödinger statement [2] that ‘life is to create order in the disordered 
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environment against the second law of thermodynamics.”  Obviously this statement 

cannot be taken literally — as will be shown below, eq. (1) subject to the condition (4) 

describes the system which is not isolated, and therefore, the result stated above does not 

violate the second law of thermodynamics.  In order to discuss the physical meaning of 

the condition (4), let us turn to Eq. (1) and introduce the underlying stochastic process.  

The latter can be simulated by a quantum device represented by quantum recurrent nets 

(QRN) [3] ,  and we will start with a brief description of that device.  

 The simplest QRN is described by the following set of difference equations with 

constant time delay τ  

  
  
ai t +τ( ) = σ1 uij t( )aj t( )∑{ }, i.e., aoa1…aN{ }→ 0,0…1…00

↑i

& 
' 
( 

) 
* 
+ 

 (5) 

      i = 1,2…N  

 

where  aj  is the input to the network at time t, uij  is a unitary operator defined by the 

corresponding Hamiltonian of the quantum system, and σ1  is a measurement operator (in 

the computational basis) that has the effect of projecting the evolved state into one of the 

eigenvectors of σ1.  The curly brackets are intended to emphasize that σ1 is to be taken 

as a measurement operation with the effect similar to those of a sigmoid function in 

classical neural networks.  Obviously, the outputs ai t +τ( )  are random because of the 

probabilistic nature of quantum measurements.  As shown in [3],  these outputs form a 

Markovian stochastic process with the probabilities evolving according to the chain (1) 

and 

 

 
  
pij = uji

2
, pij = 1, pij = 1,

i= 1

N

∑ pij ≥ 0, i, j = 1,2,…N
j= 1

N

∑   (6) 

 

is the NxN doubly-stochastic matrix which is uniquely defined by the unitary matrix U.  

Each element of this matrix represents the probability that the ith eigenvector as an input 

produces jth eigenvector as an output: 
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   00 010
i
↑

0" 
# 
$ 

% 
& 
' 
→ 00 010

j
↑

0
" 
# 
) 

$ ) 

% 
& 
) 

' ) 
    (7) 

 

In a special case when 
      pij > 0; i, j = 1,2,…N      
 

the Markov process is ergodic, i.e., the solution to Eq. (1) approaches an attractor (3) 

 

which is unique and it does not depend upon the initial value π0  at t=0.  Only this case 

will be considered in this paper.    Thus, Eq. (5) describes the evolution of the vector  

 

    
  
a1…an{ } =<ϕ , aj

2

j= 1

N

∑ = 1     (8) 

representing a quantum state in a Hilbert space, and all the components ai,uij( )  are to be 

actually implemented .  This evolution is irreversible, nonlinear and nondeterministic 

because it includes measurement operations. 

 On the other hand, the vector 

   
  
π1,π 2…π n( ) = π , π j = 1,

j=1

n

∑ π i > 0,    (9) 

 

as well as the stochastic matrix pij   exist only in an abstract Euclidean space:  they never 

appear explicitly in physical space.  The evolution (1) is also irreversible, but unlike (5), 

it is linear and deterministic. 

 So far we have simulated the case P = Const . 

 In order to control P, let us assume that the result of the measurement, i.e., a unit 

vector 
  
am t( ) = 00…010

↑
i

…0
" 
# 
$ 

% 
& 
' 

 is combined with an arbitrary complex (interference) 

vector. 

