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Abstract

It is a new theory based on an algorithmic approach. Its only element
is called nokton. These rules are precise. The infinities are completely
absent whatever the system studied. It is a theory with discrete space
and time. The theory is only at these beginnings.
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1 Introduction

For centuries physicists unsuccessfully seek a theory that works everywhere.
Currently some theories are good candidates to see this search through, but
everyone knows there’s still some way to go. As a computer scientist I was
tempted by a different approach stemming my domain. Why not the universe
which we know is only a huge computer which works according to its own rules ?
The current document is an introduction certainly without revolutionary results



Figure 1: Evolution of the position of a nokton

but at least describes a theory which works everywhere that I baptized nokton
theory.

The nokton theory is inspired by a computer operation where the core is a
simple program based on elements called noktons. At its start, the computer
loads a finite number of noktons. Each Nokton has an initial state. Then in
every iteration its status evolves according to precise rules. There is a rule that
describes the evolution of the position, a rule that describes the evolution of the
speed ...

To illustrate an example of a evolution rule of the position, we are going
to imagine (in 2D) a nokton initially at a well defined position saying (X1, Y7).
In the next step, we assume that the evolution rule of position does not allow
to choose any position but one of the closest positions and equidistant. If
we suppose that the space is discreet with a step equal to 1, then the closest
positions and equidistant are (X;—1,Y7), (X1+1,Y7), (X1,Y1—-1) et (X1, Y1+1).
Thus the nokton sees choosing one of the five positions (X1, Y1), (X; — 1,Y7),
(X1 +1, Y1), (X1,Y1 — 1) or (X1,Y1 +1). But how choose one among these
positions. We add then a method of random choice. Let us say that this nokton
chooses the position :

) with probability p_,
X1+ 1,Y7) with probability p,,
) with probability p_,
) with probability py,
X1,Y1) with probability po =1 — (p—z + pia + Py + Diy)



2 Definitions and notations

Let be a number between 1 and 3. If this number is rational, then we can present
it accurately using a finite number of bits (bits of information). If instead it is
irrational as v/2 then it is impossible to present it with a finite number of bits.

Definition 1. A representable is a mathematical object such as exists an algo-
rithm which accurately gives that object in a finite time.

Definition 2. We give a list of n sets noted F, Fs...E,,. We note E the result
set of the Cartesian product of this list. For an element ¢ € E and an integer
1 < ¢ < n, the the function projection vg(i,e) gives the i-th term of e.

Definition 3. A nokton is an element of the set M = {Q_1,Qo, @+1}-
e ()_1 is called negative nokton.
e () is called null nokton.

e ()1 is called positive nokton.

Definition 4. For N € N*| a gross universe with width N is N-uplet of set
Uy =MN.

Definition 5. A position is a triplet! of the set R = Z>.

Definition 6. A pulse is a 6-tuple of the set Q° such that the sum of these
terms is < 1. The set of pulses is noted V.

Definition 7. A status is couple of the set S =R x V.

Definition 8. For N € N*  a status with width N is a N-uplet of the set
Sy = SN.

Definition 9. For 7' € N* and N € N*, a status with width (T,N) is a T-uplet
of the set Sy n = S%.

IThe study of random walks shows that in a space of 1 or 2 dimensions, the probability of
return to the origin equal to 1 if the observation time goes to infinity.



Definition 10. A unit displacement is a element of the set A = {A_,, A, Ay, Ay, A AL, Ag}
e A_, is called unit displacement according to the negative X axis.
e A, is called unit displacement according to the positive X axis.
e A_, is called unit displacement according to the negative Y axis.
e A, is called unit displacement according to the positive Y axis.
e A__ is called unit displacement according to the negative Z axis.
e A_, is called unit displacement according to the positive Z axis.

e A is called null unit displacement.

Definition 11. For N € N* a displacement with width N is a N-uplet of the
set Ay = AN,

Definition 12. For T € N* and N € N*, a path with width (T,N) is a T-uplet
of the set Ap y = AT

Definition 13. For N € N*  a universe with width N is couple of the set
Un =Uy x Sn.

Definition 14. For T' € N* and N € N*, a window with width (T,N) is a
couple of the set Wpr ny =Un x Ap n.

