Chapter III
ATTRACTION STRUCTURE AND SPEED OF CONVERGENCE

Introduction

From the utilitarian standpoint this chapter has very litile importance: it deals with the i.i.d.
case, where the underlying distribution F(x) is known, and we want to know if the sequence of
random variables (Xy) is attracted for maxima, to one of the three limiting distributions, how to
obtain some set of attraction coefficients and, finally, how quick is the convergence.

In applications, observations are often not i.i.d., but under some conditions, for large...
samples, the limiting distributions of maxima of a sequence of non-i.i.d. observations are still the
same as in the i.i.d. case. But even if they were independent , F(x) would not be known (in
general) in order to analyse if the maxima are attracted to ‘¥, A or @y and thus to obtain a set
(not necessarily the best in any sense) of attraction coefficients (A, 8x)-. The results here, from a
utilitarian standpoint — immediate utility — are of little importance. The analysis of the speed of
convergence follows the same lines.

Moreover, the practical importance is not nil; on the contrary. The last section (extensions) of

the previous chapter says that the limiting distributions 1(x) for maxima (or L (x) for minima)

are valid for outside the i.i.d. case and in many cases (say for instance the discharges of a river)
the total sample can be divided into “chunks” (say the hydrological year) where the maximum (the
flood) has a distribution function, at least approximately stable, close to one of the L((x-A)/8)
which will then be used to study maxima, thus avoiding the “computable” values (A, &) and
in some cases @, substituted by its statistical estimation. As in oceanographical and hydrological
situations data a few days apart (sometimes less than two days) behave in an independent —
like way, the knowledge of the speed of convergence gives an idea how the approximation
TU(x-A)/B) is valid.

In consequence, so far through analogy, this chapter, for the i.i.d. case plus the previous
extensions section, illustrates the use of asymptotic distributions in dealing with a dependent, finite -
set of data. And this is its practical, though not utilitarian, justification.
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The attraction conditions and atfraction coefficients

Let there be a scduence of i.i.d. random variables (X;} with distribution function F(x).

We will prove the following statements for F € D (1); the dual statements of Fe D (L)

can be obtained by a simple conversion of the previous results. The quantile function Q(v) =
inf{xIF(x) 2 v}; Q(v) is very important in this study and, by the results given here, also in the
problems of the right tail estimation using the largest values of a sample (Annex V to Part I).

The statements for Fe D(L), taking t> 0, are:

—F is anracted, for maxima, to the Weibull distribution Wx) iff W <+ e and

ol 23§ Wy
I1-F(w-1)

w — Q(1-1/k)). )

x* as 1t > 0%; a system (A, 8) of attraction coefficients is (w ,

— F is attracted, for maxima, to the Gumbel distribution A(x) iff

0 (1 -1tx)-0Q(l-1)
O(l-te)-0(1-1)

Q(l-tx)-0Q (I-1) . log x
Q(l -ty)-Q(lI-1) log y

Q (1-(1-v)x) - Q (v)

O(T —(I-v)e =Q(v) “lgxasv —I, oralso

—logx as t —=0% ,or

as t —»0% ify=l, or

Q (vX) — O (v)
Q(ve) - Q(v)

—logx as v -1~ ;

a system of attraction coefficients is Ay = Q(I — 1/k), & = O(1 — llek) —Q (1 - 1/k).

—F s attracted, for maxima, to the Fréchet distribution @g(x) iff w =+ o and

:: ,’;( (: %) —Xx® as t — + o ; a system of aitraction coefficientsis (A, &) = (0, Q(1-1/k))

(ultimately positive as w = + oo ).

Analogously to the attraction condition, for maxima, to Gumbel distribution given in terms of
 the quantile function we have also '

— F is attracted, for maxima, 1o Fréchet distribution ®x) iff

N
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Q(1-tx)-Q (I-1) x e ] ;
oI T- Y010 pimay 20 F 34

and to Weibull distribution ¥o(x) iff

O (l-tx)-0(1-1) - x-1e -]
o(l-ty)-0Q(l-1) y-la— ]

ast =0 ify#l.

If we do use the integrated von Mises-Jenkinson form we can say that  F(.) is attracted, for

: e Q(I1-1x)—-Q(I-1) x0-1 lgx o o
maxima, to  G(.160) iff Ol =ty) -0 (1= 0 —> 01 (‘ology if 6=0) as
t 0% ify#1.

Notes :

1 . There are other conditions for the attraction to the Gumbel distribution, but these seem to be
the most operational;

2. A function SV(x) is said to be of slow variation (or slowly varying) at + oo if it is
defined at least in a right half-line (i.e., for all x > xo) and SV(x)/SV(x) = 1as x = + oo} the
latter nomenclature can be used to say that F(x). is attracted to the Weibull distribution if w < + oo
and SV(x) = x%(1 —F(w - 1/x)) is slowly varying at + e and that F(x) is attracted to the
Fréchet distribution if W =+ and SV(x) =x*(1 - F(x)) is slowly varying at + oo;

3 " To obtain the Fréchet distribution as a limit we must have w =+ and to obtain the
Weibull distribution as a limit we must have w < + oo ; the Gumbel distribution can be attained

eitherwith W <+o00 Or W =+0c0;

4 . The conditions for Weibull and Fréchet distributions to be limiting distributions for maxima
are easy to work out; this is not the case for the Gumbel distribution;

5 . At the end of the section we will give conditions using F’(x), when it exists, which are in
general very handy to use.

6 . Dually we obtain the statements for F e D(L ), supposing, also, t>0. They are :

~F is attracted, for minima, 1o the Weibull distribution Wg (x) =1~ ¥g (—X) iff
' F(w +1Xx)
w =-c and m—n“ as x —0%; a system of auraction coefficients is (w,

Q1K) - w)



- F is attracted, for minima, to the Gumbel distribution 1 - A (-x)  iff

QQ((lext)):%x; —log x as x — 0+ | O,ﬁl(i;e\;l)——QQ(;l_;)") —logx as v—1;

a system of attraction coefficients is (Q(1/k), O(1/k)— Q(1/ek)) .

— F is antracted, for minima, to the Fréchet distribution 1 - @y (-x) iff W =—oo
and F1; (tt)x j —x® as t —>—oo; a system of attraction coeﬂicients is (0,-Q(1lk)) (- O(1/k)

is ultimately positive as w = — eo).

7 . Before going further, let us recall that each of the limiting distributions is attracted to itself;
this is shown immediately using the above criteria. Notice also that the conditionson w and w

can help to eliminate one case for each F(x) ; we used this in the previous examples.

Proofs :
We will follow a different order in the proofs for convenience. Let us consider the necessary
and sufficient condition for attraction of maxima to ®g (x).

