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Abstract 
 

 

In this article I show that by applying inversions to a set of bit-

strings generated in a naturally arising way, I obtain subsets of bit-

strings which exactly mimic classes of confirmed particles in the 

Standard Model. I show that questions regarding the number of particle 

families, number of particles in each class, and such become trivial in 

this model.  

 

 

1. Introduction 
 

 

The Standard Model (SM) of particle physics describes all known subatomic 

particles, as well as electromagnetic, weak, and strong interactions 

among them. Its success in explaining and predicting experimental 

results, as well as its mathematical consistency and beauty, leaves no 

room for doubt of its validity.  

 

It is also known that the SM does not explain all physical phenomena. 

General relativity, dark energy, and dark matter are among the most well-

known phenomena that it does not yet incorporate. The SM also provides no 

strong explanation about its numerical facts. Not only do the values of 

its constants have to be determined experimentally, but also the number 

of subatomic particles and number of particles in the families they are 

classified into remain unexplained. 

 

The quest for answers has taken many paths. Personally, I found these two 

ideas the most inspiring: “Digital Philosophy” of Prof. E. Fredkin, and 

“Mathematical Universe Theory” of Prof. M. Tegmark. 

 

Leibniz said almost 350 years ago [in regards to a binary system he 

invented] “Omnibus ex nihil ducendis sufficit unum!” (“One suffices to 

create Everything of nothing!”). In this work, I wanted to explore this 

idea: to build a model starting with a bit and a set of “natural” 

operations such as concatenation, inversions, and Boolean operations. It 

turns out the result is a set of objects which exactly recreate the 

classification of particles of the SM.  

 

I do not claim that the proposed model is equivalent in all respects to 

the SM. Rather, I believe that it may shed light on some of its 

fundamental characteristics. 

 

 

 

 



2. Bit-machines 
 

Let us begin with the two simplest possible machines: the first one 

outputs all zeroes (M0), the second all ones (M1). Stuck together, they 

produce an M01 machine that outputs the sequence “01010101...” 

 

 
Figure 2.1 M01 machine as a composition of M0 and M1 machines. The output 

is read column by column. 

 

 

Combining two M01 machines produces an M0011 machine that generates the 

sequence “001100110011...” 

 

 
Figure 2.2 M0011 machine as a composition of two M01 machines. The output 

is read column by column. 

 

 

Combining two M0011 machines with their outputs shifted by one bit 

results in a machine with 4 states which I call the S4 machine: 

 
Figure 2.3 S4 machine as a composition of two M0011 machines. The output 

is read column by column and converted to decimal. 

 

 

In fact, the last step – combining two M0011 machines and converting 

the resultant output to decimal - can be skipped. The same sequence is 

produced by reading the sequence “0011001100110...” using a two-bit 

window and shifting it by one bit to the right after each read: 

 

S4: 00,01,11,10,00… or 01320...     (2.1) 

 

 

In a similar way, I build a machine with 8 states (S8). First, I build an 

M0001 machine by combining M0 with M01, and an M0111 machine by combining 

M01 with M1: 



 
Figure 2.4 M0001 and M0111 machines. 

 

 

Next, I stick together the M0001 and M0111 machines to produce the 

M00010111: 

 
Figure 2.5 M00010111 machine. 

 

 

Finally, combining three M00010111 machines with their outputs shifted by 

one bit produces the S8 machine:  

 

 
 

Figure 2.6 S8 machine as a composition of three M00010111 machines. The 

output is read column by column, and converted to decimal. 

 

 

Again, I can skip the last step, and read the sequence “00010111000...” 

using a three-bit window, shifting the window to the right one bit at a 

time: 

 

S8:   000,001,010,101,011,111,110,100,000,… or 012537640... (2.2) 

 

 

Looking at the outputs of S4 and S8, I notice that the numerical values 

of the states obtained follow a peculiar order. In fact, each next number 

(N) is obtained by multiplying the previous one (P) by two, and adding 

either zero or one: 

 

                        (2.3) 

 

where C=0 or 1 and    is the number of states desired in the model. 