3 Image

Given two integers 7' € N* and N € N*.
Definition 15. We define the function image f as follows f: Wy v — St n-

In the following we give a universe w = (u, s) with width N and a window
I' = (w, Q) with width (T,N) and we note :

e A= f(I')

* du =y
LN VN®
® VN ="VAr, N
® $s=1sy

® Ps =Sy



3.1 Contributions

Definition 16. For a nokton g € M, the charge function c is defined as follows

-1 ifq=0Q_
c(g) =40 ifq=Qo
+1 ifq=Qn

Definition 17. For a unit displacement § € A, the displacement function w is
defined as follows u(0) = (uz(0), uy(5),u-(d)) where

-1 ifo=A~A_,
ug(6) =< +1 if 6=~y
0 otherwise

-1 ifd=A_,
uy(6) = ¢ +1 ifd=2404,

0 otherwise

-1 iféd=A_,

u(6) =< +1 ifd=~A,,
0 otherwise

Definition 18. For a status 8 = (a,b) € S, the function position p is defined
as p(0) = a and the function pulse v is defined as v(0) = b.

Given two integers 1 <i < N and 0 <t <T.

Definition 19. For 1 <t < T, the function unit displacement 1A is defined as
follows "/}A (Zv t, F) = ¢A (’Lv YA (ta Q))

Definition 20. The function unit status g is defined as follows :

bs(i, s) ift =0

Ps(i,t,T) = {qbs(i, ws(t,A)) otherwise

In the case where ¢t = 0 we omit the argument I" and we note ¥g(i,0,T") =

1/)5(1', S).



Definition 21. The function punctual position r is defined as follows :

r(i, t,T) = (x(i,t,T),y(i,t,T),

Z(i,t,F» = p(¢5<iatvr)) (1)

In the case where ¢ = 0 we omit the argument I' and we note r(4,0,T") =

(i, 8).

According to this definition, and for 1 < ¢ < T, punctual position can be

calculated as follows :

t
i, t.T) = pls(irs) + Y u(wali g D))
j=1

Given three integers 1 <: < N, 1 <j< Nand 0<t<T.

(2)

Definition 22. The function difference d is defined as follows :

d(lvjatvr) = (dx(l,j,t,r),dy(l,j,t,F),dZ(Z,],t,F)) = r(i,t,F) - T(j,t,F)

In the case where ¢ = 0 we omit the argument I'" and we note d(i,7,0,T") =

(i, ], 5).

Definition 23. The function total difference D is defined as follows :

1

D(Z7j’t7r) = {

Vi (i, 5,6, T)2 +dy(i,5,t,T)2 +d.(i,5,t,T)?

if dy(i,7,t,T) = dy(4,5,t,T) =d.(3,5,t,T) =0
otherwise

In the case where ¢ = 0 we omit the argument I" and we note D(i,5,0,T) =

D(i,j, s).

Definition 24. The gravitational coupling functions g_z, g4+, 9—ys G4y, 9—=

and g4, are defined as follows :

1
(i,4,t,T) =
9-2(2,] {0
1
g+m7,],t].—‘ {0
1
(i,5,¢,T) =
g—y(8, 7 {O
1
7’ )
g+y 2 g5t 0

if dm(zv j? t? F)
otherwise

if d,(4,7,t,T)
otherwise

it d, (i, 4,t,T)
otherwise

if dy (4, 4,t,T)
otherwise

>0

<0

>0

<0



1 ifdu(i,5,¢,T) >0

0 otherwise

g-=(i,4,t,T) = {

1 ifd,(i,5,t,T) <0
0 otherwise

g+z(i7j7tar) = {

In the case where ¢ = 0 we omit the argument I" and we note g_,(i,5,0,T') =
g—x(i7j7 5)7 g+x(i7j; 07 F) = g+ac(i,j7 5)7 g—y(i7ja 07 F) = g—y(ivja 5)7 .g-‘ry(i?ja 07 F) =
ngy(Z?]a 8)7 gfz(%ja O,F) = g*z(zvja S) and ngz(Zvj?OaF) = g+z(laj7 S)

Definition 25. The electric coupling functions e_,, e4y, e—y, €4y, €—, and
ey, are defined as follows :