Suppose W =+ oo andl—l_—F(—Ft(;—)r - x% as t— +oo. To prove the result we have

to show that for some  {Ax, 8k}, FK(Ak + 8k x) = ®y(x) or, equivalently as said, that
k(1 ~F(Ax + 8k x)) > x® if x>0, and k(I —F(lk+§k X)) = +oo if x<O0.

Letustake Axk=0 and &6xk=Q(1-1/k). As W=+, we have 8 — +o and for -
x <0, 8k x = — o, implying k(1 - F(8k x)) = + oo for x <0. '

Consider now k(1 —F(8 x)) for x>0. As limk(l - F@ x)) = fim{k(l ~F(dx))

1= - F(&
1 =Koy &) ) and by hypothesis when k — + oo, 8y — + o the second factor——]—-—(—k’g
1 - F(8k) 1 - F(8k)

= x~%; itremains to show that k(1-F(8y)) - 1. By tHfe definition of Bk one gets  F(§, ) <

1-1/k=F@®) andso k(1 -F())<1; but F(ka)SF(B;)SI—I/k for 0<x<l1

L=FO o et Lo EE
1 - F(3k x) I - F(3y x)

with k — oo, as desired. We have shown up to now that if the attraction conditions for ®g(x)
are valid we can take as attraction coefficients Ax=0, & = Q(1 — 1/k) obtaining as limit Pg(x).

and so — x® and thus k(1 —F(dg)) — 1
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Let us now prove the converse. As FK(Ag+ 8k x) = ®g(x) or, equivalently,
k(1 —F (A + 8k x)) = x~® we have also

kBl (1 -F(x+ 8 x)) = B x,
and thus, with x = pl/a z
[kB] él ~FQx +8 Ble z) » zo,
from which, with
[kB] (1-FQA [k BI+Okp) 2 > T
by Khintchine’s convergence of types theorem we get (A B1— Ak)/S— 0 and i p) /B — I/

Take now, for fixed B> 1, Ajxp) =2k, 8 [k B) =8 k B/ . Define, now, a integer
sequence (k(s)}] by k(I)= [k Bl, k(s +1)=[k(s).B], and so we get Ax(1)=2Ak, k()=
Sk PE-1/ (-5 + 0o as B >1). Then A k(1) /8 k(s) = 0 and we can write, as A k(s) can be

taken to be zero,
Fk©) (8 k(s) x) = Da(x).

Let us fix, now, x, choose y-— to increase indefinitely — and obtain s such that
Oiks) xS y<3d k(s+1) X. Then we have

1 — F(Sk(s+1) X) S 1-F(y) < 1= F(Sy(s) %)
and so

1 — F(8k(s+1) X) 1 - F(y) 1 — F(k(s) x)
< <
1 = F(8k(s) t x) 1- F(y) 1 - F(sk(sﬂ) t x)

and as

k (s +1) [3k(s)—r_’B

k(s) - k(s)

(0<r<1 is the fractional part) and as k(s) (1 — F(Ok(s) X)) = x™® as k — + oo we get, finally
letting y — +co and so k(s) — + o ,

_l;_.tuslim l—_F(_.V)T<Bta
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and thus, as B > 1, as close to 1 as wished,

_ll—;g(_(yL)l)—)[a as y — oo .

We have shown, also, that as attraction coefficients we can take (0, Q(1 —1/k)) in choosing
S such that k(1 -F(8)) — 1.

The conversion of this result concemming @g(x) to Wg(x) is very easy. As seen,
Bk + 8k x) = Dg(x) is equivalent 10 FK(By x) — Dy(x): in addition, if we define F(x) =
F(w-1/x) we see that with 8 y = Q (1 —1/k), Fk(By x) — ®g(x) iff Fk(w —1/8 x) = Pg (x)
or FX(w—1/8 x) = Og(-1/x) = Wq (x).

Consequently for F 1o be attracted, for maxima, to Wqo(x) we must have w < + oo, satisfy

1-F(W-1tx)
1 -F (w-1)

the attraction condition — x® as t — 0%, and take as attraction coefficients

Ak = w, O = 5k‘ , or, more simply, 8k = w —Q(1 —=1/k).

Let us now go to the proof of the attraction condition for maxima, to the Gumbel distribution.

We have from FKAy + 8 x) = A (x) also FIKU A g+ 8 (xgx) = A (x) and thus
Pk g+ 8 kg xNK K 5 A (x) or FKk g+ 8 kgx) 2 AV (x) =A (x +log 1) and so
FX(A [k  + 8 [k  (x— log 1)) — A (x). By the Khintchine’s convergence of types theorem we get

Ak — Ok log t — Ay
[

— 0

and dky/d— 1,
or equivalently (Aqx —Ax )/ ~logt and &k ~8 .

Taking t=e we get 8 ~ Ajxc)— Ak and so the conditions are

ilﬂl"_)‘k-_.; logt and & ~Ajkc)— Ak »
‘Ake) — Ak *

the last evidently defining &k , asymptotically. *

Thus if Fe D(A), with attraction coefficients (Ax , 8x), we know that
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Ay = M ~ Akt = A — logt with S ~Axe)— Ak
Bk Ak el — Ak

The relation k(1 — F(8x + Ax x)) = e suggests the use of l: = Q(1-1Kk), 8; =

*

* & . = = * * »
llkc]—)'k , with Q the quantile function. Let us show that if O‘Ik a- Xk )/8k — log t then

Fe D(A) and by the Khintchine’s convergence of types theorem any (Ak, &) such that Fk
(Ak + 8k x) = A(x) and (l: 5 8;) are equivalent for the limit. For fixed t, from

———— —logt we get, for large k,

x;+5; (log x-e)<x; =Q(|_Wl—t]-)<kl+5; (logt+e),
and so m: + 8: (log t — €)) < FQ(1 =1/fk 1)) < Fa; + 5; (logt+€)).

From the RHS inequality, as v < F(Q(v)), we get

-1kl < F(x:+8:(logt+e));

raising to power k and letting k — o we get

clh < lim FKA + 5 (log t+<))
and so exp [—e(7€) ) < l_"_n Fk(l: + 5; z) .
For the LLHS inequality, as l: + 8; (logt+e€)< k; we get, from F(Q(v))<v,
F()L: + 5: (log t—e)) < 1—1/k1];

raising to power  k and letting k — + oo we get

lim Fk(l:+ 8; (log t—€)) < et
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and in the same way
e Fk(X: + & 2)<exp (~e(e) ),

Consequently

Az-e)s im Fk(x:+ 5: AL = Fk(X:+8; < A(z+e€)

and thus

FKL + 8. 2) - A@2).,
k k
and any system of attraction coefficients is equivalent to (7&: . 5: ).
As a consequence we see that Fe D (A) iff

Q (1 — 1/[k x]) — Q(1 — 1/k)
Q (1 - 1/lk e]) — Q(1 — 1/k)

— log x as k= o

: : * * * *
and we can use as attraction coefficients )"k =Q(1 - 1/k) and 8k = x[k i )‘k

Let us now give a continuous form to this discrete result. We will show that the condition
above is equivalent to

QU —tx)—Q(l -1
Q(l —te)—Q(l —1)

— log x as t - 0.