 

 

 

 



3. The Model 
 

 

I chose k=4, or 16 states, for my model. I used SQL to generate the 

sequences and analyze them. The code and lists of complete results are 

presented in the Appendices. Here I describe the main steps. 

 

 

3.1. Sequence Generator 
 

 

Let us introduce a 6-bit string and call it a mask. It can have any 6-bit 

value from 000000 to 111111. The mask controls the transition from P to 

N; specifically it determines whether we add zero or one to 2*P in order 

to get N:  

 

N = (2P + (Mask (P mod 8) xor (P\8))) mod 16   (3.1) 

 

The first bit of a mask controls the transition for P mod 8 = 1, the 

second for P mod 8 = 2, the last for P mod 8 = 6. Let us also define that  

 

0 -> 1, 8 -> 0, 7 -> 15, 15 -> 14      (3.2) 

 

These conditions prevent having sequences containing just 0’s or 15’s, 

and sequences with repeated 0’s and 15’s (including infinite).  

 

For a given mask, the algorithm starts with 0 and generates the next 

number until it gets back to where it started from (zero). It then picks 

the lowest unvisited number, and builds the next sequence in the same 

fashion. It continues until all 16 states have been visited. Sequences 

for all 64 possible masks are presented in Appendix 1. Here are a few 

examples of the sequences: 

 

 
Figure 3.2 Examples of masks and resulting sequences.  

 

Some masks produce sequences that cycle through all 16 states; others 

produce 2, 3, or 4 shorter sequences. Some sequences could be generated 

by more than one mask (i.e. “0,1,2,4,8”). In general, there is a many-to-

many relationship between masks and patterns. 

  

 



 
Figure 3.1 A Diagram of S16 Machine. Here, circles are states; diamonds 

hold bits of a mask: M1-M6. 

 

 

 

 

 

 

 



3.2. Analysis 
 

 

First, I extract unique sequences. All 61 of these, along with their 

binary presentations, are shown in Appendix 2. I will be working with 

binary strings (or bit-strings) for now. 

 

Second, I introduce a few operations: 

 

- Rotational Equivalence (R): since we can start generating a sequence 

from any of its elements, we can rotate its bit-string. We consider two 

bit-strings equivalent if we can get one from another by rotating any of 

them, i.e. R(010) = 001 

 

- Swap (S): this operations reverses a bit-string, i.e. S(001101) = 

101100 

 

- Binary Compliment (C): this operation replaces zeroes with ones and 

ones with zeroes, i.e. C(111001) = 000110. 

 

It is easy to see that for some bit-strings, some or all of the following 

identities may hold: 

 

S(b) = R(b)         (3.2) 

C(b) = R(b)         (3.3) 

S(C(b)) = R(b)        (3.4) 

 

Let us introduce three Boolean variables:  

 

SR:=(S(b) = R(b)        (3.5) 

CR:=(C(b) = R(b))        (3.6) 

SCR:= (S(C(b)) = R(b))       (3.7) 

 

SR=0 means that the identity SR (3.5) is not satisfied for a bit-string, 

while SR=1 means it is; similarly for CR (3.6) and SCR (3.7). 

 

For each bit-string, I calculate SR, CR, and SCR; group strings with 

identical values of SR, CR, and SCR together; and count the number of 

bit-strings in each of the groups. An SQL script is presented in Appendix 

3. Here are the results: 

 

 

SR CR SCR # of bit-strings 

0 0 0 36 

0 0 1 6 

0 1 0 2 

1 0 0 12 

1 1 1 5 

 

Table 3.1 Number of bit-strings in SR-CR-SCR groups. 

 

Finally, I set  

 



CS = CR | SCR         (3.8) 

 

(Pipe stands for logical OR). The results are as follows: 

 

SR CS # of bit-strings 

0 0 36 

1 0 12 

0 1 8 

1 1 5 

 

Table 3.2 Number of bit-strings in SR-CS groups. 

 

 

As I mentioned above, there are 61 unique sequences or bit-strings in 

this model. With left-right, zero-one, and rotational symmetries, they 

were separated into 4 classes with 36, 12, 8, and 5 elements. In the SM, 

there are 61 observed (confirmed) particles, which include 36 quarks, 12 

leptons, 8 gluons, and 5 other bosons.  