0 otherwise

(’i j,t7l“) _ {1 if dw(i?j’tvF)'c(¢U(i7M))C(¢U(jnu)) <0

e1ali j,t,T) = { if dy (i, 5, 0)-c(u (i w)eldu (G 1) > 0

otherwise

(i g.m) = 4 b (a6 cldu (i m)e(du (s ) <0
’ 0 otherwise
1 if 5,7, 1), ) j
€1y (isjit,T) = if dy (i, 5, 4, 1)-cldu (i, ) eléu (5, 1) > 0
0 otherwise
Z ] t F 1 if dz(iajataF)'c(¢U(i7M))C(¢U(j7 /L)) <0
’ 0 otherwise

si d. (i, 5,t,1).c(ou (i, ) e(dv (4, 1) >0
otherwise

€+Z(Z .77t F) {0

In the case where ¢ = 0 we omit the argument I" and we note e_,(i,5,0,T") =

e—a?(iajaw)a 6+m(i,j,0,1—‘) = e—l—x(i,jaw)) e—y(i7jaoar) = e_y(i,j,w), e+y(iaj7071—‘) =

eyl j,w), e—5(4,5,0,T) = e_.(4,j,w) and ey, (4,4,0,I") = ey (4, j,w).

Given three constants H € Q, H, € Q and H. € Q where H is the constant
of contribution, H, is the constant of gravitational coupling and H, is the
constant of electric coupling.

Definition 26. The functions partial contributions k_, k4z,k—y, k4y,k—. and
k. are defined as follows :



Mz

k—x(i7t, F) = H (Hg g (Z7j? t? F) + He'e—x(i? j? t? F))'dx(z7.]? t? F)2/D(Z7.]? t? F)4
j=1
N

kyo(i,t,T) = H. Z(Hg Gr2(i, ,t,T) + Heey (i, 5, t,T)).dy (i, 5,t,1)%/D(i, j, t,T)*
j=1
N

koy(i,t,T) = H.Y (Hgg y(i,5,t,T) + Hee_y (i, 4,t,7)).dy (i, 5,t,T)*/D(i, j,t,T)*
j=1
N

k+y(i7tar) = HZ(Hgg+y(7”j7taF) +He'e-‘ry(i?jatar))'d?](imjatvF)2/D(i7jat7r)4
j=1
N

kj—Z(i7t’F) = H Z(Hg g (Z7J5t7r) +He'e—z(imjat7r))'d2(iaj7t?F)Q/D(i’jvtar)4
j=1
N

k(i) = H.Y (Hggiz(i,j,t,0) + He.eyo (i, 5, t,T)).dx (i, j, £, T)?/D(i, 5,t,T)*

<.
Il
—

In the case where t = 0 we omit the argument I'" and we note k_,(i,0,T) =
kz(i,w), kiz(3,0,1) = kyp(i,w), k—y(ia 0,T) = k—y(ivw)a k-‘-y(ia 0,I) = k+y(i7w)7
k_.(4,0,T) = k_,(i,w) and k4,(4,0,T") = ky,(i,w).

Definition 27. The function of total contribution k is defined as sum of the
partial contribution functions :

k(i t,T) = kg (i, 6, D) +hy (i, . D)y (i, £, D)oy (i £, T) ks (i, £, T) +hgs (i, £, T)

In the case where ¢ = 0 we omit the argument I' and we note k(7,0,T") =
k(i,w).

Definition 28. The contribution function K is defined as follows :
K(i,t,T) = (k—z (4,8, 1), by (4,8, 1), k—y (4,6, 1), by (4,8, 1), k—. (3, ¢, 1), ky, (4, ¢, T))

In the case where t = 0 we omit the argument T' and we note K (i,0,T") =
K(i,w).