Let k =[1/k] + 1 ; we will show that

Q1 -tx)-Q(l —1)

S
k

— ~log x as t > 0% ;

by division we obtain

Q(I—‘tX)—Q(]_t)
Q(T—te)—0Q( =1) — logx as t— 0*.

From1/t<k<1/t+1 weget 1/k<t< 1/(k - 1), x/k <t x <x /(k—1) and so [(k/x) + 1]"!
<tx<[(k-1)/x]"! and as Q(1 —&) is non-increasing in § we have
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- * *

& -2
X'l(k-l)/ll z'k-d-l z QU —tx)- QU — t) 2 AT(k/x)#]] k-1

*

- pn

Sk 8k 6k
But
* * . * * * * * *
)”l(k/x)m =R JL[k/x)»,l i l[k/x] 7L[k/u] ~&y Ay~ R
* = * + * + >
8k 8k 8I: 8k
The last summand converges to zero and the second to log(1/x) = — log x. The first
* * * :
l[k/x]+l B l[k/x] slk/x]
summand can be written as = - —— . The first factor converges to zero and
b S
[k/x] k

the second to 1 as seen in the beginning of the proof because §jxx)/0x — 1 and so s;k/x]/ 8; - 1.

Thus the RHS of the inequality converges to —log x and the same can be proved for the LHS.
Thiug L= xz =0 LS S log x and so the continuous condition for attraction is

)

k

QU -tx)-QCl-1)
Q((l —te)-Q(1 -1)

— logx as t—0*.

This condition was given by Mejzler (1949) and was also stated by Marcus and Pinsky
(1969) independently in another form; other important texts are de Haan (1970), (1971) and
Balkema and de Haan (1972).

The proof of the results conceming atraction to ®Pg(x) , Wol(x) and G(z | 0) in terms of

the quantile function runs in the same lines.

Sufficiency conditions and examples

Before going on to some examples, some old and revisited and some new, let us state only
sufficiency conditions — which are almost necessary — for attraction, but supposing the existence
of the derivative F'(x), at least in a right half-line (i.e., for x > xo) . The proofs are simple and
can be found in Gnedenko (1943) and de Haan (1976).



— If w < + oo, F(x) has positive density F'(x) in some interval |x,, w [, and

lim (w —x) F'(x)
xT w I — F(x)

coefficients A =w, 8 = w — Q(I — lik), as F(x) defines uniquely Q(I - 1/k) (— w) for
large k ;

= @, then F(x) is attractedto Wo(x) and we can use the

—If F"(x) <0 for some interval Jxo,w [, (W<+e or w =+ o) and

i 1 . ' F”(x) (1 = F(x))
7 x (Mx)1) — 0, where (x) is the force of moruality or hazard rate, or (F'(x))? ~

—1 as x Tw then F(x) is attracted to A(x) and we can use the coefficients A = Q(1 - 1/k) ,
and & = 1/k F’(Ay) (von Mises criterion) ;

x F'(x)

—If w =+ e, F(x) has a positive density for x> x,, and T~ Fix) 2@ as
X — + oo, then F(x) is attracted to ®ofx) and we can use the attraction coefficients Ay = 0,

& = Q(1 - 1/k).

These maxima results, in the same way as those following, can be converted to minima

results.
But also:

—If F(x) is attracted for maxima to A(x) then & /A — 0;

—If w =+ oo, and F(x) is attracted for maxima to A(x) then II—LF((‘J) — 0 as

t — + oo, with t > 0; this result implies the MLLN;
1- F(x;()
— If..x] <x32 <Xt < ... w (£+ =) are jump points of F(x) GMW 21+,

B> 0, then F(x) is not attracted for maxima to A(x);

—If w =400, Fk(A + 8x) > A(x) (& = Sconstant) is equivalent to

1 -F ‘

I-Flogt) _, a(a=1/6) as t—e or m_({%)_,eusasy_nw;

1 - F(log 1t x)

the proof of the last statement is easily reduced to the Fréchet limiting situation by the use of the
transform Y =log X and some adjustments.

Let us now go to the miscellaneous examples. We will not obtain the attraction coefficients,
but will only decide on attraction.
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1. Let us consider the classical normal distribution. As w = + o= it cannot be attracted to

¥ o(x). But Tl:N—b:(('—)) ~ x-1 e12(x2-1/2 which does not converge to X% and so @g(x) is

excluded. The Mejzler criterion for the convcrgence to A(x) in this example is not very operational.
Let us consider the von Mises criterion N(x) (1 — N(x)) —1 as x = +o00o. But 1 —N(x)~

(N'(x))2 :
N’(x)/x; as used before, and N"(x) =— x N’(x) and so N ((xrz'((l)—)zN(x))

— -1, and N(x)
is attracted, for maxima, to A(x).

2. Consider the geometric distribution F(x)=1-e Al if x>0, F(x)=0 if x <0. The
1-F(kY) 1 - F(k -1)

jump points are the non-negative integers and we have =) = I = e >1
and so F(x) is not attracted to *A(x), as opposed to the exponential. As w = + o= the limit could
be ®a(x) if Ty = X% as -+ e But T Al = el

with 0<r,r’ <1, which does not converge to x®, and so the distribution is not attracted for
maxima to Pg(x).

(x) ;‘j [x]

3. Letus now analyse the Poisson distribution. We have F(x) = 2 e A z Pj with
j=o0
jumps at the integers  j=0,1,...,. Then ll:g((.li-)) = 1 ffg(})l) =1+ 1——_£-Il:m 2
At . , . ;
PP/ B T L A T IS SRR =1+ ¢
[eo] K [eo] T [eo] X"‘.-l lr [”]lf
> Ak 2 eI b i e e

k=j [} o o

and Poisson distribution is not attracted for maxima to Gumbel distribution; the non-attraction to
Fréchet distribution is left as an exercise.

