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                                                                                 ABSTRACT  

 Steady current circuits are not closed in all cases if we continue to define current in its usual sense. In 

high frequency current oscillations current changes along its path even if there is no net charge 

oscillations. To bring these into mathematical framework, Maxwell’s equations of electrodynamics are 

generalized extending the equation of continuity. This generalization led to prediction of electro-

magnetic scalar radiations to be emitted along with the usual electromagnetic radiations. Calculation for 

these radiations was undertaken for dipole antennas under no assumed charge distributions. Substantial 

amount of electro-magnetic scalar radiations are shown to be emitted at high frequency current 

oscillations revealing directional property like electromagnetic radiation with maximum intensity not 

along the perpendicular bisector of the antenna but along the direction of its alignment. 

 

I. Introduction 

     The science of electricity began with study of interactions between static charge distributions and 

forces between steady current circuits. In all these circuits the flow stream of charges are taken to be 

closed on itself. But in certain generators and some media forming parts of such circuits , the cross 

section of the flow stream of charges is not well defined. The cathode of vacuum tube devices receives 

conduction electrons in one side, which then get merged into the sea of valence electrons. On the other 

side, electrons come out of the surface of cathode through thermionic emission to maintain the current 

in the circuit. In npn transistor some of the incoming electrons to the p-type material of the base get 

trapped by the holes at the entry point. Close to the exit point some covalent bonds are ruptured to 

generate electrons and holes of which the electrons flow out of the base to maintain the base current. 

The behavior of such media can be viewed as reducing current to zero value at the entry point without 

any charge deposit and giving rise current at the exit point with no depletion of any charge deposit. This 

aspect along with certain other aspects to be discussed in the following section can be included in the 

mathematical framework of classical electrodynamics through generalization of equation of continuity 

of charge flow given as   



                                                       ∇⃗⃗ .𝐽 + 
𝜕𝜌

𝜕𝑡
=0                                                                         (1.1) 

Where  𝐽  and 𝜌 are current density and charge density respectively. This can be done through 

generalization of Maxwell’s equations of electrodynamics.  

II. Generalization of Maxwell’s equations                                                                                  

The field around charged matter is  visualized by drawing a set of diverging electric field lines starting 

from every positively charged particle and a set of converging electric field lines ending at every 

negatively charged  particle. Amount of charge within a region of space is determined through the 

electric flux over the surface enclosing the region. If the flux over the region varies in time changing 

between outward and inward flux periodically, we infer that charge distribution in the region is changing 

its sign with the same period. 

                         Concentric circular magnetic lines of force can be imagined to exist around a straight 

conductor carrying a steady current. If the current changes in time alternating in sign the magnetic field 

lines change accordingly to generate circular electric field lines. These field lines in turn, because of its 

time variation generate magnetic field lines. The coupled electric and magnetic field lines go out into 

space leaving behind the oscillating current and are called electromagnetic radiation. In a similar 

manner if a charge oscillation exists at a point without being translated to a current or, a time varying 

current undergoes a change along its path failing to bring a net charge oscillation at the point of change, 

alternately converging and diverging electric field lines are generated to propagate outwards into space. 

This is manifested as a coupled radial electric field and a magnetic scalar field to be named as electro-

magnetic scalar radiation. 

                Electromagnetic radiation was predicted when Maxwell included eq. (1.1) into the then existing 

equations of electrodynamics to deduce a set of four field equations known as Maxwell’s equations. The 

relation does not allow visualization of converging or diverging electric field lines in space unless they 

surround charged matter. One case may be examined where it fails to reveal the physical realities.  From 

Maxwell’s equations it follows that electric and magnetic fields are generated owing to rapid variations 

of current and charge distributions in some region of space. The current in metallic conductors is 

established due to drift speed of valence electrons, a combined effect of electric field in the material of 

the conductor owing to the dc or ac sources and charges developed on the surface of the conductor  [1]  

,  and collision of the accelerating electrons against the thermal vibrations of the metal . For the current 

to pile up charges along its flow stream, the valence electrons are to travel 10 to 100 atomic distances or 

more before the applied electric field changes its direction. In the microwave frequency range this 

condition is rarely satisfied. For example, with source frequency of 10 GHz, electric field of rms value 

1000 volt/m, relaxation time of 2 × 10−14  s the distance travelled is 3. 5 × 10−10m, about three atomic 

diameters. Thus in these high frequency range of oscillation of applied electric field, the relation (1.1) is 

rarely satisfied. Hence Maxwell’s equations need be generalized to include such behavior of charged 

materials at high frequencies of current oscillation. Such generalization can conveniently be brought 

about if studies on electrodynamics would begin with the inhomogeneous potential wave equations 

given below. 