Definition 29. The function partial pulses x_1, x41, y—1, Y41, 2—1, 2+1 and
wy are defined as follows :



—1(6:6,T) = w (L 0(¢s(i,t, 1))
z41(i,8, 1) =y (2, 0(¥s(i,t,T)))
y-1(i, 6, 1) = (3,v(hs (i, £, 1))
y+1(i, 6, 1) = w (4, v(¥s (i, 1, 1))
2216, 6,T) =y (5, v(¢s (i, £,1)))
241(6,t, 1) = v (6, v(¥s (i, 1, 1))

wo(t,t,T) = 1—(x_1 (4, t, D)+ 41 (4, t, D) +y—1(4, 6, D) +y 41 (4, 6, T)+2_1 (4, ¢, T)+241 (4, £, T))

In the case where t = 0 we omit the argument I' and we note z_1(4,0,T') =
x*l(iaw)a x+$(i7 0, F) = $+1(Z., W), yfl(ia 0, F) = y71<i7w)a y+1(7;a 0, F) =Y+ (7/) W),
2-1(4,0,T) = z_1(i,w), 241(4,0,T") = 211 (¢, w) and wg(4,0,T) = wo(i,w).
Definition 30. For 1 <t < T, the pulses images of a nokton are calculated
recursively as follows :

v(s(i,t —1,T)) + K(i,t —1,T)
1+ k(i,t —1,T)

PI‘OpOSitiOIl 1. x—l(iat>F)+x+l(iat7F)+y—l(i7taF)+y+1(iat7F)+Z—1(iat7F)+
Z+1(7;,t,1—‘) < 1.

U("/’S(L 2 F)) =

Proof. We shall try to show by recurrence on ¢ this proposal.
For t = 0, by definition z_1(4,0,T")+241(¢,0,T) +y—_1(4,0,T) +y41(4,0,T) +
2-1(4,0,T) + 241(,0,T") < 1.
For t > 0,
o1 (it +1,0) 42 (it +1,0) +y_1 (6t +L,T) +ypa (6t + L,T) + 221 (6,t + L,T) + 244 (4, + 1,T) =
(1 (i, 6, ) + k_p (4,8, 1)) /(1 + k(i, ¢, 1))+
(41(i,t,T) —&—k‘ﬂ(z t,1))/(1 + k(i,t,T)
(y-1(5, 8, T) + k—y(i,£,1)) /(1 + k(i, £, T)
(ya (it T) + k+ (i,,T))/(1 + k(i,t,T)
(z—1(i, 6, ) + k—. (4,6, 1)) /(1 + k(i,t,T)
(an (i, .T) + ka0, 11)/(1 4 k(i 1)) =
(1,6, T) + 2416, 6,0) +y—1(4, t, 1) + y41 (3,6, T) + 221 (4,6, 1) + 241 (¢, ¢, T)+
k_g(i,t, 1)+ kgu(i,t, 1) + k_y (6,6, T) + by (6,6, T) + ko (4,8, 1) + ky (4, ¢, 1)) /(1 + k(3,¢,T)) =
(105, t, D) + 220106, 6,T) +y—1(4, 6, T) + y41(, 6, ) + 2-1 (4,6, T) + 241 (4, ¢, T) + k(4, £, 1)) /(1 + k(i, ¢, T))

)
)
/ )
/ )

]



However
_1(i, t, F) +$+1(i, t, F) +y_1(i, t, F) +y+1(i, t, F) + 2_1(i, t, F) + Z+1(i, t, F) <1

Thus

$,1<i, t F)+$+1(i, 2 F)+y*1(l7 2 F)+y+1(27 L, F)“'_Z*l(ia t, F)+Z+1 (Z? t, F)—i_k‘.(la t, F) < 1+k(27 L, F) =

(x—l(i’ t, F)+:C+1(i, t, F)er—l(ia t, F)+y+1(i, t, F)+Z—1(iv i, F)+Z+1(ia t, F)+k(ia t, F))/(lJrk(i? L, F)) <l=

x_1(6,t+1,T) 4z (4, t4+1, D) +y—1 (4, t4+1, D)4y (4, t4+1, T)+2-1 (4, t+1, T)+241 (4, t+1,T) < 1

O

Proposition 2. For 1 <t <T, wy(i,t,T') = wo(é, t — 1,T) /(1 + k(i,t — 1,T)).