4. Ifwehave F(x) such thatthere exist oo and B >0 for which e®+Bx(1 - F(x)) = 1
as x—+oo(w=+00), then F(x) is attracted for maxima to A(x) as seen from either

1 - .
that T——F'(%Ld-)t—) —ePt andso Sc=P-1 with Ag to be determined. By observing that

eo+BAk+ 8k x) (I~ F(A + 8 X)) —1 and also that we should have k(1 — F(Ag + 8k x)) — eX
which implies e®B(Ak+8k )k — eX or e®BMi — 1 and ePSkx — ex giving thus

log k - 1 . :
Ap = ““B—‘— , 8 = B— as a system of attractions coefficients.
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5. Consider, finally, the lognormal distribution LN(x) = N(log x) for x 20, LN(x) =0 for
x<0. As w=+oco wecan try the attraction for maxima to A(x) or ®y(x). Let us use the von

Mises criterion:

LN” (x) (1 — LN(x)) _
(LN’ (x))2 B

— — 1 as happened before for the normal tail.

Tail equivalent distributions

The subject of equivalence of distributions is relevant, like the use of attraction conditions, to
evaluate what can be the asymptotic behaviour of maxima (or minima) of some distribution by
substituting it with another one which is easier to manipulate.

We say that F(x) and Fj(x) are tail equivalent for maxima if w (F)= w (F])=w

and IIT_;—((X’%) — 1 as x T W, and il equivalent for minima if w (F) = w(F;)=w and

F(x)
Fi(x)

substituting the equality of limits for a power relation using c. This is left as an exercise.

—1as xd w ; we could, instead of the limit 1, put a constant ¢ (0 < ¢ < + o), thus

Let us deal with maxima.

If F(x) and Fi(x) are tail equivalent for"'maximé. then lf one of }he distributions is attracted
to ~L(x) the other distribution is also attracted to the same limit Z(x) and with the same

coefficients.

Suppose that  FK(Ay + i x) — L(x) or k(1 — F(Ag + 8 x)) — — log L(x); as Ag + 8k x
1 — F(Ag + &k x)
1 - Fi(Ak + &k x)

equivalence k(1 — Fj(Ax + 8 x)) = — log L(x) or F‘;(xk + 8k x) = L(x) as said. Let us prove

— w we have k(1 - Fj(Ag + 8 x)) ——log (x) and by the condition of

the converse: if Fk (Ag + 8k x)— L (x) and F';(Xk + 8k x) = L(x) (the same coefficients) we

F(y)

1P+ BRX) 0 comae B b B '3 we get 11:F|(y)

1 - Fi(Ag + Ok x)

—las xTw.

have
The statement for minima is obvious:
If F(x)and Fj(x) are tail equivalent for minima and one of then is attracted to L(x), then

the other is also attracted to L (x) with the same coefficients and conversely.
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It is immediate that the logistic, the exponential, and Gumbel distributions are tail equivalent
for maxima, which shows that in many cases attraction can simply be obtained by seeking

equivalence to one of the —I_(x); the Cauchy distribution is tail equivalent to ®(x x). But the
normal distribution, although attracted to the Gumbel distribution, is not tail equivalent to it (not
the logistic or the exponential); for more details see Resnick (1971) and ”ﬁagb de Oliveira and
Epstein (1972).

The convergence of quantiles
Consider a sequence of distribution functions [Fk(x)} such that Fg(x) Y, L(x), L(x) being
continuous and, thus, the convergence being uniform. For large k, given € , we know that
L(x)—€ <Fx(x) <L(x)+€
and so

F! (L(x)—€) <x <F, (L(x)+€) and with L(x)=p

we get

Flip-e)< LIp<F (p+e).

Taking in the RHS inequality p — € instead of p and in the LHS inequality p +€

instead of p, we get

Ll(p-€e)< F;‘ PYSLl(p+e);

and so, by the continuity of L(x), we get

F:(p) = L-(p).

Applying the previous results to maxima, where the L.(x) are continuous, we see that, as
Fr(x) = FK(Ay + 8 x) , we get for

F1(p/k) - A

-
Ok %p

Xp =2 .i‘-l (p)'



which shows the practical result F-1 (p1/k) =- Ay + 8k xp -

For instance if F(x)=1/(1 + eX) is the standard logistic, attracted for maxima to Gumbel
distribution, as we can take Ax =logk and & =1 we get Fl(p/&)=logk+xp,xp=A1(p)
=—log (- log p); the probability erroris | Fk(log k + xp)—p!=1(1 _ﬁf_ﬂ Yk—-pl - 0 as

k(p 1k -

] 1 >0 as k— +oo,
— 10g p

k — + <o and the linear error is (log + xp) — F1 (p'&)I =1llo
For the exponential we have, in the same conditions Ax =log k, 8x = 1, the probability
erroris | Fk(log k + xp) —pl = I(1 + _19%2 )X —pl =5 0 ask — oo, and also the linear error

—_pl/k
IF-1 (logk+Xp)—(p"k)l:Ilog—L_(-]]—ogEB-) | > 0as k— +oo.

Speed of convergence

The way a sequence of distributions of maxima converge to its limit is a very important
question : either it converges quickly to the limit and this limit can be used as an approximation to
the real distribution, or the approach is slow and the limit, from the statistical standpoint, has little
relevance : if an error of € = 102 is obtained in one case for k =50 the approximation can be
used for moderate samples — the approximation for small samples being practically speaking an
illusion — but if the error € = 102 is a attained only for k > 106 the result has no practical

use.

Suppose that FK(Ax + 8 x) — L(x). We can think of two different approaches, briefly

touched upon in the examples of the preceding section.

We may be interested in px = sup | FK(A + & x) — L(x)!: this maximum probability error
X

gives an evaluation of the computation of the probability of overpassing Ag + 3k x — i.e. of
1 — FK(Ay + 8 x) — by evaluatingitby 1- L(x). If px<n and Xp is p-quantile of L(x)
we see that p — 1 < FR(Ag + 8k Ap) <p +M,and if N is very small in cdmparison with p (in
general close to 1) we have good approximations to design, etc... It is evident that px = px(Ax , 8k)
and so an open question is to determine the best (A , 8), i.e., the values that minimize Pk(A, 3).

The other error — the linear one — needs some care in its definition. The idea is to study
the difference of the quantiles of FKk(Ay + &y x) and of Lx), ie., to compute dg = sup Ak
x

+ 8k Q(p'/%) — xp! . But a simple example shows that this definition can lead to results of no
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practical use. Suppose F(x) is the exponential distribution which (with Ax =log k, 8k = 1) is
attracted for maxima to  A(x). As FK(Ay + 8 x) = A(x) we have, approximately Fk(y) =
Ay - A)/8) and so the exact p-quantile is Q(p!/X) =—log (1 —p!/k)  and the approximate
oneis Ay + 8 Al (p) =log k - log(— log p). The maximum resulting linear error is then

—pl/k
dk = sup llog k — log( — log p) + log (1 = p'/%)l = sup | log%—é’?—l | = 4 e , the value
P P

attained when p — 0. A careful study of the linear error (dependent also on (Ax , 8k)) was not
made but it leads to the computations being made in a shorter interval € <p<1-e€’ chiefly
because, for maxima, we are essentially interested in values of p closeto 1 andnotto 0.

