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Abstract

A tenth-order non-polynomial spline method for the solutions of two-point boundary value
problem u(4)(x) + f(x, u(x)) = 0, u(a) = λ1, u

′′(a) = λ2, u(b) = λ3, u
′′(b) = λ4, is constructed.

Numerical method of tenth-order with end conditions of the order 10 is derived. The convergence
analysis of the method has been discussed. Numerical examples are presented to illustrate the
applications of method, and to compare the computed results with other known methods.
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1 Introduction

Consider the special nonlinear fourth-order boundary value problem given by:

u(4)(x) + f(x, u(x)) = 0, a < x < b, a, b, x ∈ <, (1)

with the following boundary conditions

u(a) = λ1, u
′′(a) = λ2, u(b) = λ3, u

′′(b) = λ4. (2)

It is assumed that f(x, u(x)) is real and continuous on [a, b], and λi, i = 1, 2, 3 and 4, are finite real
constants. For details of the existence and uniqueness of the real valued function u(x) which satisfies
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(1)-(2) see [1]. E. H. Twizell in [20] derived a fourth-order finite difference method for the numerical
solution of (1)-(2). C. P. Katti [11] has given a sixth order finite difference method for the two-point
boundary value problem (1) with first-order derivative boundary conditions. In the case of linear
differential equations (1), The class of fourth-order method for numerical solutions of two-point
boundary value problems have been obtained by some authors see Usmani [22]- [25], Usmani et
al. [26], Rashidinia et al. [16]- [18] and references therein. Numerical methods based on the finite
difference of the various orders by which the solution of (1) are approximated over a finite set of grid
points have been developed by Chawla et al. [5]- [6], Jain et al. [9]- [10] and references therein. Daele
et al. [7] introduced a new second order method for solving the boundary value problems (1) based
on non-polynomial spline function. Al-Said et al. [2]- [3] have developed numerical methods for
solutions of fourth-order obstacle problems with collocation, finite difference and spline techniques.
S. S. Siddiqi and G. Akram [19] analyzed a system of fourth-order boundary value problems
using non-polynomial spline functions. M.A. Ramadan and his coworkers [15] developed quintic
non-polynomial spline solutions for fourth-order two-point boundary value problem. Siraj-ul-Islam
et al. [21] developed numerical methods based on quartic non-polynomial splines for solution of of
a system of third-order boundary-value problems. M.A.Khan et al. [13] have been developed and
analyzed a class of methods based on non-polynomial sextic spline functions for the solution of a
special fifth-order boundary-value problems. Khan et al. [12] used parametric quintic spline function
for the solution of a system of fourth-order boundary-value problems. Numerical methods for
nonlinear fourth-order boundary value problems study by Mohamed Alihajji and Kamel Al-khaled
[4]. Wazwaz [27] applied ADM meyhod for solving a special 2m order boundary value problem of
the form u(2m)(x) = f(x, u), 0 < x < b.
In this paper non-polynomial septic spline relations have been derived. We apply such non-polynomial
septic spline functions that have polynomial and trigonometric parts to develop new numerical
method for obtaining smooth approximations to the solutions (1)-(2). Non-polynomial septic spline
formulation is derived in section 2. We develop the O(h10) methods at end conditions in section 3.
In section 4, convergence analysis is proved. Finally, in section 5, Numerical examples are given to
illustrate the applications of the method. We introduce the set of grid points in the interval [a, b]

x0 = a, xl = a+ (l)h, h =
b− a
N

, l = 1, 2, ..., N, xN = b.

Non-polynomial septic spline function Sl(x) which interpolates u(x) at the mesh points xl, l =
1, 2, ..., N , depends on a parameter τ and reduces to ordinary septic spline Sl(x) in [a, b] as τ → 0.
For each segment [xl, xl+1], l = 1, 2, ..., N − 1, the septic spline Sl(x), is defined as

Sl(x) =

5∑
i=0

ali(x− xl)i + el sin τ(x− xl) + fl cos τ(x− xl), l = 0, 1, 2, ..., N, (3)

where ali, (i = 0, 1, 2, 3, 4, 5), el and fl are constants and τ is free parameter.
Let ul be an approximation to u(xl), obtained by the segment Sl(x) of the mixed spline function
passing through the points (xl, ul) and (xl+1, ul+1), to obtain the necessary conditions for the
coefficients introduced in (3), we do not only require that Sl(x) satisfies interpolatory conditions at
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xl, xl+1 but also the continuity of second, four and six derivatives at the common nodes (xl, ul).