Proof.
wo(i,t,T) 1—(x_1(4,6,0) + 201 (6,6, ) +y—1(4,6,T) + y+1 (4,6, T) + 21 (¢, £, T) + 211 (4, ¢,T))
1—((z— ( t—1,T)+k_,(i,t —1,1))/(1 + k(z,t — 1,T)) +
(roif = LT) it = LD/ =10 +
(y_1(i,t —1 F)+k_y(z t—1 F))/(1+k(i t—1,1)) +
(y41(2,t—1 F) +k+y(z t—1,1))/(1+k(,t —1 F)) +
(zoa(ist = LT) + k2 (it = 1,1)) /(L + k(i t = 1,T)) +
(211 (i >+k+z<z E—1,1))/(1+k(i,t - 1,T)))
= 1—(a_ 1(2 t—1,T) + 241 (4, tfl,F)er_l(i,tf1,F)+y+1(i,t71,F)+
zo1(6,t = 1,T) + 241 (4, t — 1,T) +
k_p(i,t —1,T) + kit — 1,T) + k_y(i,t —1,T) + kyy (4, — 1,T) +
k_.(i,t—1,T) + ks (4,6t — 1,T)/(1 + k(i,t — 1,T))

= 1—(1—wo(i,t —1,0) +k(i,t — 1,T))/(1 + k(i,t — 1,T))
wo(i,t —1,T)/(1 + k(i t — 1,T))

O
Proposition 3. For 1 <t <T, wy(i,w) =0 < wy(i,t,T) =0.
Proof. Proof by recurrence for wy(i,w) = 0 = wo(i,t,I') =0. V1 <t <T
wo(i,t,I') = 0 = wo(4,1,T') = 0 = wo(4,0,T)/(1 + k(¢,0,T)), so wo(,0,T) =
0 = wo(i,w). O

10



Corollary 1. For 1 <t <T if wo(i,w) # 0 then wo(i,t,I") # 0.

Proposition 4. For 1 <t <T if wo(i,w) # 0 then wo(i,t,I') is decreasing.

Proof. For1 <t <T,wy(i,t,T') = wo(i,t—1,T)/(1+k(i,t—1,T)) =wo(i,t,T") Jwe (4, t—
1,T) = 1/(1+k(i,t—1,T)) however k(i,t—1,T) > 0 then 1/(1+k(i,t—1,T)) < 1,
we deduct that wo(i,t,T) < wp(i,t —1,T).

O

Definition 31. The mobility © is defined as follows O(i,t,T') = 1 — wy(4,¢,T).
In the case where t = 0 we omit the argument I' and we note 9(4,0,T") =
O(i,w).

Proposition 5. The mobility is increasing’.

Proof. Using the fact that wg is decreasing we prove that © is increasing. [

3.2 Probabilities
Given two integers 1 <i< Nand 1 <t <T.

Definition 32. The probability of displacement pa is defined as follows :

x_1(i,t = 1,T) if Ya(i,t,T) =A_,
zy1(i,t —1,T) i Ya(i,t,T) = Aqy
y_1(i,t—1T) i Ya(i,t,T) = A_,

pa(i,t,T) = y41(i,t = L,T) i Pa(i,t,T) = Ay
y_1(i,t —1,T) if Ya(i,t,T) = A_,
yr1(i,t = 1,T) if Ya(i,t,T) = Ay
wo(i,t —1,T)  otherwise

Definition 33. The window probability p) is defined as follows p, (T") = sz\; Hle pa(i t,T).

Lemma 1. Given an integer n > 1, E is finite set and (p;)1<i<n is family of
functions from E to Q suchV 1<i<n ) _ppi(e) =1 then

> IIpiven(,z) =1 3)

xzeE™ i=1

2The increasing of the mobility can be the key to the explanation for the accelerated
expansion of the universe.

11



Proof. We shall try to show by recurrence on n this lemma.
Forn=1

= ZPl(VE(l,e))
ecE
S0
ecE
= 1

For n > 1, we define the operator | which for an element y € E™ and z € E,
gives the element x € E™T! result of the concatenation to the right of the
elements y and 2.

n+1 n+1

o IIetente) = > T pive(yl2)
wEEn+1 i=1 ylze Ent1 i=1
n+1

— Z Z HPz‘(’YE"“ (z,y|z))

yeE" zeE i=1
n+1

= > Y [T rites(iyl2)
z€EycEn i=1

n

= D> > peni(pea(n+ Lyl2) [ pi(yene (i, y]2))

- Z Z an(VE(l,z))sz‘(W’En(i’y))
2€E yeEn i=1

= > parite®2) Y [ piveG,y)
zEE yeEE™ i=1

= anﬂ(’)’E(LZ))
zeFE

= 1

Corollary 2. ZﬂeAT’N pa((w, ) = 1.