1l

k — 1(x) — Fk
The relative probability error suplF (Ak+8k~x) 100) | sup | =K a_“+8k x)_
x 1 — L(x) X. 1 — L(x)

for theinterval 0 <L(x) <1 is also an open problem.

Although the more general results are due to Davis (1982) and Tiago de Oliveira (1991) we
will only describe the statements of Galambos (1978); some important results are the ones of
Balkema, de Hann and Resnick (1984), Galambos (1984) and Beirlant and Willekens (1999).

If FKAp + & x) — L (x) denote by zi(x) = k(1 = F(Ax + & x)) andfor x>w, Pr(x)
= z}(x) + log L (x) : then for x>w and zj(x) < k/2 we have
IFk(Ag + 8 x)— L (x)1 < L (x) [r1adx) + rau(x) + ryp(x) r2x(x)]
where

222 (x) 227: (x) ]
rik(x)= k + 2 S

px
r2k(x) = \px)V + ——5— - 7

with g< 1,5 <1 suchthat zi (x) <3kq/2 and Ipy(x)1< 3 s.

As can be seen, this statement does not apply for all x but only for a part of the domain of
F(x) although is valid for all admissible sets {(Ak, S1)).

The dual statement for minima is :



If 1-(1-F(Ag+ & x))k — L (x) denote by zi(x) = k F(Ax + 8 x) and for x < 'w ,

Pi(x) = zi{x) + log(1- L(x)) : then for x <w, zi(x) <k/l2 we have

1= F(A + S x))k — L (x) | SOI=L(x)) [r1k(x) + rax(x) + rp g (x) r2x (x)]

r1x and ryx having the same definition as before.

Davis (1982) gave a different approach in probability error evaluation using, essentially, the
approximation — k log FK(Ax + 8k x) ~ k(1 — F(Ax + 8k x)) in the interval 0 <L(x) < 1. In
Tiago de Oliveira (1991) we sketched a similar result, but with a more direct approach, that we will

explain.
k-1 |
As ak —bk=(a—b) Y al bk!J we have lak —bkI<kla-bl max (ak-1, bk-1) for
j=o

0<a,b<l1. If FQy+ 8k x) = L(x), as we see that IFK(Ax + 8 x)— L (x) = IFK(Ay + 8k x)
—(LVKx)K 1 < k IFAy + 8k x) - L k(x)l x max (Fk-1(Ax + 8 x), l:'_”k(x)) <k | (FAg + 8 x)
-L 1/&(x) 1. As the third factor (max) in the before last expression converges to f.(x) we could
substitute it by L (x) but this is pracnc.ﬂly irrelevant because we are interested in the large

quantiles ( L(x) =1).

This the basic result is |FK(Ay + 8 x) = L(x) | <k | F(Ax + & x) — L1’k(x) |, the RHS being
the principal part of the error, giving thus the order of convergence of \FKAy + & x) — Z(x) | to

zero.

Intheinterval 0< i(x) <1, introducing Tk(x) = F(Ax + 8k x)/i‘/k(x) — 1, where, as it
is immediate, k t(x) = 0 we can give a formulation analogous to the one of Davis (1982)

IRy + 8 x) — L(x) < kI te(x) 1 L(x) max ((1 + t(x))¥-1 , 1) and we see, once more, that

the order of convergence of Fk(Ay + 8 x) to L(x) to isthe one of k 1x(x) = 0
For the relative error of the tail evaluation we have

| L-FXQk+ 8 x) ) o | 1oFOe+8x) | 1=Likx)
1 - Ix) 1 — Lk(x) l-i(x)

P ll - F(Ak + 8k x)
1 - LVk(x)

-1 g 251 0 Top
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using the development of 1-LX(x) in the (alternating) Taylor series on 1—L(x) .

Davis (1982) essential result can be obtained from | Fk(Ax + 8k x) — L) <k | FQy + 8k x)
~LWkx)1, as LVk(x)= exp ( %log Lx) =1+ % log L(x) + O ( -kl—z) , under the form

IFK(Ax + 8k x) = L () < k IF(Ag + 8k x) + log L(x) + O(1/k) | which shows that the order of

convergence is, at most, O(1/k) and is of that order only if k(1 = F(Ak + 3 x) + log i(x) =
O(1/k)! . The convergence is thus slow in general.

Finally it should be noted that in some cases, as for the normal distribution, a sequence of
von Mises-Jenkinson forms G(zl 0,), with 85, — 0 conveniently chosen, can give a better

approximation to F"(k’ +8 x) ((l' ) 5 ) also convenient) than G(zI0) = A(z), the Gumbel
k k k k

distribution. Although theoretically very interesting this point it has a small statistical interest
because we can make the statistical choice of a distribution that fits better the data (see Chapter 1V
and VIII).

In Part I we used the traditional notation where k > 0 (integer) is the index of a sequence; in
the next parts, except for the probabilistic chapter of Part III, we will use n (>0) integer, which
will be the sample size.



ANNEX 1

On The “Duality” between. Extremes and Sums

For simplicity we will deal with some “duality” between sums (or averages) and maxima, the

n n

translation to minima being obvious from the relation min [ X;j} = — max (- Xj} .
1 1

The “duality” is expressed by the two columns in correspondence, where there are various

gaps. F(),F(,.),.. and 9(),9(,.), ..

characteristic functions.

Sums

ox() =Mx (€'X) : ch. f.of X

k
Xi indep.: Ps, (0 =T1 9i(1)
1

Xi i.id.: g, (1) = @k(1)
(X.Y) indep: @ax+by(1) = @x(at) gy(b 1)
(1

M@X+b)y=aMX)+b °

V(aX +b) = a2 V(X)

will denote the distribution functions and the

Maxima

k
M) =max (X;}
1

Fx() =Prob(X €£x}: d.f.of X
n
X; indep.: FMk(x) =11 Fi(x)
1
Xi i.id.:Fy (x) = Fk()
(X, Y) indep: Fmax(X+a, Y+b) = Fx (x — a)
Fy(x - b) ;

(max , +)



If {X;) iid. have p,o? then

? (1) = (1)

(sk— ku)/‘\,; ]

(Central Limit Theorem); in the general case
“sometimes” the ch. f. of the normal law may
be substituted by that of an indefinitely divisible

law; p = tp;( (04, o2 =<p;( (0)2 -cp; (0), in’

the usual case.