To derive expression for the coefficients, we first denote:{
Sl(xl) = ul, S

′′
l (xl) = Ml, S

(4)
l (xl) = Nl, S

(6)
l (xl) = Ll,

Sl(xl+1) = ul+1, S
′′
l (xl+1) = Ml+1, S

(4)
l (xl+1) = Nl+1, S

(6)
l (xl+1) = Ll+1.

(4)

Using the continuity of first, third and fifth derivatives at (xl, ul), that are S
(ξ)
l−1(xl) = S

(ξ)
l (xl), ξ =

1, 3 and 5, and also by elimination of Ml, Ll’ we obtain the following relations between Nl and ul:

h4 (α1Nl−3 + α2Nl−2 + α3Nl−1 + α4Nl + α3N1+l + α2N2+l + α1N3+l) = −

(ul−3 + β1ul−2 + β2ul−1 + β3ul + β2u1+l + β1u2+l + u3+l) , l = 3, ..., N − 3, (5)

where

α1 =

(
120θ − 20θ3 + θ5 − 120Sin[θ]

)
120θ4(−θ + Sin[θ])

,

α2 = −2

(
240θ + 20θ3 − 13θ5 + θ

(
120− 20θ2 + θ4

)
Cos[θ]− 360Sin[θ]

)
120θ4(−θ + Sin[θ])

,

α3 =

(
840θ + 100θ3 + 67θ5 +

(
960θ + 80θ3 − 52θ5

)
Cos[θ]− 1800Sin[θ]

)
120θ4(−θ + Sin[θ])

,

α4 = −4

(
240θ + 20θ3 − 13θ5 + 3θ

(
120 + 20θ2 + 11θ4

)
Cos[θ]− 600Sin[θ]

)
120θ4(−θ + Sin[θ])

,

β1 =
240θ4(2θ + θCos[θ]− 3Sin[θ])

120θ4(−θ + Sin[θ])
, β2 = −120θ4(7θ + 8θCos[θ]− 15Sin[θ])

120θ4(−θ + Sin[θ])
,

β3 =
480θ4(2θ + 3θCos[θ]− 5Sin[θ])

120θ4(−θ + Sin[θ])
, θ = τh.

When τ → 0, (τh = θ), that θ → 0, then:
(α1, α2, α3, α4, β1, β2, β3) → (− 1

840 ,−
1
7 ,−

397
280 ,−

302
105 , 0,−9, 16), and the relations defined by (5)

reduce into septic polynomial spline function [28]. Now by using the spline relation (5) and
discretize the given system (1) at the grid points xl. We obtain (N − 5) nonlinear equation in the
(N − 1) unknowns ul, l = 1, 2, ..., N − 1 as

(ul−3 − α1h
4f(xl−3, ul−3)) + (β1ul−2 − α2h

4f(xl−2, ul−2))+

(β2ul−1 − α3h
4f(xl−1, ul−1)) + (β3ul − α4h

4f(xl, ul))+

(β2ul+1 − α3h
4f(xl+1, ul+1)) + (β1ul+2 − α2h

4f(xl+2, ul+2))+

(ul+3 − α1h
4f(xl+3, ul+3)) + tl = 0, l = 3(1)N − 3. (6)
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by the Taylor expansion the local truncation errors tl, l = 3, ..., N − 3, associated with our method
are given by

tl = (2 + 2β1 + 2β2 + β3)ul + (9 + 4β1 + β2)h2u
(2)
l +

1

12
(81 + 24α1 + 24α2 + 24α3 + 12α4 + 16β1 + β2)h4u

(4)
l +

1

360
(729 + 3240α1 + 1440α2 + 360α3 + 64β1 + β2)h6u

(6)
l +

1

20160
(6561 + 136080α1 + 26880α2 + 1680α3 + 256β1 + β2)h8u

(8)
l +

1

1814400
(59049 + 3674160α1 + 322560α2 + 5040α3 + 1024β1 + β2)h10u

(10)
l +

1

239500800
(531441 + 77944680α1 + 3041280α2 + 11880α3 + 4096β1 + β2)h12u

(12)
l +

1

43589145600
(4782969 + 1418593176α1 + 24600576α2 + 24024α3 + 16384β1 + β2)

h14u
(14)
l +O(h15). (7)