Proof. By using the lemma 3, by posing £ = A, n = N.T and we define the
family of functions p;r; as follows :

12



Pir+t(A_y) =x_1(i,t —1,T)
Pir+t(Ayz) = x41(6,t — 1,T)
pir+t(A—y) =y-1(i,t = 1,T)
pir+t(Aty) = y41(i,t — 1,T)
pir+i(A—z) =y-1(i,t = 1,T)
Pir+t(Ayz) = y41(i,t — 1,T)
piTth(A()) = w()(i, t 1, F)

and the fact that pa (i,t,T) = pir4++(¥a(i,t,T)), we prove the corollary. O

4 Symmetries

Given two integers 7' € N* and N € N*.

Definition 34. A transformation( is bijective function on the set Wy y.

C:Wrn— WrnN

Definition 35. A transformation ¢ is symmetric if and only if VI' € Wp
pa(l) = pa(¢(I))-

Definition 36. Given I' a window with width (T,N). A transformation ( is
strongly symmetric if and only if V1 <¢ < N, VO0<t<T and VI' € Wy n we
have U(¢S(i7 ta F)) = U(l/fs(i, ta g(F))

Definition 37. A weakly symmetric transformation is a symmetric transfor-
mation which is not strongly symmetric.

Proposition 6. Given I' = (w,Q) a window with width (T,N) and ¢ a trans-
formation. We note ((T') = I‘/:( ) IfV1<i<N,VOL<t<T we
have v(1s(i,w)) = v(Ys(i,w')) and K(z t,T) = K(i,t,I") , then C is strongly
symmetric transformation.

Proof. Fort = 0, by hypothesis ’()(’(/)5( i,
o0, 0, (0, ) = (i (0,0, (&, 2)))

i

0, (w,2))) = v(¥s(i,w)) = v(s(i,w)) =
= v(¥s (i, 0, (((w,9))))-
k(i t

For t > 1, if K(i,t,T) = (th)t nk(ztf): ,T"). We have
o(s(i,1,T)) = USRI RILD)  s(esLEDERGILE) g (i, 1,T)) =
v(s(ist, ¢(I))). O

13



5 Observables

5.1 Definition

According to the definition 33 a probability is associated with a window. By
consequence the terms of the image of a window are observed with a probability
equal to that of their window.

Given two integers 7' € N* and N € N*.

Definition 38. Given E and A two non empty sets. An observable ATyN is a
function from the set £ x Wr n to the set A :

AT,N B X WT,N — A
A is called the set of observable values.
For an observable value we can only calculate its probability. Given w a

universe with width N and e an element of E, the function Pj ;. ,, which gives
the probability of an observable value a is calculated as follows :

Piryle,a)= > Ug(Arn(e, (w,9),a)pr((w, Q) (4)
QEAT N

where

Ua:A* — {0,1}
( ) = 1 if a1 = ag
a 7a .
b 0 otherwise
If the set E contains only a single element then we omit to specify this
element. In this case the observable becomes a function from Wr y to A and
Pz .y takes only a single argument.

Proposition 7. > ., P;  y(e,a) = 1.

Proof. If we pose a' = Ar (e, (w,Q)) then 3, 4 Ua(Arn(e, (w,Q)),a) =
Y acaUa(d’,a) = 1. According to the definition 4 :

ZPA7T7N(€,G) = Z Z Ua(Ar,n(e, (w,9)),0).px((w, )

acA a€AQEAT N

= Z Z UA(AT,N(ea (W,Q)),a).p)\((w,ﬂ))

QeAr N acA

= Y palw,2).>  Ua(Arn(e, (w,9)),a)

QeAr N acA

= 3 nal@)

QeEAT N

Yet according to the corollary 2, o Pa((w, ) = 1, we deduce that from
it ZaEAPA:,T,N(e’a):l' O
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5.2 Classical observables

Given two integers 7' € N* and N € N*, and a universe w = (i, s) with width
N. We give D and T two real constants and we note ¢ = D/T. We also note :

e T={teN*1<t<T}, N={ieN*1<i<N}and ¥ = N x T.
[ ] ﬂ:RB, 19N=19N and ﬁT,N:ﬁjj\}-
[ ] 1§:R, 1§N:19N andfng,N:ﬁ%.