 If the interference state vector is  
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! a =

! a 0
! a 1

! a N

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

      (10) 

and σ  is a measurement operator in the computational basis, then ψ t + τ( ) , the recurrent 

state re-entering the circuit, must take one of the forms: 

 

   

  

φ0 =
1
R0

1+ " a 0
" a 1

" a N −1

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

=
1
R0

a00( )

a10( )


aN −1
0( )

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

 

 

   

  

φ1 =
1
R1

" a 0
1 + " a 1

" a N −1

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

=
1
R1

a01( )

a11( )


aN −1
1( )

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

    (11) 

 

    

  

φN −1 =
1
RN−1

# a 0
# a 1


1+ # a N−1

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

=
1
RN−1

a0N−1( )

a1 N−1( )


aN −1

N−1( )

$ 

% 

& 
& 
& 

' 

( 

) 
) 
) 

  

 

with re-normalization factors: 

 

     R0 = 1+ ! a 0
2

+ ! a 1
2

+…      (12) 

     R1 = ! a 0
2

+ 1 + ! a 1
2

+…      (13)  

        

     RN−1 = " a 0
2

+ " a 1
2
…+ 1+ " a N −1

2     (14) 

 

It should be emphasized that the states (11) are first calculated and then prepared as new 

quantum inputs. 
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The transition probability matrix, pij  for this process is given by examining how each of 

the recurrent states,   φ0  φN −1  evolve under the action of U: 

 

  pij =

b0
0( )

Ro

2

b0
1( )

R1

2



b0
N−1( )

RN−1

2

b1
0( )

R0

2

b1
1( )

R1

2










bN−1
N−1( )

RN−1

2

"

#

$
$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'
'

    

 (15) 

where            

  
  
bj

i( ) = uj
=0

N − 1

∑ a
i( ) = uji + uja

= 0

N− 1

∑ 0( )      (16) 

Thus, now the structure of the transition probability matrix pij  can be controlled by the 

interference vector (10), andP = P t( ) . 

 Let us now implement the internal feedback (4).  For that purpose, assume that the 

components of the interference vector (10) are defined by the components πi  of the 

probability vector by setting: 

 

    ! a i = fi π 1,π 2, …π N( )        (17) 

 

and rewriting Eqs.  (12) - (16) accordingly.  Then 

 

    pij = pij π 1,…π N( )         (18) 
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However, the simplicity of this mathematical operation is illusive.  Indeed, as pointed out 

above, the probability vector π  is not simulated by the QRN explicitly:  it has to be 

reconstructed by a statistical analysis of the ensemble of solutions to Eq. (5).  In order to 

avoid that, one can simulate the evolution of the probability vector, i.e., Eq. (1) by a 

classical neural network which can be presented, for instance, in the form 

 

  πi t +τ( ) = S wjkπ k t( )
j=1

N

∑
$ 

% 
& 
& 

' 

( 
) 
) 

     (19) 

 

where S is the sigmoid function, and wjk = Const  are the synaptic weights. 

 Now Eqs. (5) and (19) are coupled via the feedbacks (6) and (17).   

 From the mathematical viewpoint, this system can be compared with the 

Langevin equation which is coupled with the corresponding Fokker-Planck equation such 

that the stochastic force is fully defined by the current probability distributions, while the 

diffusion coefficient is fully defined by the stochastic force.[4] 

 From the physical viewpoint, Eqs. (5)  and (19) represent two different physical 

systems (quantum and classical) which interact via the feedbacks (4) and (6):  the 

transition probability matrix P is defined by the unitary matrix U of the QRN according 

to Eq. (6), while the input interference vector to the QRN is defined by the feedback (17).  

Using the Feynmann terminology [1] ,  Eq. (5) simulates probabilities, while Eq. (19) 

manipulates by them. 

 Finally, from the cognitive viewpoint, Eqs. (5) and (19) represent two different 

aspects of the same subject:  the decision maker.  Eq. (5) simulates his real-time actions, 

i.e., his motor dynamics, while Eq. (19) describes evolution of self-image in terms of 

such invariants as expectation, variance, entropy (information), and that can be associated 

with the mental dynamics. 

 Thus, as a result of interaction with his own image and without any “external” 

enforcement, the decision maker can depart from the thermodynamical limit (3) of his 

performance “against the second law.”  Obviously, from the physical viewpoint, the 

enforcement in the form of the feedback (17) is external since the image (19) represents a 
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different physical system.  In other words, such a “free will” effort is not in a 

disagreement with the second law of thermodynamics. 

