Chapter 1V

A QUICK EXPLORATION OF EXTREME DATA

Introduction

Statistical decision for univariate extremes is currently at a moderate stage of development.
Some problems have been effectively solved, but not all of the essential ones. On the way, many
problems to be solved will appear, constituting a happy hunting ground for rescarchers.
Curiously, even, Bayesian methods have not been strongly developed for statistical extremes,

except essentially for some Reliability questions.

The analysis that follows has the following steps: once it is assumed that the useful
distribution is of one of the three forms — Fréchet, Gumbel or Weibull — we will discuss
statistical decision using the assumed distribution. This chapter will be devoted to quick
exploration techniques, or even as a rough guide on how to assume c:c of the three models, The
last chapter will deal with optimal analytical techniques, comparing them, as far as possible, with

the quick ones.

Note that as a matir of practical convenience we will deal with statistical decision for
Gumbel and Fréchet distributio:;« for maxima and for Weibull distribution for minima, s the latter

is very important in Reliability.

The statistical techniques presented, in v2¢ all but the two last chapters, deal with complete
samples and an assumed distribution; the penultimc'e chapter will deal with statistical choice of
models and the last one with some cases of incomplete information.

Clearly the Gumbel distribution for maxima with & (> 0) known, the Fréchet distributions
for maxima with X and a (> 0) known, and the Weibull distributions for minima with A and
0 (> 0) known are easily reduced to the exponential distribution (only with a scale parameter) by
cvident transformations, and the whole technique of the exponential distribution can be
transformed to these special distributions of extremes.
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Assumption of a model from previous knowledge

In fact, this section could also be called “assumption by tradition”. This essentially involves a
variable mixture: a convenient usage of accumulated experimentation, of limiting results to be
considered as being finitely capable of fitting data, as well as some intuition. The situation is
completely analogous to the assumption of normal (multinormal) distribution, where the Central
Limit Theorem plays an important role as does long-term accumulated experience with
measurements (*), to the assumption of binomial or Beroulli distribution for use in repeatable
trials with an approximately stable probability of the event under consideration, to the assumption
of Poisson either as behaviour of small (random) numbers or as a limit of binomial distribution(**),
to the assumption of the exponential distribution in the (first) analysis of inter-arrival times (thus
implying the Poisson distribution for the associated counting process), to the assumption of
geometric, inverse binomial or Pascal distributions in stopping time experiments with the event
probabilities approximately stable, etc ... The situation here is very similar.

Let us suppose that we are dealing with maxima (or dually with minima) of i.i.d. samples,
with the same size n, and underlying distribution F(.).

Suppose that F(.) € (1(.)). that is F(.) belongs to the domain of attraction of L ()
(Weibull, Gumbel or Fréchet distributions), i.e., there exist sequences {Ay, Op; 8 >0} such that

F“(l,. +0px) = L(x) the convergence being at every point of R by the continuity of I (), and
the eequenccs not being unique, as said before.

Then as convergence is uniform, i.e.
AP, + 8y x) - LX)l = S"Pl Friy) - L( sn" )10,

for large n, we can assume that there exists (X, 8; 8> 0) such that Fi(y) = =L (y8 A

Also f.(.) satisfies the stability equation i‘(x) =L (g + By x), By >0.

(*)  Recall that Poincaré (a mathematician) said Lippman (a physicist) told him lhal Pphysicists used normal
distribution supposing it to be a thcorem, while mathematicians studied it supposing it to be experimentally
verified.

(**) Recall the justification of the Poisson distribution used by “Student” for the counts of particles in a
haemacymaters
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The heuristic reasoning used by Fisher and Tippett (1927/28, p. 180), shows approximate
stability of maxima.

Thus, with the uniformity of convergence and the (approximate) stability of maxima, we can

use the approximation F'(y) = f.((y -A) .

But what happens when F(.) is one of those “awkward” distributions that are not attracted to
one of the L"s ? This, in general, is a consequence of high tails (the right-tail for maxima), and the
use of “slowing down” transformations as the log(.) or log log (.\) can be useful; recall the

example given in Part 1.

Note that the approximation to FN(y) depends on the size of the sample (n); accumulated
experience and simulation can give some idea when the fit is good or even reasonable.

It should be noted that in the heuristics given before we #csumed i.i.d. samples of the same
size. If the samples are i.i.d. but not of the same <i.c, a not uncommon situation, a correction can
be made and the data fit analysed.

Essentially if two samples are of sizes n and n’ we have under general conditions :

Aw =g+ 8, log—, & = &, for the Gumbel distribution,
An = An=0; 8 = &, (n'In)lla for the Fréchet distribution and
Aw =An=w, & = &, (nin’)lle for the Weibull distribution

for maxima; see Tiago de Oliveira (1977) and Ramachandran (1974). If we have more than two
samples we will shift their parameters to those of a sample of average size.