For different choices of parameters αζ , ζ = 1, 2, 3, 4 and βζ , ζ = 1, 2, 3 we can obtain classes of
methods such as:
Fourth-order method
For α1 = − 1

840 , α2 = − 1
7 , α3 = − 397

280 , α4 = − 302
105 , β1 = 0, β2 = −9, and β3 = 16, gives tl =

1
120h

8u
(8)
l +O(h9), l = 3, ..., N − 3.

Tenth-order method
For α1 = − 113

206640 , α2 = − 5347
34440 , α3 = − 18593

13776 , α4 = − 29371
10332 , β1 = − 6

41 , β2 = − 345
41 , and β3 = 620

41 ,

gives tl = 383
109105920h

14u
(14)
l +O(h15), l = 3, ..., N − 3.

2 End condition

To obtain the unique solution of the nonlinear system (6) we need four more equations. By
using Taylor series and method of undetermined coefficients the boundary formulas associate with
boundary conditions for the tenth-order method can be determine as follows. In order to obtain
the tenth-order boundary formula we define the following identities∑4

k=0 γkuk + µ1h
2u′′0 = h4

∑9
k=0 ηku

(4)
k + t1h

14u
(14)
0 +O(h(15)), i = 1∑5

k=0 νkuk + µ2h
2u′′0 = h4

∑9
k=0 σku

(4)
k + t2h

14u
(14)
0 +O(h(15)), i = 2,∑5

k=0 νkuN−k + µ2h
2u′′N = h4

∑9
k=0 σku

(4)
N−k + tN−2h

14u
(14)
N +O(h(15)), i = N − 2,∑4

k=0 γkuN−k + µ1h
2u′′N = h4

∑9
k=0 ηku

(4)
N−k + tN−1h

14u
(14)
N +O(h(15)), i = N − 1,

(8)
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by using Taylor ’s expansion we obtain the unknown coefficients in (8) as follows:
(γ0, γ1, γ2, γ3, γ4, µ1) = (−7, 16,−10, 0, 1, 4),

(ν0, ν1, ν2, ν3, ν4, ν5, µ2) = (2,−10, 16,−9, 0, 1, 1),

(η0, η1, η2, η3, η4, η5, η6, η7, η8, η9, ) =
( 101231
427680 ,

2597713
777600 ,

73069
1871100 ,

34130843
14968800 ,−

17915087
7484400 ,

11439803
5987520 ,−

990049
935550 ,

828989
2138400 ,−

1266343
14968800 ,

71323
8553600 ),

(σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9) =
( 5605147
95800320 ,

15751493
10886400 ,

329900749
119750400 ,

100658183
59875200 ,−

48060091
239500800 ,

174017
598752 ,−

19551923
119750400 ,

3625253
59875200 ,−

912767
68428800 ,

158633
119750400 ),

(t1 = tN−1 = − 3900331
530712000 ), (t2 = tN−2 = − 231752503

186810624000 ).

3 Convergence analysis

In this section, we investigate the convergence analysis of the fourth-order method and also in the
same way we can prove the convergence analysis for any of the other methods. The equations (6)
along with boundary condition (8) yields the nonlinear system of equations, and may be written in
matrix form as

A0U
(1) + h4Bf(1)(U (1)) = R(1), (9)

in (9) the matrices A0 and B are order N − 1 and are given by

A0 = P 3 + 6P 2, (10)

P = (pij) is monotone three diagonal matrix defined by

pij =

 2 i = j = 1, 2, 3, ..., N − 1,
−1 |i− j| = 1,
0 otherwise.