 

Is this a coincidence? In the next article I argue that this is not 

coincidental by demonstrating that bit-string interactions in this model 

mimic particle interactions in the SM. 

 

 

 

5. Discussion 
 

 

Using the notions of a bit, bit-string (bit-concatenation), inversions of 

bit-strings, and a few Boolean operations (AND, OR, XOR), I built a model 

that matches some properties of the Standard Model of particle physics. 

While I suspect this match is not incidental, I leave it to the physics 

community to decide, should it happen to have interest in this approach. 

 

However, if it turns out that the semblance of the models is not 

incidental, there are certain insights that this model can provide into 

the SM.  

 

There seems to be no room for any new particles if we stay with the 

choice of k=4 (see part 3). There are three ways in which this model can 

be extended to accommodate new particles. First, a higher value of k can 

be used. For k=5, the number of unique bit-strings (“particles”) will be 

9155; it is not clear whether this approach has any merits. Second, 

relaxing conditions 3.2 would multiply the number of “particles” by a 

factor of   . SR, CR, SCR (3.5-3.7) properties will change in some cases 

- meaning that the new “particles” would have a different class identity 

than their base partners. This resembles some of the Supersymmetric 

approaches.  However, the most “natural” way to accommodate additional 

particles into the model is to merge k=4 with all models with lower 

values of k. This will add a few more particles and a limited number of 

additional interaction types.  

 



One of the essential properties of this approach is that nowhere does it 

require any hidden machinery or an “actor”. Everything follows naturally; 

the only required ingredients are M0 and M1 machines (oscillators) that 

can combine into more advanced machines (interfere). Therefore, a model 

with k=1,2,3,4 is more plausible than just a model with k=4, since the 

latter would require something or someone to “forbid” models with 

k=1,2,3. 

 

I believe that this model has grounds in reality because it is built 

using the minimal ingredients that any theory of reality could have. A 

frequent argument against models based on deterministic finite state 

machines is that they cannot reproduce the inherently probabilistic 

nature of Quantum Mechanics. I do not need to get into this discussion 

here. It is sufficient to point out that while Sn machines are 

deterministic finite state machines, their sets (either finite or 

infinite) do not have to be. Undoubtedly, to model any deep aspects of 

reality within this approach one would have to deal with the sets of Sn 

machines.  

 

An important difference between this model and models built around the 

idea of cellular automata is that it does not require an arbitrary chosen 

lattice to operate. Though a deeper development of this model will 

require some kind of space, chances are that it will emerge naturally. 

For example, we already know that the space should allow interference and 

inversions. Furthermore, the model is free from any initial conditions or 

artificially tuned rules – all of which (including a lattice) are 

products of an “actor” or hidden machinery that demands another model to 

explain it. 

 

In conclusion, I wished to demonstrate how the most basic approach may 

reveal insights into the fundamental properties of the Standard Model. 
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Appendix 1. 64 Masks and Patterns They Generate 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 2. 61 Unique Patterns with Attributes 

 

 
 



Appendix 3. SQL Code 

 

 

SET ANSI_NULLS ON 
GO 
SET QUOTED_IDENTIFIER ON 
GO 
 
 
-- Script creating a table that contains all bit-strings along with their patterns, masks, and other attributes    
    
   CREATE TABLE [dbo].[UFB]( 
    [MASK] [nvarchar](max) NULL, 
    [PATTERN] [nvarchar](max) NULL, 
    [BITSTRING] [nvarchar](max) NULL, 
    [SR] [bit] NULL, 
    [CR] [bit] NULL, 
    [SCR] [bit] NULL, 
    [T] [nvarchar](1) NULL, 
    [QE] [smallint] NULL 
   ) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY] 
    
   GO 
    
    
-- Helper Functions 
 
 
CREATE FUNCTION [dbo].[IB]  
( 
 @I INT, 
 @D INT = 0 
) 
RETURNS NVARCHAR(MAX) 
AS 
BEGIN 
 DECLARE @OUTPUT NVARCHAR(MAX) = '' 
 WHILE (@I != 0) 
 BEGIN 
 SELECT @OUTPUT = CONVERT(NVARCHAR(1), (@I%2)&1) + @OUTPUT, @I = @I / 2 
 END 
 IF(@D > 0 AND LEN(@OUTPUT) < @D) SET @OUTPUT = RIGHT('00000000000000000000' + @OUTPUT, @D) 
 RETURN @OUTPUT 
END 
GO 
 