5.2.1 Observable position

Definition 39. The observable position noted RT, n is defined as follows :

RT,N U X WT,N — 19T,N
((iat)ar) - RT,N((ivt)vF):a

where g, (4, Y95 5 (t, @) = 7(i,t,T)D. Wenote #(i,t,I') = vy, (i, Yory (£, @)).
For fixed ¢ and ¢ we define the observable punctual position noted 7; ; as follows

’Iﬁtﬂ‘ : WT,N —
' — 7,1 =7(,¢tT)
5.2.2 Observable speed
Definition 40. The observable speed noted VTﬁ n is defined as follows :

VT,N U X WT,N — 19T,N
((,6),T) = Von((i,1),T)=a

< it D)~ (i, S ,

where YIn (Zv Y91, N (t7 O[)) = % . .We nOt? U(Za t, F) = Vn (27 Vo1, n (tﬂ a))
It is easy to demonstrate that o(i,t,T") = ME For fixed 7 and ¢t we
define the observable punctual speed noted 0, ; as follows :

lA}t’i:WTVN —
I = 6.4() =8(t7T)

~If ¥ has the Euclidean norm. We define the observable normalized speed
Vr,n as follows :

VTJV:\I/XWT,N — R
((i,1),T) = Vra((i,1),T) =«
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where v5, (i,75, , (t,a)) = [[0(i,t,T)[|. Wenote v(i,t,T) = v5,, (i, 75, (¢, ).
For fixed ¢ and ¢ we define the observable punctual normalized speed noted v ;
as follows :

Proposition 8. v, ;
Proof. We pose I' = (w, ). According to 1, 7(i,w) = p(¢s(i,s)), and according
to 2, r(i,t,T) = p(hs (i, 5)) + 35—y u(tba (i, 4, 1)).
Thus f}(i,t,r) = %Zﬁ':l u('lpA(iaj,F)) = ||@(i>t’P)H = %H Zz':l U(’(/JA(Z,j,F))H
(

Yet [| 325y w(¥a (i, 5, D)) < 5o, lu@ali,j. D))l and Vi u(a (i, j,0))|| <
1
then ||0(i,¢,T)|| < $.t = ||o(4,¢,T)|| <2 Thus ,,(T) <. O

I <e.

5.3 Observable particles

Definition 41. A region A is a function from the set R? to the set {0,1}. The
set of regions is noted A.

Given two integers 7' € N* and N € N*. We note T={teN|1<t<T}
and ¥ = A xT.

Definition 42. We define the observable negative particles I:’IT n as follows :

Pry:UxWry — N
N

((Avt)v((.u”s)ag)) — PEN((Avt)v((.UﬂS)vQ)):ZA(":t,i(((:uﬂ5)79)))'UJV1(¢U(ia:LL)7Q—1)

=1

Definition 43. We define the observable null particles If’% ~ as follows :

Py :UxWpy — N
N

((Av t)? ((.u’ S)v Q)) - PZQ,N((Av t)? ((,[L, S)v Q)) = Z A(’Ft,i(((:uﬂ 5)7 Q)))UM((bU(Za ,LL), QO)

i=1
Definition 44. We define the observable positive particles 15;{ N as follows :
Ply:UxWpry — N

N

((A,t),((u,s),Q)) — P’;N((Avt)v((uvs)vg)):ZA(":t,i(((:uﬂ5)79)))'UJVI(¢U(iv:LL)7Q+1)

=1
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6 Conclusion

The theory of the nokton is a new theory based on an algorithmic approach. We
gave definitions which seem to be important for pursuing this way of unification
of the theoretical physics. The results were not numerous but if the approach
is good, they should not delay. It is important to determine the three constants
H, H, et H,.. In this case it is possible to compare this theory with the existing
theories and the experimental facts.

Can be the quest of the physicists will come to an end.
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