(11)

By using Henrici [29] the matrix P is a monotone matrix and we have

‖(P )−1‖ ≤ (b− a)2

8h2
. (12)

and the matrix B in case of fourth-order method defined by

B =



η1 η2 η3 η4 η5 η6 η7 η8 η9
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
120
840

1191
840

2416
840

1191
840

120
840

1
840

1
840

120
840

1191
840

2416
840

1191
840

120
840

1
840

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1

840
120
840

1191
840

2416
840

1191
840

120
840

1
840

1
840

120
840

1191
840

2416
840

1191
840

120
840

σ9 σ8 σ7 σ6 σ5 σ4 σ3 σ2 σ1

η9 η8 η7 η6 η5 η4 η3 η2 η1



(13)
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We get that
A0 = P 3 + 6P 2, (14)

where A0 is seven-diagonal matrix thus we have the following theorem.
Theorem 4.1 If M = Pn + λPn−1, where P is given by (11) and λ ∈ R+, n ∈ N, then M is a
monotone matrix and

M−1 =
1

λ
[P

−(n−1)

− P
−(n−2)

λ
(I +

P

λ
)−1], ‖M−1‖ ≤ 1

λ
(
(b− a)2

8h2
)(n−1).

Proof.
The matrix P is a monotone matrix see Henrici [29] and we have

M = Pn + λPn−1 =⇒M−1 = [Pn + λPn−1)]−1 = [P + λI)]−1P
−(n−1)

M−1 =
1

λ
[I +

P

λ
]−1P

−(n−1)

=
1

λ
[I − P

λ
+ (

P

λ
)2 − (

P

λ
)3 + ...]P

−(n−1)

=

1

λ
[I − P

λ
(I − P

λ
+ (

P

λ
)2 − ...)]P

−(n−1)

=
1

λ
[P

−(n−1)

− P
−(n−2)

λ
(I +

P

λ
)−1] =

M−1 =
1

λ
[P

−(n−1)

− P
−(n−2)

λ
(I +

P

λ
)−1] <

1

λ
[P

−(n−1)

],

by using (12) we get ‖M−1‖ ≤ 1

λ
(
(b− a)2

8h2
)(n−1).

by using theorem 4.1 we obtain

‖A−10 ‖ ≤
(b− a)4

384h4
, (15)

The matrixs f(1) and R(1) each have N − 1 components and are given by

f(1) = (f
(1)
1 , ..., f

(1)
N−1)t (16)

where f
(1)
l (U (1)) = f(xl, u

(1)
l ), l = 1, 2, ..., N − 1, and

R(1) =



−γ0λ1 − µ1h
2λ2 + h4η0f(x0, λ1),

−ν0λ1 − µ2h
2λ2 + h4σ0f(x0, λ1),

−λ1 + h4

840f(x0, λ1),
0
...
0

−λ3 + h4

840f(xN , λ3),
−ν0λ3 − µ2h

2λ4 + h4σ0f(xN , λ3),
−γ0λ3 − µ1h

2λ4 + h4η0f(xN , λ3),


. (17)
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We suppose that

A0U
(1)

+ h4Bf(1)(U
(1)

) = R(1) + t(1), (18)

where the vector U
(1)

= u(xl), l = 1, 2, ..., N−1. is the exact solution and t(1) = [t
(1)
1 , t

(1)
2 , ..., t

(1)
N−1]T ,

is the vector of order N − 1 of local truncation errors. From (9) and (18) we have:

[A]E(1) = [A0 + h4BFk(U (1))]E(1) = t(1), (19)

where
E(1) = U

(1) − U (1) = [e
(1)
1 , e

(1)
2 , ..., e

(1)
N−1]T ,

f(1)(U
(1)

)− f(1)(U (1)) = Fk(U (1))E(1), (20)

and Fk(U (1)) = diag{∂f
(1)
l

∂u
(1)
l

}, l = 1, 2, ..., N − 1, is a diagonal matrix of order N − 1.

Lemma 4.1 If M is a square matrix of order N and ‖M‖ < 1, then (I + M)−1 exist and
‖(I + M)−1‖ ≤ 1

(1−‖M‖) .