If the i. or i.d. on both conditions fail we have seen (Part I) that usually the asymptotic
results are still valid and the same approximating technique can be used; but, in general, the sample
sizes should be larger chiefly when correlation is positive.

Some rules of thumb, integrating accumulated experience, can be suggested.

For maxima : : _
floods — Gumbel and Fréchet distribution; see Gumbel (1954), (1958) and Thom (1960)
extreme winds — Gumbel and Fréchet distribution; see Thom (1960)
largest waves — Fréchet distribution; see Thom (1970)
longest lives — Gumbel distribution; see Gumbel (1958).
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For minima :
droughts — Weibull distribution; see Gumbel (1958) and (1962) -
breaking strength of materials — Weibull distribution; see Freudhental and Gumbel

(1953) and Weibull (1939).

As a consequence, and with these guide-lines coming from accumulated experience, we can
give the first steps in the approximation of F%y) by L((y—-A)8) andof 1-(1-F(y))" by
1-L((y—A)8) where L(.) canbe Wg(.), A() or Dg(.).

But, also, other quick and more experimental techniques are availables, as follows.

The probability paper for Gumbel distribution
Consider that it is assumed that the i.i.d. sample has the underlying Gumbel distribution

AxIA, 5) =exp (- e(x- l)/S)

- which can be written by taking logarithms twice :

=1 log(-log A)

or
z=A +.8 [-log (—log A)] ;
z is the reduced variate and x the observed one.
Recall that the return period or return time for the level x is
T (xIA, 8) = (1 - A ((x=1)/8) " .

For the probability paper, the iterated logarithms can be built on one of the scales of the paper so
that we need only to plot (x,A). We do not have only scales for x and A butalso for T as been

in the usual probability paper that follows.

Fig. 1V.1 — Gumbel maxima gmbabililx paper



The next figure illustrates the reverse probability paper where the scales of (x,A) are

exchanged, as engineers often do.

Fig. 1V.2 — Gumbel maxima grobabilily paper (reverse)

So far we have ignored the problem of determining an estimate of A((x; —MA)/8) to plot. One

could use, i/n as plotting position to go with X the i-th order statistic in a sample of n,
which is the usual plotting position for the sample distribution function, used for example in the

Kolmogorov-Smimov bounds. This is equivalent to estimating A((x; —A)/3) as the proportion of

x; s less than or equal to x; . Since 1 (and also 0) do not appear on the A-scale, we cannot plot
A((x;—-l)/ﬁ). If we estimate A((xi’- A)/8) by (i— 1)/n, the proportion of xj’ s less than x; A
we cannot plot A((x; —~A)/8) . As a compromise it was suggested to “split the difference” and use
(i-1/2)/n as the estimate of A((xi' —A)/8) . Another procedure is to use the mean value of
A((xi' —A)/8) as a plotting position, which leads to the value- i/(n + 1). Blom (1958) devoted

almost an entire book to the problem of obtaining “optimum” plotting positions, based on the idea
of Chernoff and Lieberman (1954) that the plotting position should depend on the quantity to be
estimated. For example Blom (1958, p. 145) shows that for the normal distribution, plotting
position (i — 3/8)/(n+1/4) = (i —.375)/(n+.25) leads to a practically unbiased estimate of ¢ with
a mean square error about the same as that of the unbiased best linear estimate, while the plotting
position (i—.5)/n leads to a biased estimate of ¢ with nearly minimum mean square error.

Note that some symmetry of plotting positions must be verified : if pjpq is the plotting
position for the x; then we should have Pi,;n + Pn+1-i,n = 1 which does not happen with the
_plotting positions i/n and (i—1)/n but happens with the two other ones. Another perspective, to
be used further in the next section, leads to the plotting position pj = (i — 0.3)/(n + 0.4), also
symmetrical; for details see Tiago de Oliveira (1983). Taking pin= (i + A)/(n + B) the symmetry
condition leadsto B=2A +1 and pin=(G+A)/(n+1+2A) andas O <pjan<1 foreach i
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and n wemusthave —1<A; for A=-—1‘/2,A=O,A=‘3/8 a’nd A=-.3 we obtain the
LA L+ A g AR e bt

given plotting positions. We have n;axl T +2A "X 31 +2A" n

for very large A all the plotting positions are close to 1/2 which means that it is acceptable to use
IAl < 1 to have a reasonable spread of the plotting positions in ]0,1[ ; in that case the upper
bound |A-A’l/n of the maximum error is bounded above by 2/n and is practically irrelevant
for sample sizes n>50, andall pj, are practically equivalent (*) .