 Eqs. (5) and (19) illuminate another remarkable property of human activity:  the 

ability to predict future.  Indeed, Eq. (19) depends only upon the prescribed unitary 

matrix U, but it does not depend upon the evolution of the vector ai .  Therefore, Eq. (19) 

can be run faster than real time; as a result of that, future probability distributions as well 

as its invariants can be predicted and compared with the objective.  Based upon this 

comparison, the feedback (17) can be changed if needed. 

 Actually such interaction with self-image simulates “common sense” which 

replaces an unavailable external source of information and allows one to make decisions 

based upon his previous experience. 

 Formally the knowledge base is represented by the synaptic weights wjk  of Eq. 

(19), and it consists of two parts.  The first part includes personal experience and habits 

(risk prone, risk aversion, etc.).  The second part depends upon the objective formulated 

in terms of probability invariants (certain expectation with minimal variance, or 

maximum information, etc.).  The dependence upon the objective may include real-time 

adjustment of synaptic weights wij  in the form of learning (adapted from theory of neural 

networks).  As soon as the synaptic weights are determined, the common sense simulator 

will follow the optimal strategy regardless of unexpected changes in the external world. 

 It should be noticed that the advantage of the quantum implementation is not only 

in simulation of true randomness, but also in exponential increase of information 

capacity.  Indeed, combining the direct product decomposability and entanglement,, one 

can represent the unitary matrix in Eq. (5) as follows: 

 

   U = U1
1( ) ⊗Un

1( )( ) • U12( ) ⊗Un
2( )( ) U1

m( )⊗Un
m( )( )   (20) 

 

Here the number of independent components is: 

 

  q = 4nm         (21) 
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while the dimensionality 

 

  N = 2n = 2q / 4m        (22) 

 

In Eq. (22), N and q are associated with the Shannon and the algorithmic complexity, 

respectively;  therefore, the exponential Shannon complexity is achieved by linear 

resources. 

 Further compression of Shannon information can be obtained by applying the 

   −measurement  architecture [3]  when each step of the quantum evolution is repeated 

and measured    times, and during a reset operation the results of all the measurements are 

combined with the previous state.  As shown in [3], such an architecture provides the 

double-exponential Shannon complexity: 

 

    N = 2q 4m         (23) 

 

 The advantage of the quantum compressions (22) or (23) can be appreciated in 

view of the fact that the efficiency of an alternative device - the pseudorandom number 

generator - rapidly decreases with the growth of the dimensionality of random vectors. 

 Finally, one should notice that QRN provides the simplest physical simulation of 

the four constraints in Eq. (1).  However, even if QRN is replaced by a random number 

generator, the quantum formalism should be preserved since it is the best mathematical 

tool for implementation of these constraints. 

 

2. Spontaneious self-organization 

 We will start the analysis of the motor-mental dynamics, i.e., of Eqs. (5) and (19) 

with the effect of a spontaneous self-organization when the system departs from the state 

of the thermodynamics limit and approches a deterministic state without any external 

forces.  For that purpose suppose that the selected unitary matrix in Eq. (5) is 

 

  U =
1
2
1 −1
1 1
" 
# 
$ 

% 
& 
'        (24) 
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Then the corresponding transition probability matrix in Eq. (1), according to Eq. (6) will 

be doubly-stochastic: 

 

  P =
1
2

1
2

1
2

1
2

! 
" 
# 

$ 
% 
&         (25) 

 

and the stochastic process (1) is already in its thermodynamics limit (3), i.e., π1 = π 2 =
1
2

 

 Let us assume that the objective of the decision-maker is to approach the 

deterministic state 

    

  π1 = 1, π 2 = 0        (26) 