                                                                   ∇2𝐴 −  𝜀𝜇
𝜕2𝐴 

𝜕𝑡2  =  −𝜇𝐽                                               (2.1)    

                                                                   ∇2Φ −  𝜀𝜇
𝜕2Φ

𝜕𝑡2 = −
𝜌

𝜀  
                                              (2.2)        

where  𝐴  (𝑟  ,t ) is the vector potential  and Φ (𝑟  , t )  is the scalar potential . 𝜀 and 𝜇 are respectively the 

electrical permittivity and magnetic permeability of the medium in which the potential functions prevail. 

The solutions of eq. (2.1) and eq. (2.2) are [2]  given as below. 

𝐴 (𝑟,⃗⃗ 𝑡) =
𝜇

4𝜋
∫

𝐽 (r⃗ ′,t−
|r⃗ −r⃗ ′|

c
)

|𝑟 −𝑟′⃗⃗  ⃗|
dτ′                                                                                                              (2.3) 

Φ(𝑟,⃗⃗ 𝑡) =
1

4𝜋𝜀
∫

ρ(r⃗ ′,t−
|r⃗ −r⃗ ′|

c
)

|𝑟 −𝑟′⃗⃗  ⃗|
dτ′                                                                                                            (2.4) 

 

Three physical fields - electric field, 𝐸⃗ (𝑟 , 𝑡),magnetic field,𝐵⃗ (𝑟 , 𝑡) and magnetic scalar field 𝑆(𝑟 , 𝑡) can be 

obtained from the potential functions as given in the following. 

𝐸⃗ = −(∇⃗⃗ Φ +
𝜕𝐴 

𝜕𝑡
)                                                                                                                                  (2.5) 

𝐵⃗ = ∇⃗⃗ × 𝐴                                                                                                                                                 (2.6) 

𝑆 = −(∇⃗⃗ . 𝐴 + εμ
∂Φ

∂t
)                                                                                                                             (2.7) 

These fields, following eq. (2.1) and eq.(2.2)can be found to satisfy the following equations, the first four 

of which shall be called generalized Maxwell’s equations. 

∇⃗⃗ . 𝐸⃗ =
1

𝜀
(𝜌 + 𝜀

𝜕𝑆

𝜕𝑡
)                                                                                                                                 (2.8) 

∇⃗⃗ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
                                                                                                                                           (2.9) 

∇⃗⃗ . 𝐵⃗ = 0                                                                                                                                                    (2.10)             

∇⃗⃗ × 𝐵⃗ − 𝜀𝜇
𝜕𝐸⃗ 

𝜕𝑡
= 𝜇 (𝐽 −

∇𝑆

𝜇
)                                                                                                                  (2.11) 

∇2𝐸⃗ − 𝜀𝜇
𝜕2𝐸⃗ 

𝜕𝑡2 = 𝜇 (
𝜕𝐽 

𝜕𝑡
+

1

𝜀𝜇
∇⃗⃗ 𝜌)                                                                                                            (2.12) 

                

∇2𝐵⃗ − 𝜀𝜇
𝜕2𝐵⃗ 

𝜕𝑡2 = −𝜇(∇⃗⃗ × 𝐽 )                                                                                                                  (2.13) 



∇2𝑆 − 𝜀𝜇
𝜕2𝑆

𝜕𝑡2 = 𝜇 (∇⃗⃗ . 𝐽 +
𝜕𝜌

𝜕𝑡
)                                                                                                               (2.14) 

Writing  

                          −
∇⃗⃗ S

𝜇
= 𝐽 𝐹                                                                                                                      (2.15) 

and                    𝜀
𝜕𝑆

𝜕𝑡
= 𝜌𝐹                                                                                                                     (2.16) 

eq.(2.14) can be cast in the following form. 