Lemma 4.2 The matrix [A0 + h4BFk(U (1))] in (19) is nonsingular, provided Y < 5748019200
172185917(b−a)4 ,

where Y = max|∂f
(1)
l

∂u
(1)
l

|, l = 1, 2, ..., N − 1. (The norm referred to is the L∞ norm).

Proof :
We know that [A0 + h4BFk(U (1))] = A0[I + h4A−10 BFk(U (1))], we need to show that inverse of
[I + h4A−10 BFk(U (1))] exist. By using lemma 4.1, we have

h4‖A−10 BFk(U (1))‖ ≤ h4‖A−10 ‖‖B‖‖Fk(U (1))‖ < 1, (21)

by using (13) we obtain ‖B‖ ≤ 172185917
14968800 and also we have ‖Fk(U (1))‖ ≤ Y = max|∂f

(1)
l

∂u
(1)
l

|, l =

1, 2, ..., N − 1, and then by using (15) and (21) we obtain

Y <
5748019200

172185917(b− a)4
.

As a consequence of Lemmas 4.2 and 4.1 the nonlinear system (9) has a unique solution if Y <
5748019200

172185917(b−a)4 .

Theorem 4.3 Let u(xl) be the exact solution of the boundary value problem (1) with boundary
conditions (2) and we assume ul, l = 1, 2, ..., N − 1 be the numerical solution obtained by solving
the nonlinear system (9). Then we have:

‖E(1)‖ ≡ O(h4), (provided, Y <
5748019200

172185917(b− a)4
, for fourth-order method)

7
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Proof : We can write the error equation (19) in the following form

E(1) = (A0 + h4BFk(U (1)))−1t(1) = (I + h4A−10 BFk(U (1)))−1A−10 t(1),

‖E(1)‖ ≤ ‖(I + h4A−10 BFk(U (1)))−1‖‖A−10 ‖‖t(1)‖‖,

It follows that

‖E(1)‖ ≤ ‖A−10 ‖‖t(1)‖
1− h4‖A−10 ‖‖B‖‖Fk(U (1))‖

, (22)

provided that h4‖A−10 ‖‖B‖‖Fk(U (1))‖ < 1. Also we have

‖t(1)‖ ≤ 1

120
h8M8, (23)

α1 = − 1

840
, α2 = −1

7
, α3 = −397

280
, α4 = −302

105
, β1 = 0, β2 = −9, β3 = 16,

where M8 = max|u(8)(ξ)|, a ≤ ξ ≤ b.
Substituting ‖A−10 ‖, ‖Fk(U (1))‖, ‖B‖ and ‖t(1)‖ from above relations in (22) and simplifying we
obtain

‖E(1)‖ ≤ 124740(a− b)4h4M8

5748019200− 172185917(a− b)4Y
≡ O(h4), (24)

It is a fourth-order convergent method provided

Y <
5748019200

172185917(b− a)4
. (25)

�

Corollary
In the same way we can prove the convergence analysis for tenth-other method and

‖E(1)‖ ≡ O(h10), (26)

4 Numerical results

In this section we present the results obtained by applying the numerical methods discussed in
pervious sections to the following two-point boundary-value problems.

Examples 1-4 has been solved using our methods with different values of α1 = − 113
206640 , α2 =

− 5347
34440 , α3 = − 18593

13776 , α4 = − 29371
10332 , β1 = − 6

41 , β2 = − 345
41 , β3 = 620

41 , and also compared the obtained
solution with the exact solution. The maximum absolute errors in solutions of tenth-order method
are tabulated in Tables 1. The maximum absolute errors in solutions of examples 1-4 are compared

8
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Table 1: Maximum absolute errors in solution with tenth-order method
m Example 3 Example 2 Example 4 Example 1
4 2.245×10−16 1.102×10−10 7.026×10−17 1.065×10−14

5 5.622×10−20 1.046×10−13 1.593×10−20 2.366×10−18

6 1.263×10−22 5.480×10−17 3.278×10−24 4.770×10−22

7 1.645×10−27 1.955×10−20 3.267×10−28 4.385×10−26

8 1.091×10−30 5.158×10−24 4.097×10−31 6.406×10−29

9 1.719×10−33 6.286×10−28 5.639×10−34 8.631×10−32

10 1.840×10−36 6.157×10−31 5.907×10−37 9.007×10−35

Table 2: Maximum absolute errors in solution with fourth-order method
m Example 3 Example 2 Example 4 Example 1
4 8.352×10−9 7.834×10−8 3.393×10−7 2.324×10−8