 
CREATE FUNCTION [dbo].[NP] 
(  
 @MASK NVARCHAR(MAX), 
 @S NVARCHAR(MAX), 
 @M INT 
) 



RETURNS NVARCHAR(MAX)  
AS 
BEGIN 
 DECLARE  @A INT, @P INT 
 SELECT @P = CONVERT(INT, REPLACE(REPLACE(@S,'[',''),']',''))  
 SET  @A = CONVERT(INT, SUBSTRING(@MASK,@P%@M + 1,1))^(@P/@M) 
 RETURN '['+CONVERT(NVARCHAR(MAX),(2*@P + @A) % (2*@M))+']' 
END 
GO 
 
 
CREATE FUNCTION [dbo].[NNP] 
(  
 @PATH NVARCHAR(MAX), 
 @S NVARCHAR(MAX), 
 @M INT, 
 @K INT 
) 
RETURNS NVARCHAR(MAX)  
AS 
BEGIN 
 DECLARE  @A INT 
 SELECT  @A = CHARINDEX(@S,@PATH,1) 
 IF @A = 0 RETURN @S 
 IF @K < 2*@M-1 RETURN dbo.NNP(@PATH,'['+CONVERT(NVARCHAR(MAX),@K+1)+']',@M,@K+1)  
 RETURN '' 
END 
GO 
 
 
CREATE FUNCTION [dbo].[MP] 
(  
 @MASK NVARCHAR(MAX), 
 @D INT 
) 
RETURNS NVARCHAR(MAX)  
AS 
BEGIN 
 DECLARE @K INT = 0, @S NVARCHAR(MAX)='[0]', @PATH NVARCHAR(MAX)='', @Z NVARCHAR(MAX) 
 WHILE @K<2*@D 
 BEGIN 
  SELECT @S = dbo.NP(@MASK,REPLACE(@S,';',''),@D)  
  SELECT @Z = dbo.NNP(@PATH,@S,@D,0)  
  IF @S <> @Z SELECT @S = ';' + @Z 
  SELECT @PATH=@PATH+@S, @K=@K+1, @S = @Z  
 END 
 RETURN @PATH 
END 
GO 
 
 
CREATE FUNCTION [dbo].[SplitString]  
(  



    @S NVARCHAR(MAX),  
    @D CHAR(1)  
)  
RETURNS @OUT TABLE(SUBS NVARCHAR(MAX)  
)  
BEGIN  
    DECLARE @START INT = 1, @END INT = 0 
    WHILE @START < LEN(@S) + 1 BEGIN  
  SET @END = CHARINDEX(@D, @S, @START)  
        IF @END = 0 SET @END = LEN(@S) + 1     
        INSERT INTO @OUT VALUES(SUBSTRING(@S, @START, @END - @START))  
        SET @START = @END + 1                 
    END  
    RETURN  
END 
GO 
 
 
CREATE FUNCTION [dbo].[BitString]   
( 
 @S NVARCHAR(MAX),  
 @D CHAR(1)  
) 
RETURNS NVARCHAR(MAX) 
AS 
BEGIN 
 DECLARE  @OUTPUT NVARCHAR(MAX) = '', @START INT=1, @END INT=0 
 WHILE @START < LEN(@S) + 1 BEGIN  
  SET @END = CHARINDEX(@D, @S,@START)  
  IF @END = 0 SET @END = LEN(@S) + 1 
          SELECT @OUTPUT = @OUTPUT + Convert(varchar(1),Convert(int,(SUBSTRING(@S, @START, 
@END - @START)))&1), @START = @END + 1  
 END  
 RETURN @OUTPUT 
END 
GO 
 