 

without help from outside.  In order to do that, he should turn to his experience in the 

form of the feedback (17).  If he chooses this feedback in the form: 

 

  a = a1, a2( ), a1 = −2π 1, a2 = 1      (27) 

 

then, according to Eqs. (11-16), the new transition probability matrix pij  will be: 

 

  
p11 =

π1
2

2π 1
2 − 2π 1 + 1

, p12 =
1− π1( )2

2π1
2 − 2π 1 + 1

p21 =
π 1 + 1( )2

2π1
2 + 2

, p22 =
1− π 1( )2

2π 1
2 + 2

    (28) 

 

Hence, the evolution of the probability π1  now can be presented as: 

 

  π1
n+ 1( ) = π1

n( )p11 + 1 −π n( )( )p21       (29) 
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in which p11 and p22  are substituted from Eqs. (28). 

 It is easily verifiable that 

 

  π1
∞ = 1, π 2

∞ = 0        (30) 

 

i.e., the objective is achieved due to the “internal” feedback (27). 

 

3. Attraction to common sense based strategies. 
 Classical artificial intelligence as well as artificial neural networks are effective in 

a deterministic and repetitive world, but faced with uncertainties and unpredictabilities, 

both of them fail.  At the same time, many natural and social phenomena exhibit some 

degree of regularity only on a higher level of abstraction, i.e., in terms of some invariants.  

For instance, each particular realization of a stochastic process can be unpredictable in 

details, but the whole ensemble of these realizations i.e., “the big picture” preserves the 

probability invariants (expectation, moments, information, etc), and therefore, predictable 

in terms of behavior “in general.” 

 In this section we will map the hetero-associative memory problem performed by 

artificial neural nets onto the patterns which represent stochastic processes, namely:  store 

a set of m stochastic processes given by vectors of their probability distributions 

 

    π
i( ) = π 1

i( ),π 2
i( )…π N

i( ), i = 1, 2,…m      (31) 

 

in such a way that when presented with any of the process 

π( j ) = π1
( j ) , π2

( j ) ,...π( j )3 , j =1,2,...m  out of the set of M 

processes:  

    π
∗ j( ) =π 1

∗ j( ),π 2
∗ j( ),…π N

∗ j( ), j = 1,2,…M,     (32) 

the coupled motor-mental dynamics (5), (19) converges to one of the stochastic processes 

(31). 

 The performance 
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    π
∗ i( ) →π∗ i( ), i = 1,2,…m;       (33) 

 

represents correspondence between two classes of patterns, i.e., a hetero-associative 

memory on a high level of abstraction.  Indeed, each process in (33) stores an infinite 

number of different patterns of behaviors which, however, are characterized by the same 

sequence of invariants (31) and (32), respectively thereby representing a decision making 

strategy. 

 Hence, if the strategy of the decision-maker is characterized by a pattern π∗ i( )  from 

(32), and starting from t=0, the external information becomes unavailable, he should 

change its strategy from the pattern π∗ i( )  to the corresponding pattern from (31), and that 

can be associated with a decision based upon common sense.  It is implied that the 

attracting strageties π i( )  are sufficiently  “safe”, i.e., they minimize the risk taken by the 

decision-maker in case of an uncertain external world. 

 The first step in the implementation of the mapping (33) is to find the transition 

probability matrix P such that 

  
  
π i( ) = π∗ i( ) P π∗ 1( ),π∗ 2( )…π∗ m( )# 

$ % 
& 
' ( 

      (34) 

 This implies that the sought stochastic process is supposed to approach its limit state in 

one step, i.e., 

  π∗ i( ) t +τ( ) = π∗ i( ) t + 2τ( ) = π∗ i( ) ∞( ) = π i( )     (35) 

 

Therefore, P must have the following form: 

 

  

  

P =

π 1 … π N

π 1 … π N

 
π 1 … π N

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, 0 < πi < 1, πi
i=1

N

∑ = 1     (36) 

 

where the vector   π = π 1,…π N( ) belongs to the family of the vectors π i( )  in Eq. (35). 
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 Indeed, then any arbitrary probability vector 

 

  
  
Χ = x1, x2 ,…xN( ), xi

i
∑ = 1       (37) 

 

is mapped onto the vector   π = π 1,…π N( )  in one step. 

