Create polygon through fans suitable for parellel calculations

Kang Yang, Kevin yang, Shuang-ren Ren Zhao

Imrecons Inc, Toronto Canada

Abstract
There are many method for finding whether a point is inside a polygon or not. The congregation
of all points inside a polygon can be referred point congregation of polygon. Assume on a plane
there are N points. Assume the polygon have M vertexes. There are O(NM) calculations to create
the point congregation of polygon. Assume N>>M, we offer a parallel calculation method which
is suitable for GPU programming. Our method consider a polygon is consist of many fan regions.

The fan region can be positive and negative.

I. INTRODUCTION

There are mathod to find out whether a point is inside a polygon or not[1-23|. All
points inside a polygon are the point congregation of polygon. If a plane have N points and
the polygon have M vertexes, If N>>M, Found all points inside the polygon need O(MN)
calculations. If N is very big, the above method to create the polygon is time consume.
In case we have GPU, would like to find a mathod can parallel find all points inside the
polygon.

By notice that a polygon can be build by positive/negitive fan regions, we offers the

folloing mathod. In this article w use Julia programming language to test our ideas.

II. HALF PLANE

Any two points can create a line, all points at the right of the line is a half plane. We use

Julia programming language to test our idea. The following is to start the julia program,

using TestImages

using Images, Colors, FixedPointNumbers, ImageView

Assume there are 2 points Rg and R;, Ry, R; are vector. Ry and Rican create a line.
Any point in the plane is Point P. P is vector. P has two components P[1] =i, P[2] = j.

Hence P = [i,j]. Assume M is the direction vector from Ry to Ry, i.e.,
M = R; — Ry
The normal vector on right side of the line is N,
N = [-M[2], M[1]
Hence there is,
N = [=R:1[2] — Ro[2], Ri[1] — Rol[1]]
Define a vector X,

X =P—-R,

m Black

Figure 1: Half plane is created from 2 points Ry and R;.

We define if the value v
v=N-X>0

the point is P is inside the half plane. Other points are not inside the half plane. Here “.”
inner product of two vector. We will use color green to show the point inside the half plane.
We use color red to show the point outside the half plane. This half plane is at the right
side of the line. We also give a value 1 to all green point. The other point give a vaule 0.
The following gives the Julia programming code for the half plane, see Figure (1).

The following is the function of half plane H(Ry, R;) which have 3 parameters. The first
Point Ry, the second point Ry, and the image size imsize. The boundary line is includes

inside the half plane

function half plane(R0,R1,imsize)
n_ vector=[-(R1[2]-R0[2]),R1[1]-RO[1]|
B=zeros(imsize)
for jjj=1:imsize[2]
for iii=1:imsize[1]
x_ vector=[iii-RO[1],jjj-RO[2]|
value—n_ vector’*x_vector

if value|[1,1]>=0.

else

end
end
end

copy(B)

end

If the bourndary line does not include inside the half pline, the above formula need to be

adjusted as following.

v=N-X>0

We call this is half plane less HL(Ry, R1). The source code after this change becomes,

function half plane less(R0O,R1,imsize)
n_ vector=[-(R1[2]-R0|2]),R1[1]-RO[1]]
B=zeros(imsize)
for jjj=1:imsize[2]
for iii=1:imsize|1]
x_ vector=[iii-RO[1],jjj-RO[2]|
value=n_vector’*x_ vector

if value[1,1]>0.

end
end
end

copy(B)

end

The following is the test program.

Figure 2: (a) Full plane. (b) Half plane created from 2 Points R, and R;.

imsize—(600,500)

B0=ones(imsize)

my_view_ flip(B0)

RRO=[100,100]

RR1=[400,100]

imsize—(600,500)

Bl=half plane(RRO,RR1,imsize)

my view_flip(B1)

Figure(2) shows full plane and half plane which is created from 2 points RO and R1.

III. FAN REGION

The two half can create a fan region. Assume we have 3 points. Ry, R, can define
a half plane H(Ry, R1), H(R1, Ro) and HL(Ry, Ry), HL(Ry, Ry) as before. Tt is
same to the points Ry, Rs. One half palne and one half plane less can create a

fan region . See, Figure(3).