∇⃗⃗ . (𝐽 + 𝐽 𝐹) +
𝜕(𝜌+𝜌𝐹)

𝜕𝑡
=0                                                                                                                      (2.17)  

𝐽 𝐹  and 𝜌𝐹 can be called dynamic current density and dynamic charge density respectively and eq.(2.17) 

may be taken as a statement of generalized equation of continuity. One can call the statement as 

generalized charge conservation relation. The generalized Maxwell’s equations, eq. (2.8) to eq. (2.11) 

are Lorentz invariant and  𝐽 𝐹 ,𝜌𝐹  define a current four vector. S is a Lorentz scalar. 

    The generalized Maxwell’s equations have been obtained and discussed earlier [3] 𝑎𝑛𝑑  [4] . They 

have derived an equation for conservation of energy of electrodynamic fields, which is stated as below. 

 𝐽⃗⃗ . 𝐸⃗ +
1

𝜀𝜇
𝜌𝑆 = −

𝜕(
𝜀𝐸2

2
+

𝐵2

2𝜇
+

𝑆2

2𝜇
)

𝜕𝑡
− ∇⃗⃗ . (𝐸⃗ ×

𝐵⃗ 

𝜇
− 𝐸⃗ 

𝑆

𝜇
)                                                                      (2.18) 

   The generalized Poynting vector 𝒫⃗ = 𝐸⃗ ×
𝐵⃗ 

𝜇
− 𝐸⃗ 

𝑆

𝜇
  will now comprise of two distinct types of 

radiations-electromagnetic and electro-magnetic scalar radiations. In the following sections a few simple 

cases are considered to show how eq.(2.17)leads to electro-magnetic scalar radiation apart from the 

usual electromagnetic radiation. 

III.Radiations from dipole antenna 

Centre-fed and multiple-fed dipole antennas are now in wide use and they appear in text books[5]  

,[6].Radiations from these antennas have been calculated in several works. Current  distribution in them 

have been experimentally determined and charge distribution along their length have been calculated in 

conformity with eq.(1.1).The radiations from the antennas are all shown to be electromagnetic in 

nature. A large number of experiments have conformed to the theoretical findings. In what follows I 

consider the antennas with the same current distributions but without assuming any net charge 

oscillations as required by eq.(1.1).The details are shown for a half wave dipole antenna.     
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  In Fig.(1) MN is the dipole antenna  of length l. It has its midpoint at O .This point is taken as the origin 

of co-ordinate axes with z-axis along the dipole.  Point D of position vector  𝑟   is observation point of the 

fields. The current distribution along the antenna, I(z,t) is taken as 

𝐼(𝑧, 𝑡)𝑎 𝑧  = 𝐼0 cos (
𝜔𝑧′

𝑐
) cos𝜔𝑡 𝑎 𝑧   = 𝐼(𝑧) cos𝜔𝑡 𝑎 𝑧                                                       (3.1) 

The variation of current amplitude along the antenna is given in Fig.(2). The length of antenna is  
𝜆

2
 

where 𝜆 is free space wavelength corresponding to the angular frequency 𝜔 of current oscillation. The 

current is driven by external time varying source fed at the centre of the dipole. The vector and scalar 

potential functions for the aforesaid current distribution and no charge distribution are given using 

eq.(2.3) and eq.(2.4)to be 

  Φ=0                                                                                                                                                         (3.2) 

𝐴 (𝑟,⃗⃗ 𝑡) =
𝜇𝐼0

4𝜋
  𝑎⃗⃗⃗  𝑧 ∫

cos(
𝜔𝑧′

𝑐
) cos𝜔(𝑡−

|𝑟⃗⃗ − 𝑎⃗⃗  ⃗𝑧𝑧′|

𝑐
)

  |𝑟 − 𝑎⃗⃗  ⃗𝑧𝑧′|

+
𝑙

2   

−
𝑙

2

𝑑𝑧′                                                                            (3.3)     