If (X,Y) has a binormal distribution with
standard normal margins and correlation
coefficient then Z = aX + bY has a normal
distribution N(x/c(a.b)) with o(a.b) = a2 + b2
+2pab).

If p =0 (independence), o(ab) =1 iff a2+
b2=1: inthatcase C(X,Z)=a.

If (X;) are i.i.d. there “sometimes” exist
(A, 8k > 0) such that Prob{(Mg — Ap)/8y <
x) = Fk(Ax + 8k x) — L (x), L (x) then being
Wa(x) , A(x) or ®u(x);

for A(x) wehave n(l1-FQg)—1,
k(1 — FQAx + 8)) = €1 or 8y~ 1/n F'(An);
there are corresponding results for ®o and
Dy .

If (X,Y) has a bivariate distribution
with reduced Gumbel margins then Z =
max(X — a, Y — b) has a Gumbel
distribution A(z-A(a, b)) with A(a, b) =
log ((e2 +eP) k(b—2))

If k(w) = 1 (independence) , A(a, b) =0 if
e2+eb=1;inthatcase Prob (Z<X-a)=
Prob (X-b<X-a)=e?
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ANNEX 11
ON THE KHINTCHINE’S CONVERGENCE OF TYPES THEOREM

As this theorem has been referred to and will be important to the proof of asymptotic
univariate resuls — and to subsequent generalizations — we will give a proof of it. Let (Vi (x))
be any sequence of distribution functions and suppose that for two sets [(Ak , 8k ), 8k > 0) and

((1: 5 8: ), 8: >0} we have Vi (A + & x) 13 L (x) and Vg (l: +8: x) Y L (x). Then:

L*(x) =L(A+ BXx) wilh(l:—lk)/b} — A, 5:/5k —3B(-o0<A<+99,0<B< + o)and

conversely.

Essentially the theorem says that no sequence of distribution functions is attracted or
converges after convenient positive linear transformations to distribution functions not belonging
to the same type, if the limits are proper and non-degenerate.

We will closely follow Feller (1966) for the proof. Assume that (l: —-AK)/ 8k — A, 8: /

8x — B and we will show that L* (x) = L(A + B x). In fact, given € > 0, fork sufficiently

large, we have
Vi O+ Sk (A +Bx—¢€)) < Vi (x:+5: x) SV Ox+8c(A+Bx+¢g)).

Letting k — + o and at the points x that are continuity points of L* (x)and A+ Bx + €
that are continuity points of L(x) — which excludes at most a denumerable set — we get

LA+Bx-g) <L*X)SL(A+Bx+¢).

Letting now € — 0 we get L* (x) =L (A + B x) except possibly at a denumerable set
and thus everywhere owing to the right—continuity of distribution functions.
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Let us now assume that L*(x) =L (A +Bx).As L and L* are proper and non-
degenerate, choose two continuity points  x’ <x” of L*(x) (0 <L*(x’) <L*(x”) <1)); then
A+Bx’ and A +B x” are continuity points of L(x). For sufficiently large k we have from

Vi (Ak + 3k x) > L(x) and Vi (X: + 8: x) — L¥(x) that there exist also continuity points
y’ <y” of L(x) such that

Vi (A + 8k y’) < Vi (X: + 8: x") < Vg (l: + 5: x") < Vg Ak + O ¥y

and so Ak + Ok y’<l:+8: x'<l:+8: x'< Ak + 0k ¥ .
*
sk ”"n ,
Thus (0<) 5 < —xy—T_xy—.- and consequently for some subsequence of k we have
k

8:/8k — B’ (>0 because of the non—degeneracy). Also y’ - 8:/8k X" < (A* — A )/dk <y” -

*
Sk/ Sk x” and so, as (X: — Ax)/8k remains bounded and in a subsequence of the previous one, it
has a limit A’.
. Evidently A’ and B’ are uniquely determined and we have A* = A, B" =B.

For the situation described where L*(x) = L(A + B x) we say that L(x) and L*(x)

belong to the same type and the coefficients (Ak, &) and (X: , 8:) are equivalent '; if L*(x)=

L(x) or A=0,B =1 will say that they are rotally equivalent.



ANNEX III
On the 8-Method

Essentially the §-method is based on the fact that if {Xk) and (Yx)} are sequences of
random variables such that either Xy — Yy f, 0 or Xk/ Yk f) 1 and {Xg) has a limiting

proper and non-degenerate distribution, the same happens to {Yk] ; see Cramér (1946), p. 254-
255. Also if {(Xk, Zx)} and [(Y, Zy)) are sequences of random pairs and Xy — Yy f, 0 or .

Xk / Yk _P; 1 and ((Xk, Zx)) has a limiting (bivariate) proper and non-degenerate distribution,

the same happens to {(Yk, Zx)) . The multivariate generalization is obvious. In many applications
the 8-method leads to a linearization (use of the terms up to the first order of Taylor development).

For details see Tiago de Oliveira (1 982).

The 8-method was underlying some reasoning in this Part and will be used more extensively
in the following Parts.

Let us give two examples, used in the text, that help to clarify the use of the d-method.

Example 1I:
We wish to study the asymptotic behaviour of ( x,'s) and to show that C(x, s) ~ B1 02/2k,

as obtained by Gumbel and Carlson (1956).
By the Central Limit Theorem , if {X;) have moments up to the fourth order, we know that
I ok 1
KD Xi—H K2 (xi-p)?- o2
1 1

—L —  and By=+K
(¢} . '\’Bz_] 02

Ak = Jk
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are asymptotically standard normal and the random pair is asymptotically binormal with standard

margins and correlation coefficient p =B—' .But By, as xj—p=(xj-x)+( X —W,

VB2 - 1

takes the form

s2+ (x —w)?2-02

VB2- 1 62

Thenas vk (x - )2 =02 AZ/vyk B 0 andso

Bk=\ﬁz

2 2
S o~ .
)

‘\j B2— 1 o2
is also an asymptotically binormal pair with standard margins and correlation coefficient p=p; /

3 .. 52
NB2-1 .Also s2 B o2 and.thus, ———— B 1.

2 o(s— 0O)

(\n‘(_i_*_g,\“—(
o

I ¢ )

VB2-1o

with standard margins, correlation coefficient p, and

\VB2-16 _ Bio?