 

 Let us assume that the vector    π = π 1,…π N( )  is representable as a direct 

product of n two-dimdensional vectors.  

 

    π1,π 2…π N( )→ π 1 1 − π1( )⊗…⊗ π n, 1 −π n( )    (38) 

 

     n = og2N        (39) 

 

Obviously this assumption imposes constraints upon the components of the vector π , and 

as a result, this vector can be defined only by   og2N  (out of N) independent parameters 

  π j , i = 1,2,…n  . 

 

Now Eq. (36) reduces to 

 

   
  
P =

π 1 1 −π 1

π 1 1 −π 1

# 
$ 
% 

& 
' 
( ⊗…⊗

π n 1−π n

π n 1−π n

# 
$ 
% 

& 
' 
(    (40) 

 

 

where 

 

   p11
k( ) = p21

k( ) = π k, p12
k( ) = p22

k( ) = 1 −π k   
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 The next step in the implementation of the mapping (33) is to express the 

components of the matrix (40) via the components of the unitary operator Uij  (see Eq. 

(5)) and the interference vector (10).  For that purpose, let us choose Uij and ! α   as 

follows: 

 

  

  

U =

1 0 … 0
0 1  0
… … … …
0 … 0 1

! 

" 

# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 

=
1 0
0 1
! 
" 
# 

$ 
% 
& ⊗

1 0
0 1
! 
" 
# 

$ 
% 
& ⊗…⊗

1 0
0 1
! 
" 
# 

$ 
% 
&   (41) 

 

 

  
  
! a = a1,a1 1( ) + iβ1 1( )( )⊗…⊗ an, a1 n( ) + iβ1 n( )( )     (42) 

 

Then, according to Eqs. (11)-(16), 

 

  

p11k =
ak + 1

ak + 1
2
+ ak 1( )

2 + bk 1( )
2

= π k = p21k( ) =
ak

2

ak
2
+ ak 1( ) + bk 1( ) + 1

2 k = 1, 2,…n
 (43)  

However, the components of the interference vector, αk ,α k 1( )   and βk 1( )  cannot be 

chosen independently since they should explore the equality (43) as well as the 

conditions: 

 

  Imak = 0, Imak 1( ) = 0, Imbk 1( ) = 0      (44) 

 

Simple algebra leads to the following constraints imposed upon the interference vector: 

 

    ak > −1, k = 1, 2,…n        (45) 

 

  ak 1( ) =
ak4

2 ak + 1( )2
−
ak2 + 1( )
2

      (46) 
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  βk 1( ) = ak
2 − ak 1( )

2        (47) 

 

Now the components π k  in Eq. (43) can be expressed via the only one component of the 

interference vector: 

 

  π k =
ak + 1( )2

ak + 1( )2 + ak
2 , 1− π k =

ak2

ak + 1( )2 + ak
2 = ˜ π k    (48) 

 

It is easily verifiable that ˜ π k  is a sigmoid function of ak : 

 

 ˜ π k = S ak( ) since ∂
˜ π k
∂ak

≥ 0, ˜ π k 0( ) = 0; ˜ π k ∞( ) =
1
2

    (49) 

 

and that property will be exploited later. 