For observation point far away from the dipole such that 

   𝑙 ≪ 𝑟                                                                                                                                                      (3.4) 

|𝑟 −  𝑎⃗⃗⃗  𝑧𝑧′|=√𝑟2 + 𝑧′2 − 2𝑟𝑧′ cos 𝜃 ≅ 𝑟 − 𝑧′ cos 𝜃                                                                         (3.5)                                    

1

|𝑟 − 𝑎⃗⃗  ⃗𝑧𝑧′|
≅

1

𝑟
(1 +

𝑧′ cos𝜃

𝑟
)                                                                                                                     (3.6) 

Using eq.{3.5) and eq.(3.6)eq.(3.3) simplifies to 



𝐴 (𝑟,⃗⃗ 𝑡) =
𝜇𝐼0

4𝜋
 
cos𝑤

𝑟
𝑓1(𝜃)(cos𝜃𝑎⃗ 𝑟−sin𝜃𝑎⃗ 𝜃)                                                                                       (3.7) 

Where           𝑤 = 𝜔(𝑡 −
𝑟

𝑐
)                                                                                                           (3.8) 

𝑓1(𝜃)=2 ∫ cos (
𝜔𝑧′

𝑐
) cos (

𝜔𝑧′ cos𝜃

𝑐
) 𝑑𝑧′

𝑙

2   
0

                                                                                      (3.9) 

and           𝑎⃗⃗⃗  𝑧 = (cos 𝜃𝑎 𝑟 − sin𝜃𝑎 𝜃)                                                                                            (3.10) 

Following definitions in eq.(2.5),(2.6) and (2.7) ,  the three fields are obtained  from the expression of 

vector potential in eq.(3.7) as given below. 

𝐸⃗ (𝑟 , 𝑡) =
𝜇𝜔𝐼0

4𝜋
 
sin𝑤

𝑟
𝑓1(𝜃)(cos𝜃𝑎⃗ 𝑟−sin𝜃𝑎⃗ 𝜃)                                                                                    (3.11) 

𝐵⃗ (𝑟 , 𝑡) =
𝜇𝐼0
4𝜋

{𝑓1(𝜃) sin 𝜃 (−
𝜔

𝑐𝑟
sin𝑤 +

cos𝑤

𝑟2
) −

cos𝑤

𝑟2
cos𝜃

𝜕𝑓1
𝜕𝜃

}𝑎 𝜑 

                                                                                                                                                            (3.12)      

                                                                                                                                

𝑆(𝑟 , 𝑡) = − 
𝜇𝐼0

4𝜋
{𝑓1(𝜃) cos 𝜃 (

sin𝑤

𝑐𝑟
+

cos𝑤

𝑟2 ) − (2 cos𝜃 𝑓1(𝜃) + sin𝜃
𝜕𝑓1

𝜕𝜃
)

cos𝑤

𝑟2 }     

                                                                                                                                                           (3.13)  

The terms in the above expressions falling as   
1

𝑟
 𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are called far field terms and they only 

contribute to radiation. These terms are given below. 

𝐸⃗ (𝑟 , 𝑡) =
𝜇𝜔𝐼0

4𝜋
 
sin𝑤

𝑟
𝑓1(𝜃)(cos𝜃𝑎⃗ 𝑟−sin𝜃𝑎⃗ 𝜃)                                                                                   (3.14) 

𝐵⃗ (𝑟 , 𝑡) =
𝜇𝐼0

4𝜋
{𝑓1(𝜃) sin 𝜃 (−

𝜔

𝑐𝑟
sin𝑤)}𝑎 𝜑                                                                               (3.15) 

𝑆(𝑟 , 𝑡) = − 
𝜇𝐼0

4𝜋
{𝑓1(𝜃) cos 𝜃 (

sin𝑤

𝑐𝑟
)}                                                                                                                                            (3.16) 

𝒫⃗ = 𝐸⃗ ×
𝐵⃗ 

𝜇
− 𝐸⃗ 

𝑆

𝜇
= 𝒫⃗ 𝑒𝑚 + 𝒫⃗ 𝑒𝑠                                                                                                   (3.17)   