In the graph that follows we will use the classical Gumbel plotting position i/(n+1). Fig.
IV.3 that follows was taken from Gumbel (1956) and illustrates the procedure for estimating A* =
778.5 and &* =2.839 for maximum atmospheric pressure (in mm) at Bergen, Norway for the
period between 1857 and 1926. If the fitted straight line is extrapolated beyond the fitted values,
one would “predict”, for example, that a pressure of 793 mm corresponds to a probability of
0.994. That is, pressures of this magnitude have less than 1 chance in 100 of being exceeded in

any particular year.

Fig. IV.3 - Annual maxima of atmospheric pressures, Bergen, Norway, 1857-1926
(reverse probability paper)

The ‘use of Gumbel probability paper for quick statistical choice b fween Weibull,
Gumbel and Fréchet distributions for maxima

Here we will describe a graphical technique taken from Tiago de Oliveira (1983). As S

shown in the previous section, Z being a reduced random variable, the probability paper fo
Gumbel distribution was made as follows : from p = A(z), which can be written as A-l(p) =z,
if we note by y=A"l(p) and graduate' the y-axis in the functional scale p, the relation
p =A(z) can be written as the first diagonal y = z. In addition, if the true distribution is G(zI0)

=exp{—(1 + Oz);l/ 9), the von Mises-Jenkinson formula, the relation p = A(y) = G(zl8) may be

written as y = A1 (G(zl8)) and the relation between (z,y) (or (z,p)) is the curve in the plane
y=log (1 +62z)/8, for 1+6z>0.

(*) Also if we choose A such that for F(x.) =Pnn p'; n—> 122 (ie., x is approximately the median of F(x))

we get A =log 2 - 1and pjn = (i ~.307)/(n + .386); we get the same result for minima with 1 — (1-p; )" — 1/2.
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Let us now return to the plotting positions. If p;p is the plotting position for the order statistic
z; (= z;n with greater rigour) the distance between the plotted point (zi' , p; ) and the first
diagonal is IA=!(pin) —2’j| horizontally or vertically or IA~1(p;jq) —2’i1/V2 orthogonally.

The distance IA~1(pjp) — 2’| is minimized in mean if A-1(p;,) is the median of zi’ (with

Gumbel distribution) or pjn is the median of Bqta (i, n =1 — i) distribution; a good
approximation is to take the one given before, pin =ﬁ0"‘—3; note that we are not using the

least squares approach but we are minimizing max IA=1(pj.n)- z; 1,
i

Having chosen one of these plotting positions, let us consider the general case, i.e.
observations with unknown location and dispersion parameters A and 8,z = (xi—A)/8 being
the reduces values. Then if Xg(p)- is the p-quantile of G(z18), i.e. G(xg(p)!8) =p, the p-
quantile of G((x —A)/010) is, evidently, A+ & xg(p). Consider then the random variable

x — (A + 8 xo(r) . ¢ g=aa()

YT A+ 8xe(s) - (A +8xe()  x6(s) - xe(r)

with 0<r<s<lI; v is obviously independenf of the location and dispersion parameters.

Clearly we are going to plot estimated vi’ where the r and s quantiles are estimated by the

sample quantiles by Xl 1 and . —

The relation p = A(y) = G(zI0) can then be writteni &5 y = A-1 (G(xe(r) + (xo(s) — xe(r))
vi0)) =yg(v), for r and s fixed. Taking v=0 and v=1 we scc thatall curves yg(v) pass
through the points (0, %o (r)) and (1, %o (s)) ,or (0,r) and (0, s) if we nse the fuictional scale
for y. Thus betwe?n v=0 and v=1 the curves yg(v) will with difficulty be separated from
the first diagonal, chiefly (2king into account that the plotted points, even using real and not
¢stimated reduced observations, do not fall exactly on the first diagonal for Gumbel distribution. In
summary, the points between v=0 and v= 1 .are lost for separation of models; it is, thus,
natural to use about 1/3 of the observations for the zone v € [0,1T and 2/3 outside; a smaller
percentage in this zone would introduce instability in the implicit estimation of A and § by the

quantiles, as the denominator would be small.

With this rule of thumb, we have taken Xo(r) =0 and Xo(s)=1 or r= Al0)=el=
0.3678794 and s= A~I(1) =exp (—e!) =0.6922006 (note that, as said before, r=1/3 and
$ = 2/3); practically we can take r=0.368 oreven r=0.37 and s=0.692 oreven s =0.69.
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_(——log.R)_—e_;l and SO x e(e-l) =0

Let us now compute the curves yg(v). As Y a(p) = 0

and x e(exp(—e 1) =(e®—1)/0 we get

L log (1 + (e8—1)v)
0

yo(v)

which is evidently defined when 1 + (e® — 1) v > 0; note that yg(v) is convex for 8<0
(Weibull model) and concave for 0 <0 (Fréchet model), yo(v) (Gumbel model) being a straight
line.