 The final step is to implement the actual association between  the patterns in the 

mapping (33), i.e., to find the appropriate dependence between the components π k  of the 

matrix (40) and the components of the pattern π∗ i( ) .  Since π k  are uniquely defined by ak  

(see Eqs. (48)), we will start with representing ak  as linear combinations of the 

components of the initial patterns π∗ j( )  in the mappint (33) for each jth  association: 

 

 
  
ak

j( ) = wik
i=1

N

∑ π i
∗ j( ), j = 1, 2…m; k = 1,2,…n      (50) 

 

where wik  are constant weights to be found, m is the number of associations in Eq. (33), 

N and n are the dimensionalities of the input pattern π∗ i( )  and the output pattern π j( ) , 

respectively.  

 Eq. (50) can be written in the matrix form 
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 Amn =WnN Π mN         (51) 

 

and therefore, the matrix WnN  of the weights can be explicitely expressed via the matrix 

Amn , i.e., via the components of the interference vector ak
j( ) : 

 

  WnN =
AmnΠ NN

−1 if m = N , detΠ ≠ 0 (52)
Amn ΠΤΠ( )−1ΠΤ if m > N (53)
% 
& 
' 

( ' 
 

 

Eq. (52) presents the exact solution, while Eq. (53) gives a minimum norm 

approximateion for the case when the number of association is larger than the 

dimensionality of the input patterns π∗ j( ) . 

 Since ak
j( )  can be expressed via the probabilities π k

j( )  of the transition probability 

matrix (38) by means of Eq. (48): 

 

   al
j( ) =

2 ˜ π k
j( ) ± 12 ˜ π k

j( )2 − 4 ˜ π k
j( )

2 1− 2 ˜ π k
j( )( )

    (54) 

 

(one can choose either of two values),  the problem is solved in a closed analytical form.  

Indeed, given the associations (33), one finds the corresponding ak
j( )  by Eqs. (54), and 

then the weights wij  depend upon all the values of the input patterns π k
∗ j( )  (via the matrix 

Π ) and the output patterns π k
j( )  (via the matrix A). 

 As soon as the weights wij  are found, Eq. (19) can be represented in the following 

form: 

  
  
πi
∞ = S wikπ k

o

i=1

N

∑$ % & 
' 
( ) 
, i = 1, 2,…N      (55) 

 

where  πi
∞ = π i t→∞( ), π k

o = π t = 0( )      (56) 
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and the sigmoid function S is defined by Eq. (49). 

 

Eq. (55) has a form of a perceptron for hetero-associative memory.  Exploiting this 

formal analogy, one can conclude that any input pattern π o  which is sufficiently close to 

a pattern π i( )  from the left of Eq. (33) will recall the output pattern which is close to the 

corresponding associative pattern π∗ i( )  from the right of Eq. (33).  Moreover, due to the 

contracting property of the sigmoid function S in Eq. (55), the distance between the 

output patterns will be smaller than between the input ones.  In particular, several 

different inputs can be mapped onto the same output, and that can be interpreted as a 

classification problem. 

 However, from the cognitive viewpoint, Eq. (55) is fundamentally different from 

the perceptron since it not only manipulates with the patters of probabilities, but it also 

simulates them via the QRN.  Indeed, Eqs. (50) defines the interference vector ! a  (see 

Eqs. (42)) which control the unitary evolution of QRN (see Eqs. (5) and Eq. (41)) in such 

a way that the generated stochastic process has exactly the same probability distribution 

as prescribed by the probability pattern π∞  manipulated by Eq. (55). 

 

4. Discussion and Conclusion 

 The model introduced above can be generalized in several ways. 

 First we will consider the case when the decision-maker controls two different, 

but correlated processes by making choices for combinations of decisions with the joint 

probabilities πij .  As mentioned in the Introduction, the quantum implementation of 

stochastic processes, i.e., QRN, allows one to stay with the same evolutionary operator 

(41) with the only difference that now each step in QRN evolution should be run and 

measured twice, and then the results of these measurements, being combined with the 

interference vector (10) and normalized, are sent back as a new input.  The sequences of 

the first and the second measurements correspond to the joint strategy for making 

decisions controlling two correlated processes.  The physical origin of this correlation is 
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quantum interference between the results of measurements after they are combined for a 

new input and subjected to the next step of unitary evolution. 