Details of definition is following
F(i,7) = HL(Ry, Ro) N H(Ry, Ry)(+1) ifv>0
F(i,7) = HL(Ry, R1) N H(Rs, Ry)(—1) if v<0

Where
v=N-X

(a) (b)

Figure 3: (a) positive fan with Green color, (b) negitive fan with red color.

X = XQ — X1
N = [-1i[2] = Ro[2], Ra[1] — Ro[1]]
F is all points inside the fan region. The above formaul means if Ry inside the

half plane H(Ry, Ry) the fan’s value is negitive. If Ry is not inside the half plane

H(Ry, Ry) the fan’s value is negitive . The Julia source code is following,

calculate the fan image:
function fanregion(R0,R1,R2,imsize)
n_ vector=[-(R1[2]-R0[2]),R1[1]-RO[1]]
x_vector=R2-R1
value—n_vector’*x_vector
if value[1,1]>=0.
B=half plane(RO,R1,imsize).*half plane less(R2,R1,imsize)
B*=-1.0
else
B=half plane less(R1,R0,imsize).*half plane(R1,R2,imsize)
B*=+1.0
end
copy(B)

end

Figure 4: (a) A negative fan region created from Rg,R; and R,. (b) A positve fan region
created from points Ry, Ry and R3.

The following is the program with 4 points to test the fan region. We create two fan

regions.

RRO-[100,100]

RR1=[400,100]

RR2-[400,200]

RR3=(500,300|

RRA4—[200,500]

imsize—(600,500)
B2=fanregion(RR0,RR1,RR2,imsize)
my view_flip(B2)
B3=fanregion(RR1,RR2,RR3,imsize)
my_view_ flip(B3)

IV. POLYGON

Poygon can be build from all fan region, some is positive some is negative. Assume we

have 5 points Ry, R1,R2,R3,R,

Polygon = F(Ro, Rl, R2)+F(R1, RQ, R3)+F(R2, Rg, R4)+F(R3, R4, R0)+F(R4, RQ, R1)+1

7

(a)

Figure 5: (a) The polygon created from 5 points.

The Julia program code is following,

polygon=ones(imsize)+
fanregion(RRO,RR1,RR2,imsize)+
fanregion(RR1,RR2,RR3,imsize)
fanregion(RR2,RR3,RR4,imsize)+
fanregion(RR3,RR4,RR0,imsize)+
fanregion(RR4,RR0,RR1,imsize)

my_view_flip(polygon)

The general function to created a polygon is given as following.

function my _polygon(points,image size)
imsize=size(points)
RO=points|:,end|
R1=points][:,1]
R2=points[:,2]
poli=fanregion(R0,R1,R2,image size)
my _view(poli)
for ili=1:imsize|2]-1

RO=points]:,iii]

i 11
Rl=points|:,iii_ 1]
i 2—iii 2
if iii 2-imsize|2]

ili_ 2-=imsize|2]

end
R2[1]=points|1,iii 2|
R2[2]|=points|2,iii_ 2|
fan=fanregion(R0,R1,R2,image size)
poli+=fan
my_ view(poli)

end

poli+=1.

my _view(poli)

return poli

end

V. IMAGE VIEWER

In order to view the image, we have fllowing functions. We have flipped the image along

for y coordinates, so y coordinates directed above.

function flip y(B)
imsize=size(B)
D=copy(B)
size _y=imsize|2]
half size=Int(floor(size _y/2))
for jjj=1:half size

for iii=1:imsize|1]

end
end
D
end
function my view flip(B)
#only the size of B is
D—|RGBU&(0,0,0) for iii—1:size(B)[1], jjj—1:size(B)[2]|
for jjj=1:size(B)[2]
for iii=1:size(B)[1]

end
end
end
D=flip_y(D) imgc = copyproperties(img, D) view(imgc) end

function my _view(B)

imge = copyproperties(img, D)
view (imgc)
imgc

end

VI. TEST IMAGE

RRO=[100,100]
RR1=[400,100]

10

RR2-[400,200]

RR3=[500,300]

RR4=[200,500]

imsize—(600,500)

polygon2=my polygon(points,imsize)

When the program my polygon(points,imsize) runs, it shows how a polygon is created

from the fan regons, see Figure(6).

