Observation on the numbers 4p²-2p-1 where p and 2p-1 are primes

Abstract. In this paper I observe that many numbers of the form $4*p^2 - 2*p - 1$, where p and 2*p - 1 are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = n*d - n + 1; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, others, and Q = n*d - n + 1; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = n*d + n - 1, and I make few related notes.

Observation:

Many numbers of the form $N = 4*p^2 - 2*p - 1$, where p and 2*p - 1 are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = n*d - n + 1; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = n*d - n + 1; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = n*d + n - 1.

Verifying the observation:

(true for the first 27 odd primes p for which 2*p - 1 is also prime)

Note that if p is prime of the form 10*k + 9 than the least prime factor of N is 5 and obviously then N respects the condition (ii) or (iii).

Also note that if d is equal to 11 and Q is of the form 10k + 1 is obviously respected condition (ii).

:	for	р	=	3, N = 29, prime;
:	for	р	=	7, N = 181, prime;
:	for	р	=	19, N divisible by 5;
:	for	р	=	31, N = $19*199$ and $199 = 11*19 - 10;$
:	for	p	=	37, N = $11*491$, d = 11 and Q = $10k + 1$;
:	for	р	=	79, N divisible by 5;
:	for	р	=	97, N = 37441, prime;
:	for	р	=	139, N divisible by 5;
:	for	р	=	157, $N = 29*3389$ and $3389 = 121*29 - 120;$
:	for	р	=	199, N divisible by 5;
:	for	р	=	211, N = $11*16151$, d = 11 and Q = $10k + 1$;
:	for	р	=	229, N divisible by 5;
:	for	р	=	271, N = 293221, prime;
:	for	р	=	307, N = $89*4229$ and $4229 = 47*89 + 46$;
:	for	р	=	331, N = $29*15089$ and $15089 = 503*29 + 502;$

```
for p = 337, N = 453601, prime;
:
     for p = 367, N = 11*48911, d = 11 and Q = 10k + 1;
:
:
     for p = 379, N divisible by 5;
     for p = 439, N divisible by 5;
:
     for p = 499, N divisible by 5;
:
     for p = 547, N = 1195741, prime;
:
     for p = 577, N = 241 \times 5521 and 5521 = 23 \times 241 - 22;
:
     for p = 601, N = 19*75979 and 75979 = 4221*19 - 4220;
:
     for p = 607, N = 11*133871, d = 11 and Q = 10k + 1;
:
     for p = 619, N divisible by 5;
:
     for p = 661, N = 131*13331 and 13331 = 101*131 + 100.
:
```

Notes:

- : Some numbers of this form meet another condition, i.e. they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d - n + m)/m, or respectively Q = (n*d + n - m)/m. An example: for p = 691, N = 149*12809 and 12809 = (427*149 + 427 - 5)/5;
- Some numbers of this form meet yet another condition, i.e. they are equal to d*Q, where d is the least prime factor and Q the product of the others, and the number Q - d + 1 is prime or respectively the number Q + d - 1 is prime. An example: for p = 727, N = 139*15199 and 15199 -139 + 1 = 15061, prime.