 Following the same methodology as those for a simple strategy, let us present a 

brief schetch of the double-strategy model and start with the assumption similar  to Eq. 

(38): 

 

  π11,π12,…π NN( )→ π 11
1( ),π 12

1( ),π21
1( ),π 22

1( )( )⊗…⊗ π 11
n( ),π 12

n( ),π 21
n( ),π 22

n( )( )    (57) 

 

Then  one can deal with each 2x2 evolutionary operator in Eq. (41) separately.  Any of 

these operators gives rise to the following transition probability matrix: 

 

   P =

p1111 p1112 p1121 p1122

p1211 p1212 p1221 p1222

p2111 p2112 p2121 p2122

p2211 p2212 p2221 p2222

! 

" 

# 
# 
# 
# 

$ 

% 

& 
& 
& 
& 

     (58) 

 

where   
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p1111 =
1+ a1

4

1 + a1
2

+ a2
2( )2
, p2222 =

1+ a2
4

a1
2

+ 1+ a2
2( )

p1122 =
a2

4

1+ a1
2

+ a2
2( )

2 , p2211 =
a1

4

a1
2

+ 1+ a2
2( )

2

p11
12 =

1 + a1
2 a2

2

1+ a1
2( ) + a2

2 = p11
21 , p22

12 =
a1

2 1+ a2
2

a1
2

+ 1+ a2
2( )

2 = p22
21

p1211 = p2111 =

2
2

+ a1
4

1
2

+ a1
2

+
1
2

+ a2
2! 

" 
# 

$ 

% 
& 

2 , p1222 = p2122 =

1
2

+ a2
4

1
2

+ a1
2

+
1
2

+ a2
2! 

" # 
$ 

% & 

p1212 = p1221 = p2112 = p2121 =

1
2

+ a1
2 1

2
+ a2

2

1
2

+ a1
2

+
1
2

+ a2
2! 

" 
# 

$ 

% 
& 

2

 (59) 

π̂( j ) In order to reduce the matrix (58) to the form (36), one has to provide the following 

equalities: 

 

  
p11
11 = p12

11 = p21
11 = p22

11, p11
12 = p12

12 = p21
12 = p22

12

p1121 = p1221 = p2121 = p2221 , p1122 = p1222 = p2122 = p2222
    (60) 

 

Analysis of Eqs. (59) shows that only the four (our of twelve) equalities, namely 

 

  p11
11 = p22

11 = p12
11 , p22

22 = p11
22 = p12

22      (61) 

 

must be enforced since the rest of them will follow automatically.  Hence, one has to 

choose the four components of the interference vector 

 

  ! a = a1,a2( ); a1 = a1 1( ) + ib1 1( ); a2 = a2 1( ) + b2 1( )    (62) 

 

to enforce the four equalities in (61). 
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 In principle, the problem is solvable, however, unlike the previous case (see Eqs. 

(45)-(47)) a closed form analytical solution is not available any more.  A numerical 

solution can be based upon methods of gradient-descent.  As a result, one arrives at the 

generalized model of motor-mental dynamics: 

 

  ai t + τ( ) = σ2 Uij t( )aj t( )∑{ }       (63) 

 

    πij t +τ( ) = S wijkπ k t( )∑[ ]       (64) 

 

where σ2  is a two-measurements operator. 

 Now the vector ai  simulates two correlated stochastic processes (corresponding to 

the first and the second measurements, respectively) whose joint probability πij  is 

described by Eq. (64).  Eqs. (63) and (64) are coupled in the same way in which Eqs. (5) 

and (19) are. 

 Further generalization to the case of    > 2( )  correlated strategies will require to 

replace 2x2 components of unitary operators by   x  components in the decomposition 

(41).  As a result of that, the decomposition (57) should be changed accordingly. 