Where,  𝒫⃗ 𝑒𝑚 =
𝜇𝐼0

2

16𝜋2𝑐
𝜔2 𝑠𝑖𝑛2𝑤

𝑟2 𝑠𝑖𝑛2𝜃𝑓1
2(𝜃)𝑎 𝑟                                                                       (3.18)                   

  𝒫⃗ 𝑒𝑠 =
𝜇𝐼0

2

16𝜋2𝑐
𝜔2 𝑠𝑖𝑛2𝑤

𝑟2 𝑐𝑜𝑠2𝜃𝑓1
2(𝜃)𝑎 𝑟                                                                                      (3.19) 

For half wave antenna  

𝑓1(𝜃)=2 ∫ cos (
𝜔𝑧′

𝑐
) cos (

𝜔𝑧′ cos 𝜃

𝑐
)𝑑𝑧′

𝜆
4   

0

 



=
2𝑐

𝜔𝑠𝑖𝑛2𝜃
cos (

𝜋

2
cos 𝜃)                                                                                                                      (3.20) 

Average power radiation from the antenna is obtained by integrating the Poynting vector over a sphere 

of radius r centered at the midpoint, o of the antenna. 

𝑃 = ∫(𝒫⃗ 𝑒𝑚 + 𝒫⃗ 𝑒𝑠). 𝑎 𝑟
1

2𝑟2
𝑟2

𝜋

0

sin 𝜃 𝑑𝜃 ∫ 𝑑𝜙

2𝜋

0

 

 

                                   = 𝜋 ∫ (𝒫𝑒𝑚 + 𝒫𝑒𝑠)
𝜋

0
sin𝜃 𝑑𝜃                                                                      (3.21) 

If electromagnetic and electro-magnetic scalar radiations are noted by 𝑃𝑒𝑚  𝑎𝑛𝑑 𝑃𝑒𝑠 respectively, then 

they can be obtained as below. 

𝑃𝑒𝑚 =  𝜋 ∫ 𝒫𝑒𝑚
𝜋

0
sin 𝜃 𝑑𝜃                                                                                                              (3.22) 

𝑃𝑒𝑠 =  𝜋 ∫ 𝒫𝑒𝑠
𝜋

0
sin 𝜃 𝑑𝜃                                                                                                                  (3.23) 

Using eq.(3.18) in eq.(3.22) and eq.(3.19) in eq.(3.23) and solving integrals the following results are 

obtained. 

𝑃𝑒𝑚 =
𝜂𝐼0

2 

4𝜋

1

2
∫

1 − cos 𝑣

𝑣

2𝜋

0

𝑑𝑣 

 

                                                =   
𝜂𝐼0

2 

4𝜋

1

2
  (𝛾 + ln(2𝜋) − 𝐶𝑖(2𝜋))   

                                                =       
𝜂𝐼0

2 

4𝜋
 (1.219)                                                                                 (3.24)                                                                                                        

𝑃𝑒𝑠 =
𝜂𝐼0

2 

4𝜋

𝜋

4
∫

1 − cos 𝑣

𝑣2

2𝜋

0

𝑑𝑣 

−
𝜂𝐼0

2 

4𝜋

1

4
∫

1 − cos 𝑣

𝑣

2𝜋

0

𝑑𝑣 

=
𝜂𝐼0

2 

4𝜋
{
𝜋

4
 𝑆𝑖(2𝜋) −

1

4
(𝛾 + ln 2𝜋 − 𝐶𝑖(2𝜋))}                      

=   
𝜂𝐼0

2 

4𝜋
(0.504 )                                                                                                                                    (3.25)      



In the above expressions    𝛾   is Euler-Mascheroni constant,   𝐶𝑖(2𝜋)    is the cosine integral, 𝑆𝑖(2𝜋) is 

the sine integral and 𝜂 = √
𝜇

𝜀
   ,is the impedance of the medium where the fields prevail. For material-

free space, 𝜂 = 120𝜋 Ω.  It is to be pointed out here that the value of    𝑃𝑒𝑚 is the same as would have 

obtained by restricting to eq.(1.1).  