HE =P J{r 2k 2k

) is also an asymptotically binormal pair

Consequently (Vk ——H 2 Vk
: c

Example 2:

Let f(x, y) be a twice-differentiable function and ((Xk, Yk)} a sequence of random pairs
such that (Vk Ek— iz , vk Xlt;&!) is asymptotically binormal with standard margins
Ox Oy
and correlation coefficient p . Then:

Nk Af Xk, Yi) - f (s, My)} is asymptotically normal with mean value zero and variance V

below.
In fact, as

VE [ (X, Y0~ Gtx, b)) = VK (K=t S5 1, Vi Hy) 5l
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+ 2nd order terms } ,

as the second order terms are op(n—‘/?) we see that Vk (f (Xk, Yi) — f (1, uy)) has the same

asymptotic distribution of the linearized form
o f o f
VE (k- 1) 3 gy =19 35 by )
and is thus normal with mean value zero and variance

g . af 3 f 2,9
V=0 (T hieny? ¥ 2% % Faliiy 3y nwpy ™t Oy Y iy

—

)2

The multivariate generalization is obvious.

This result presupposes that not all the first derivatives are null; if this is not the case (i.e., all
first derivatives are null) then we have different asymptotic distributions, such as the 2 — see

Tiago de Oliveira (1982).
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Exercises — Part 1

k
1.1 — Show that (min X;} £ w .
1 o

1.2 — Study the Cauchy distribution for the LLN.
1.3 — Prove the conditions for the validity of MLLN.

1.4 — Consider a sample of n observations (X;} and a possible future saniplc of m

observations ( Yj), all of them i.i.d. Show that
e W m m I : n(n-1)
Prob {min X; < mifi Y; <max Y; smxXil =@ rm@erm=1)"
1 1 1 1

k k
1.5 — Show that max{X;] < a +max((X; - a),). If the {X;) have the margins Fj(x) then
1 L

k K v eu

M(max X;) < a+ Y, j (1 =Fj(x))d x ; no assumption of independence is made.
1 1 a )

1.6 — Obtain the constants (ot , Bm > 0) that satisfy the stability equation for maxima and for

minima.

1.7 — Obtain the transfqnnations{ interchanging i(x) between themselves, l_: (x) between
themselves and between L (x) and L (x); compare the different graphs of the densities to see

the analogies.

1.8 — Translate maxima results to minima results and vice-versa; use, in particular, the relation
- between the distribution function and the survival function and with the reduced Gumbel
distribution.

1.9 —Fx)=0 if x<0, F(x)=1- e“"; is attracted for maxima to the Gumbel distribution;
obtain one system of attraction coefficients.
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1.10 — Show that if w =+, andforsome u and v>0, as x — + oo » XU exp (xV) (1 -
k

F(x)) = ¢, 0<c<+oo, then ((max X;—Ax)/8x) is attracted to A(x) ; a system of
1

i (1-v)lv
coefficients can be Ax = (log (k c))I/V — V: (lloé(l—k‘—oé);(kv fl))/v and & = (log(k i)) .

J. Villaserior (1976), Ph.D. Thesis

1.11 — Show that the conditions given for F € D (A) are equivalent.

1.12 — Obrain the continuous condition on Q(v) for F to be attracted to the Gumbel distn'bu;ion
of minima.

I.13— The maximum likelihood estimators of (A, 8) for the Gumbel distribution A((x - P)/B)

are (Chapter V, Part IT)
n

Z X C'-‘i/%
A -~ 1
= X e
2 e'xi,%
1
n
A =-Blog(l 3 eniby.
1
+o0
Show thatif ®(®©) = [ eOx d A(x—A)6) then
d=— @'(0) + M
@ (1/8)

A=-8log ®(1/5) ,
corresponuing to the limiting structure of the maximum likelihood estimators.

X — Ak
3

obtain attraction coefficients? Can this be extended to the Weibull and Fréchet distributions ?

.14 —If F e D(A) then FK(x) = A ( ) . Define then @y (0). Can this be used to

1.15 — Show that Fuller approximations to the rcturn period of overpassing the level @ for the
Gumbel and Fréchet distributions for maxima are

a-A a—

7\. ;l— a—ka
5 N =¢ 3 )

T(a) = [~ log A( N 1=e@-MB and T (a) = [ log P
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(@ >A) for large @ and that the return period of underpassing the level a for the Weibull
a —

)

distribution is T (@) = [ - log(1 — We, ( X = ¢ % y®(a >A) for small a—A.

1.16— Show, for the Gumbel distribution, that T ((1+n)a ) and T (a) verify the relation
T(1+m)a)=e"MB T'+M (a). This approximation, with a very small relative error, shows
the nonsense of the rule “to tame your river and build the dam strong enough to withstand
anything, double the largest flood so far observed”. Then M =1, T@a)=e*BT2a)>T 2(a),
as A > 0, and so if the number of years of observation is 50 years, we have the return period

?(2 a) > 2500 years which is not a realistic planning time.

Note : See in Part I1, for each limiting distribution, the status of statistical analysis of extreme
data for risk evaluation and control and design planning.

1.17— Using the fact that, for the standard normal distributic)n,,:l—,_i,:";—/gQ — 1 as x = e, and

defining cy by cp=n N’(cy), show that Nf(cp + x/cn) = A (x).

1.18— Using Mill’s inequalities for the standard normal distribution

(— ——x%)N'(x)<l—N(x)<—xl— N (x) for x>0,

; : k A2p
show that NK(Ay + 3y x) = A(x) as k > e if — 1 and e Mk o1
K + Ok x) (x) A O T2 e

as k — oo, thus directly obtaining the results in the text.

1.19— Let {Xy]} be a sequence of i.i.d. reduced Gumbel random variables. Fix an integer m
and define Yy = max (Y;, Xk+1, -..» Xk+m-1). Show that Prob (Yx —log m < x) =A®X)
and, also, that

k
Prob { max (Y;-log (k + m—-1) <x} = A(x).
1

Note that the sequence { Yk} is (m—1)-dependent.

1.20—Let (X;] be a sequence of independent random variables such that a; Xi +bj (g >
0) have the distribution function F € D(A); let a system of attraction coefficients for F be
(Ak , Ok) . Show then, as
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Fopi= 1 = -2P b A i»k)/sk) AL . e

Prob {(max(X1, ..., Xk) - x; )/6; <x) = A®X)

k
it LY emi+nix) 5 ex =
1

=

where & (&) =2 8 A and M (=mik) =G A +bi- WSk
We can have the same attraction coefficients (i.e., (k; . 6;)) =k, %)) if Nj=0 and §;j=1

or aj=1 and b; =0, which is the already classical case: but if aj=1 and b;=0 is false
there may be a (non-equivalent) change in the attraction coefficients.