 The second line of generalization of the model considered in the previous section 

is associated with an objective function.  Indeed, so far we did not discuss how the limit 

strategy πi
∞  (see Eq. (55)) has been prescribed.  In principle, such a prescription can be 

based upon the optimization of some objective function, for example:  maximize entropy 

subject to a given expectation and variance, or minimize the expected cost function:    

  E = cj
j=1

N

∑ π j
∞         (65) 

 

subject to the constraints: 

 

  0 < π j
∞ < 1, π j

∞ = 1
j=1

N

∑       (66) 
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where cj  are given weights representing the “external world.”  This minimization can be 

performed by linear programming, and as a result, the limit probability will be defined by 

the weights: 

 

    πi
∞ = fi c1,c2 ,…cN( )        (67) 

 

 However, in general, the weights ci  can represent the probability distribution of 

another stochastic process (on a much slower time scale) which belongs to a family of 

strategies converging to a global strategy in a way similar to the mapping (53).  By 

continuing this process, one arrives at a hierarchy of stochastic attractors leading from 

local to global strategies on the higher an higher levels of abstraction.  Such a hierarchy 

can be implemented by a set of master-slave equations of the type of (5) and (19). 

 In many practical cases, the objective function depends upon the outcome 

probabilites π j
∞ , and then Eqs. (65), (66) are coupled with Eqs. (5) and (19).  This 

happens for instance, when the external world is represented by another decision-maker, 

and that situation can be interpreted as an evolutionary game.   

 Let us consider two decision-makers (players) and suppose that the first player’s 

objective is to maximize the expected payoff after β  number of moves: 

 

  E = αij
i, j=1

N

∑
k=0

β

∑ π ij t + kτ( )       (68) 

 

  αij = Const, 0 < π ij < 1, π ij
i , j

N

∑ = 1      (69) 

 

where πij  are joint probabilities that the players will use the strategies   i and j  

respectively. 

 Then the objective of the second player is to minimize the maximum of E. 

 If the objective (68), (69) is available to both players each of them can find the 

best strategy (for instance by applying the methods of dynamical programming) and to 
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implement it by simulations of Eqs. (63) and (64).  However, it may happen that the 

players do not know exactly the objective.  For instance, in the beginning they may 

ignore the correlation between their strategies assuming that 

 

  πij = π i
Iπ j

II         (70) 

 

where πi
I and π j

II  are the independent probabilities that each player will use a certain 

strategy. 

 Then each player will have its own image of the objective: 

 

 ! E = α ij
1

i, j =1

N

∑
k= 0

β

∑ πi
I t + kτ( )π j

II t + kτ( )       (71) 

 

 

 E11 = αij
11π i

I

i, j=1
∑

k=0

β

∑ t + kτ( )π j
II t + kτ( )      (72) 

 

and, based upon that, he will execute his strategy by running the corresponding version of 

Eqs. (63) and (64).  After  β  number of moves, the feedback from the external world 

becomes available, and the players can evaluate their performance by comparing the 

differences: 

 

 ! Δ = ! E − E, ! ! Δ = ! ! E − E        (73) 

 

Based upon these differences, each of them can update the coefficients ! α ij and ! ! α ij  in 

their objectives (71) and (72) respectively, and introduce correlations between 

πi
I and π j

II .  (Such a re-evaluation of the objective can exploit the methodology of 

Bayes’ procedures). 

 Consequently, the player who has better images of the self and of the adversary 

has a better chance to win. 
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 Thus we have introduced a new dynamical paradigm in the form of coupled motor 

and mental dynamics which is represented by a quantum generator of stochastic 

processes controlled by nonlinear Markov chains.  Based upon this paradigm, a quantum 

decision-maker has been proposed.  New dynamical phenomena, namely spontaneous 

self-organization, attraction to common sense strategies, and a new approach to 

simulation of evolutionary games have been discussed. 
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