 
CREATE FUNCTION [dbo].[R]   
( 
 @S1 NVARCHAR(MAX), 
 @S2 NVARCHAR(MAX) 
) 
RETURNS INT 
AS 
BEGIN 
 DECLARE @LN INT, @K int=0, @C NVARCHAR(MAX) 
 IF LEN(@S1) <> LEN (@S2) RETURN 0    
 SELECT @LN = LEN(@S1), @C = @S2 
 WHILE @K < @LN BEGIN 
  IF @S1 = @C RETURN 1 
  SELECT @C = SUBSTRING(@C,@LN,1) + SUBSTRING(@C,1,@LN-1),@K = @K + 1    
 END 



 RETURN 0 
END 
GO 
 
 
CREATE FUNCTION [dbo].[C]   
( 
    @S NVARCHAR(MAX) 
) 
RETURNS NVARCHAR(MAX) 
AS 
BEGIN 
 RETURN REPLACE(REPLACE(REPLACE(@S, '0', '#'), '1', '0'), '#', '1') 
END 
GO 
 
 
 
CREATE PROCEDURE [dbo].[MPP] -- The Generator 
(  
 @D  INT, 
 @MD  INT, 
 @F  NVARCHAR(1), 
 @L  NVARCHAR(1) 
) 
AS 
BEGIN 
 DECLARE @PATH NVARCHAR(MAX), @MASK NVARCHAR(MAX), @M INT = 0 
 WHILE @M < @MD 
 BEGIN 
  SELECT @MASK = @F + dbo.IB(@M,@D-2) + @L, @M=@M+1 
  SELECT @PATH=dbo.MP(@MASK,@D) 
  INSERT UFB 
  SELECT @MASK,SUBS,dbo.BitString(SUBS,','),0,0,0,'',0   
  FROM dbo.SplitString(REPLACE(REPLACE(REPLACE(@PATH,'][',','),'[',''),']',''),';') S 
 END 
END 
GO 
 
 
-- Script that populates the UFB table 
 
DELETE FROM UFB -- clean up the table 
DECLARE @D INT = 8  -- mask size 
DECLARE @MD INT = 64 -- number of masks 
 
EXEC dbo.MPP @D, @MD,'1','1' -- bit-string generator 
 
-- Calculating SR, CR, and SCR values for each string 
 
UPDATE UFB SET SR=dbo.R(BITSTRING, REVERSE(BITSTRING)),  
        CR=dbo.R(BITSTRING, dbo.C(BITSTRING)), 
        SCR=dbo.R(BITSTRING, dbo.C(REVERSE(BITSTRING))) 



 
 
-- Setting up type (class) of a bit-string  
         
UPDATE UFB SET T = 'Q' WHERE SR|CR|SCR=0 
UPDATE UFB SET T = 'G' WHERE SR=0 AND CR|SCR=1 
UPDATE UFB SET T = 'L' WHERE SR=1 AND CR|SCR=0 
UPDATE UFB SET T = 'B' WHERE SR&CR&SCR=1 
 
-- Mask cleanup - removing first and last bit 
 
UPDATE UFB SET MASK = SUBSTRING(MASK,2,@D-2) 
 
 
-- Generating result tables 
 
SELECT DISTINCT T,SR,CR,SCR,PATTERN,BITSTRING FROM UFB ORDER BY T,SR,CR,SCR,PATTERN 
 
SELECT SR,CR,SCR, COUNT(*) AS "# OF BIT-STRINGS" FROM (SELECT DISTINCT SR,CR,SCR,PATTERN FROM UFB) D 
GROUP BY SR,CR,SCR ORDER BY SR,CR,SCR 
 
SELECT SR,CR|SCR AS "SC", COUNT(*) AS "# OF BIT-STRINGS" FROM (SELECT DISTINCT SR,CR,SCR,PATTERN FROM 
UFB) D GROUP BY SR,CR|SCR ORDER BY SR,CR|SCR 

 
SELECT DISTINCT MASK, BITSTRING, PATTERN FROM UFB WHERE T='G' ORDER BY  MASK, BITSTRING, PATTERN 
 
SELECT DISTINCT MASK, BITSTRING, PATTERN FROM UFB WHERE T='Q' ORDER BY  MASK, BITSTRING, PATTERN 
 

 