5 5.625×10−10 6.3106×10−9 2.273×10−8 1.589×10−9

6 3.581×10−11 4.280×10−10 1.444×10−9 1.016×10−10

7 2.247×10−12 2.746×10−11 9.062×10−11 6.387×10−12

8 1.406×10−13 1.728×10−12 5.667×10−12 3.997×10−13

9 8.792×10−15 1.082×10−13 3.543×10−13 2.499×10−14

10 5.495×10−16 6.766×10−15 2.214×10−14 1.562×10−15

with methods in [1,9,15,17,20,23,30]. Examples 1-4 has been solved using fourth-order method and
the maximum absolute errors in solutions are tabulated in Tables 2.

Example 1: We consider the differential equation

u(4) − 5u3 = 96xCos(x)− 16x
(
−1 + x2

)
Cos(x) + 24Sin(x)− 48x2Sin(x)

−24
(
−1 + x2

)
Sin(x) +

(
−1 + x2

)2
Sin(x)− 5

(
−1 + x2

)6
Sin(x)3,

0 < x < 1, (27)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = 8 Sin(1). (28)

The analytical solution is u(x) = (x2 − 1)2Sin(x).
Example 2: Consider the differential equation

u(4) − 6e4u = − 12

(1 + x)4
, 0 < x < 1, (29)

with the boundary conditions:

u(0) = 0, u(1) = ln(2), u′′(0) = −1, u′′(0) =
−1

4
. (30)
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The analytical solution is u(x) = ln(1 + x).

Example 3: Consider the differential equation

u(4) + xu = −(8 + 7x+ x3)ex, 0 < x < 1, (31)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = −4e. (32)

The analytical solution for this boundary value problem is u(x) = x(1− x)ex.
Example 4: Consider the following problem ,

u(4) − u = −8xCos(x)− 12Sin(x), 0 < x < 1, (33)

with the boundary conditions:

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = 4Cos(1) + 2Sin(1). (34)

The exact solution is given by u(x) = (x2−1)Sin(x). Examples 1-4 solved by using non-polynomial
septic spline method with step lengths h = 2−m,m = 4, ..., 10, with fourth and tenth order and also
the maximum absolute errors in solutions for our method are listed in tables 1-2.

Table 3: Maximum absolute errors in solution Example 2.
m Second-order in [20] Fourth-order in [20] Method A in [1] Method B in [1]
3 1.9×10−4 3.7×10−6 1.4×10−5 1.4×10−5

4 4.6×10−5 2.9×10−7 8.3×10−7 8.3×10−7

5 1.1×10−5 1.9×10−8 5.4×10−8 5.4×10−8

Table 4: Maximum absolute errors in solution Example 3.
m Sixth-order in [17] Sixth-order in [9] Sixth-order in [23] Sixth-order in [23]
3 2.47×10−9 1.91×10−7 2.66×10−6 3.86×10−7

4 3.93×10−11 3.12×10−9 4.68×10−8 6.59×10−9

5 3.25×10−13 4.98×10−11 7.72×10−10 1.05×10−10

6 - - 8.01×10−12 9.81×10−12
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Table 5: Maximum absolute errors in solution Example 4 and 5 in [15].
Example 4 Example 4 Example 5 Example 5

m Fourth-order (1) Fourth-order (2) Fourth-order (1) Fourth-order (2)
3 1.91×10−7 2.09×10−7 5.96×10−8 6.48×10−8

4 3.12×10−9 7.92×10−9 9.10×10−10 2.29×10−9

5 5.02×10−11 1.27×10−9 1.42×10−12 3.66×10−10

Table 6: Maximum absolute errors in solution in [30]
m Example 2 Example 1
3 3.38556×10−7 3.56386×10−8

4 1.18519×10−9 5.78254×10−10

5 3.83505×10−11 1.30425×10−11

6 1.01539×10−12 2.18424×10−13

7 1.81576×10−14 2.61800×10−16
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