VII. CONCLUSION

Introduced a method to draw all points inside the polygon. The polygon divided as may

fan

region. Each time a fan is drawn. A fan is created by two half planes. The half plane

is created through 2 points. This method is suitable parallel calculation for example GPU

Cuda/OpenCL calculations.

https://en.wikipedia.org/wiki/Point _in _polygon

http://alienryderflex.com /polygon/

http://erich.realtimerendering.com /ptinpoly/

Ivan Sutherland et al.,"A Characterization of Ten Hidden-Surface Algorithms" 1974, ACM
Computing Surveys vol. 6 no. 1.

"Point in Polygon, One More Time...", Ray Tracing News, vol. 3 no. 4, October 1, 1990.
Shimrat, M., "Algorithm 112: Position of point relative to polygon" 1962, Communications of
the ACM Volume 5 Issue 8, Aug. 1962

Hormann, K.; Agathos, A. (2001). "The point in polygon problem for arbitrary polygons".
Computational Geometry 20 (3): 131. doi:10.1016/S0925-7721(01)00012-8.

Weiler, Kevin (1994), "An Incremental Angle Point in Polygon Test", in Heckbert, Paul S.,
Graphics Gems IV, San Diego, CA, USA: Academic Press Professional, Inc., pp. 16-23, ISBN
0-12-336155-9.

11

() (f)

Figure 6: (a) The polygon created from 5 points.

[9] Sunday, Dan (2001), Inclusion of a Point in a Polygon, http://geomalgorithms.com/a03-
_inclusion.html External link in |publisher= (help).
[10] Michael Galetzka, Patrick Glauner (2012), A correct even-odd algorithm for the point-in-
polygon (PIP) problem for complex polygons, arXiv:1207.3502
[11] Accurate point in triangle test "...the most famous methods to solve it"

[12] Antonio, Franklin, "Faster Line Segment Intersection," Graphics Gems III (David Kirk, ed.),

12

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

Academic Press, pp. 199-202, 1992. (Badouel 1990) Badouel, Didier, "An Efficient Ray-Polygon
Intersection," Graphics Gems (Andrew S. Glassner, ed.), Academic Press, pp. 390-393, 1990.
Berlin, E.P. Jr., "Efficiency Considerations in Image Synthesis," SIGGRAPH 85 course notes,
volume 11, 1985.

Glassner, Andrew S., ed., An Introduction to Ray Tracing, Academic Press, pp. 53-59, 1989.
See Hypergraph for some related information.

Green, Chris, "Simple, Fast Triangle Intersection," Ray Tracing News 6(1), 1993.

Hanrahan, Pat and Haeberli, Paul, "Direct WYSIWYG Painting and Texturing on 3D Shapes,"
Proceedings of SIGGRAPH 90, 24(4), pp. 215-223, August 1990.

MacMartin, Stuart, et al, "Fastest Point in Polygon Test," Ray Tracing News 5(3), 1992.
Preparata, F.P., and Shamos, M.I., Computational Geometry, Springer-Verlag, New York, pp.
41-67, 1985.

Schorn, Peter, and Fisher, Frederick, "Testing the Convexity of a Polygon," Graphics Gems
IV, (ed. Paul Heckbert), p. 7-15, 1994.

Shimrat, M., "Algorithm 112, Position of Point Relative to Polygon," CACM, p. 434, August
1962.

Woo, Andrew, "Ray Tracing Polygons using Spatial Subdivision," Proceedings of Graphics
Interface 92, pp. 184-191, 1992.

Worley, Steve and Haines, Eric, "Bounding Areas for Ray/Polygon Intersection," Ray Tracing
News 6(1), 1993.

Worley, Steve and Haines, Eric, "Triangle Intersection Revisited," Ray Tracing News 6(2),
1993.

13