Similar calculations are made for a few other antennas. The results are presented in the  table-I. 

TABLE-I 

Sl. No. Antenna type Current distribution curve 
𝑃𝑒𝑚/  

𝜂𝐼0
2 

4𝜋
 𝑃𝑒𝑠/  

𝜂𝐼0
2 

4𝜋
 

1 Half wave antenna, centre-fed  
 
 
 
 
 

1.219 0.504 

2 Full wave antenna,offcentre-fed, 
Out of phase 

 
 
 
 
 
 
 

1.557 1.9 

3 Full wave antenna, dual-fed, 
Inphase,symmetric 

 
 
 
 
 
 
 

3.32 0.451 

4 3/2 wave antenna, centre-fed, 
Out of phase 

 
 
 
 
 
 
 

1.758 2.6976 

5 3/2 wave antenna, multiple-fed 
Inphase,symmetric 

 
 
 
 
 
 
 

5.28 0.472 

 



 

 

IV. Discussion 

I. In the calculations I have assumed the average distance between two neighbouring conducting 

electrons is more than the distance travelled by an electron during one period of oscillation of the 

source drifting the electrons. This prevents piling of conducting electrons. 𝐽 ⃗⃗ has different amplitudes 

along the length of antenna due to similar amplitude variation of electric field of the driving source. 

Since  𝐽 = 𝜌𝑢⃗ , periodic alteration of 𝐽 can be due to 𝜌 remaining constant at 𝜌0 while 𝑢 ⃗⃗  ⃗alternates 

with the same period or, equivalently 𝑢⃗⃗⃗   remains constant at some small value  𝑢 ⃗⃗  ⃗0 and 𝜌  oscillates 

about  𝜌0 with time period remaining the same. The latter variation mostly generates electro-

magnetic scalar radiation. Keeping this in mind the calculation has been undertaken. The electric 

field now had radial component besides transverse component and there emerged a new S-field . 

The transverse component of electric field together with magnetic field gave rise to electromagnetic 

radiation same as that would have been obtained imposing relation (1.1).The radial components of 

electric field and the magnetic scalar field gave rise to electro-magnetic scalar radiation, quite 

independent of electromagnetic radiation. The two radiations have directional behavior-the 

electromagnetic radiation is maximum along perpendicular bisector of the antenna while the other 

radiation is maximum along the direction of alignment of the dipole. Further, absorption of energy is 

maximum from the electromagnetic radiation when the receiving antenna is held perpendicular to 

the direction of propagation of energy but in case of the other radiation it is maximum when 

antenna is aligned in the direction of energy propagation. Calculations for different current 

distributions along any given antenna show that electro-magnetic scalar radiation increases when 

electromagnetic radiation falls for a current distribution.  

In regions far away from the charge and current distributions, eq. (2.8) takes the form, 

∇⃗⃗ . 𝐸⃗ = 𝜀
𝜕𝑆

𝜕𝑡
     

as if there exist oscillatory charges of density , 𝜀
𝜕𝑆

𝜕𝑡
 giving rise to alternating converging and diverging 

Coulomb lines of force around the point. These electric field configurations propagate in space at 

speed, c same as that of light. The term, 
1

𝜀𝜇
𝜌𝑆 in the generalized power equation (2.18)suggests that 

there is exchange of energy between S-field and oscillating charge distribution at locations where 

the latter is present  or absent – no charge aggregation even if ∇⃗⃗ . 𝐽 = 0 . 

   In steady current cases there exists a definite gradient of magnetic scalar field, S in the media 

discussed in section-I so as to satisfy ∇⃗⃗ . (𝐽 + 𝐽 𝐹) = 0 with 𝐽 𝐹 = −
∇⃗⃗ 𝑆

𝜇
 . 

V. Conclusion 

Electro-magnetic scalar radiations are predicted by the generalized Maxwell’s equations. The 

electromagnetic radiations are independent of charge distributions as long as the current distribution is 

held fixed while the electro-magnetic scalar radiations depend on the charge distributions.  



Experimental studies need be taken up to measure the radiations from millimeter antennas under 

appropriate alternating high frequency driving source. 
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