1.21— Compute the mean value and variance of Wy and @y (when they exist) up to 0(a-1)
and 0(o-2) and obtain thus the linear transformation such that the transformed variables

converge to the corresponding ones of the reduced Gumbel distribution (whose mean value and

variance are y and %) ; see, for more details, in Part II, the Gumbel distribution.

1.22— Show that if Zy has the reduced Weibull distribution for maxima, with shape parameter
o >0, then a(l + Zy) has the Gumbel distribution for maxima as a limit when o — oo,
Show alsy that if Zy has the reduced Fréchet distribution, with shape parameter o > 0, then
0(— 1 +Zy) has the (iumbel distribution for maxima as a limit when & — +o0 .

1.23— The graphs suggest that ®.." and Wq(z) are very close. Show, although, that
supl Wo(z) - ®@g(2) | =t W ) - (1)l = 1 -2 &1 = 2642411,

z20

with w'(1)=¢’(1)_ Note that sup =|w'(z)_¢ (z) | =+0o0, for <1 owing to the fact
a a 220 a a

W (0)= +o0,but for o>1 we have sup:lw,(z)—fh (z) | <+ oo. Compute this
o 0 o o

bound.

1.24— As known, for the Fréchet distribution ( for raxima) it can be shown that wg = + e and
that we can take Ax =0, i.e., F¥(8y z) — ®y(z) as k —» . Show that if Prob (max(Xj, ...,
Xk )/ 8 < z) = F(§, z) = Dy(z), with k — o, then with Y; = log (max (Xj, 0)) = log (Xj);
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k
we have also Prob {o (max Y; — log 8k) €z} = A(2) . Clearly the result stresses the
1

importance of homogeneous estimators.

1.25— As known, for the Weibull distribution (for minima), it can be shown that wg < + o and

that we can take Ax=WwF , iec., 1-(1-F(wF+8 7))k = Wq(z), as k = = ; Show

k
that if Y;=—log (Xi—wpy) then Prob {a (max Y; +log &) <z)— A(z) also as k — o
; K 1

Consequently, in esl.imation, the left-end point is very important.

1.26— Using the relation between the Gumbcl‘and Fréchet distributions, show that F*(Ap + a z)
— A(2) if and only if T_l_%(FT(% — ea and so 1—F (log x) is a slowly varying
function with index 1/a .

Gnedenko (1943)

1.27—Show, in sequence to the previous exercise, thatif X is normal (i, o) then Y = X2 is
also attracted to Gumbel distribution with &y =a =2 o

1.28— For the examples 1 to 5 and for the attraction coefficients given in the section “The
asymptotic distributions of extremes — some examples’” (Chapter IT) compute numerically the
probability and linear errors for probability levels p = .95, .99, .999 and values of k=10,
100, 1000. Study the behaviour of example 6.

. !
1.29— Use attraction conditions to'show thatboth  F(x) =0 if x<e,F(x)=. 755x if x2e,
and the Pascal distribution are not attracted to the Fréchet distribution.

1.30— Obtain the constants (0 , By > 0) such that the stability equation for G(z18) , 1.0 -
G0y + By z10) = G(218) is valid. ' ;

1.31— Show using the criteria that G(zI0) is attracted to G(zI8) as could be expected; i.e., ¥q
to Yo, A to A and Py to ba.

1.32— Show that the quantiles of G(zI8) converge to those of the Gumbel distribution A(z)
when 8 -5 0% ork - 0".

1.33— Study the case where the (Xj} arei.i.d. and {X.*}. with X, = X; + (=1)i , are both
1 1

attracted for maxima (or for minima) to the same 1(x) (L (x)).



k
I.34— Show that if ({X;) arei.i.d.suchthat W<+ and Prob {(max X;~ A;)/0k < x) —
1

. * * k
thereexist A, and &, such that Prob {(max
1

w - Xj
X:— 7»:)/5; <x]} alsoconverges to some f,(x).

E(x), as k > oo, for X;=

L.35— Obtain conditions such that if {X;) are independent and such that if {(Xj— A;)/5;) have
k

the same distribution L (x), then max (X;) also has the same asymptotic distribution L (x);
1
compute one system of attraction coefficients, asymptotically.

1.36— Using the fact thats,if F € ©(L) then F(x+8x) — 1 andif Fe D (L)

then F(Ax + 8k x) — 0, - show, by the use of Khintchine’s convergence of types theorem,

that not only ~ (Ag41,8k+1) are also attraction coefficients for the same L or L , i.e.,

(Ak+1—Ak)/Bx — 0 and 8y41/8k — 1, but, also, that Fo+kn (A, + 8, x) — L(x) iff kp/n;
interpret the result.

L.37—Let (Xj) bei.id. random variables with distribution function F(x) attracted to 1(x) for
maxima with attraction coefficients Ay ,8x >0 andto L(x) for minima (with attraction

coefficients X; z 8; >0); recali Lt T.(x) may be different 1 - L(x), i.e., that the liniting

distributions can not be in correspondence. It was shown that as k —3 oo

k k 5
Prob (min X; <A +8 x,maxX; < Ax+8 y) > L&) L@y). -
1 1 s

Consider the range Ry = x; - x; and show that, if 8;/8k 5B

Prob{(Re — A=A )V max @, 8)s2) - [ [ aL00 aLoy

with D= (s - mal))(()l‘,b) <7) . Conclude the dominance of X if b=0, of

X'l if b=+90, and a joint influence (a convolution) if 0 <b < + o ; compare with the
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results of Chapter VIIT (Analytical Statistical Choice for Univariate Extremes) of Part II for the
Gumbel statistic Q.

X—A X—A X—A
Obtain specific results for A (T ), ®Pqo (——8—— ) and Wgq (—8- ) and other

commor distributions. Noite that the 8-method can also be used.

Gumbel (1958), Galambos (1987)

1.3& - Obtain corresponding results for the mid-point (X 'l + X;)/Z.

Gumbel (1958), Galambos (1987)

1.39— Obtain the corresponding results for the extremal quotient EQx = X; /X ’I when the Xj

are supposed to be non-negative (Prob(X; > 0] =1). Note that log EQk is the range of
(log Xj} .

Gumbel (1958)

I.40— Show thatif F € D( i:) , with attraction coefficients (Ag, k) and G(x) is such tha:

11_:5%% —¢ (0O<c <+e0) when x - wg then G € D(i) and a system of attraction

coefficients is (Ajek] » Sck)) -

I.41— Use the previous result to show that if X has a distribution function F € D( E) then the
truncated random variable X, =max (X,a), with a <wg, has a distribution function

Fp, € D( i:) also. Compute c.
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Statistics for univariate extremes