Thus in a Gumbel probability paper we plot a bundle of curves (v, ya(v)) for different values
of 8 and the quick statistical choice is made according to the location of the ploted points (vi' , Pi)

close to the diagonal (Gumbel dism'bqtiqp) or in the Fréchet or Weibull zones as shown in the
Fig. IV 4. Estimation of the paramctcrs%‘;to be made by the.analytical methods of the next three
chapters. o

As an example consider the Table I of maximum wind velocities in knvh between 1941-1970
in Lisbon. i

TABLE I

1941 129.0 1951 96.0r 1961 | 86.0 -
1942 117.0 1952 72.0 1962 91.0 .
1943 100.0 1953 98.0 1963 96.0
1944 100.0 ] 1954 85.0 1964 89.0
1945 132.0 1955 | 124.0 1965 90.0
1946 94.0 1956 | 108.0 1966 89.0
1947 108.0 1957 | 102.0 1967 89.0
1948 113.0 1958 | 102.0 1968 84.0
1949 96.0 1959 | 112.0 1969 | 107.0
1950 113.0 1960 | 107.0 1970 | 111.0

A A
The values of the maximum likelihood estimators are A = 94.71 and & = 12.49; the 1/e -
quantile and exp (- 1/e) -quantile needed for computation of the v; are Q(.367) = 96.0 and

Q(.692) = 108.0; we took, as said before, p; = 1/(n+1).
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Fig. IV.4 - Plotting of (v; , ;) for the maximum wind velocities in km/h in Lisbon,
1941-1970; Fréchet and Weibull zones shown.

As regards m-th extreme, the simplest way is to try the statistical choice for maxima (or
minima) because then the limiting distribution is well known and was given in Part L.

Simple statistical choice between the extreme models

We will use a simple statistic proposed in Gumbel (1965) for the study of the Fréchet
distribution. In Tiago de Oliveira and Gomes (1984) we developed the asymptotic theory of this
statistic for all dlsmbuuons Lzt us denote for a samplc (X1, .. » Xp), from the distribution G(zI0)

by xl =min (X;) , x[ w2141 = med(x;} and X = max{x;} the maximum, the medium and the

minimum of the sample. We consider the statistic

’ v

X —X
g D A = e (e
n n,0 R ik = "med{x;) — min{x;}
[n/2] +1 1

which is, evidently, location and dispersion parameter-free.

We have shown in Tiago de Oliveira and Gomes (1984) that if K =0, G(zl0*) =
G(z10°) = A(z), there exist Pno and opo>0 suchthat ———— B 5,0 Y, A(@); a cho:cc is
On,0

___logn + log 10g < & .
Bn,o loéologn:—k;og]?ogzz , ano=1/loglogn; if 6>0, G(zl9)=d>|/9(ez+l),there

exist Bpo and oy >0 such that Qo - B ! G(zI0) = ®yjp 0z + 1); achmce is Pno
On,0
n® — (log 2)-® .
= . Ong =0(nlog2)® ormoresimply B’rhe=(nlo 20, a’he =
Gos2)® —tlog iy ® |, P (nlog 2) ply B'ng=(nlog2) no

OB ; if 6<0,G(z0)="Y 1p(-02z~1), there exist Pngo and opg >0 such that

Qn—-Bnpe w s A n® — (log 2)-9
— 1-A(~2); achoice is = . ang =-—0(log 2)®
otn.6 (-2) ﬂn.ﬁ (log 2)_9 _ (log n)‘e n,0 g 2)
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(log n)8-1 or even more simply for <1, B'ne =( :—g—g—; )@

e ’
~Togn Pné -

and similarly o’pg =0n0 =

Two intuitive conclusions may be drawn from these results:

1 — There is a “discontinuity” between 6 =0 and 6 <0; for 8 20 the influent term is the
maximum but for 8 <0 the influent term is the minimum; this explains, to a certain extent, why

we cannot have a simple common expression for g and Ong -

2— Asfor 820, apg— o andfor 8<0, Bae—> o O it secms natural to decide for the
Fréchet distribution (0 > 0) if Q,, is large and for the Weibull distribution (0@ <0) if Qp is small;

then the decision rule will be:

On— pn,O <a,

Choose 0 < b < a < + o and decide for the Gumbel distribution when b < »
n,0

for the Fréchet distribution when On—bno a, and for the Weibull distribution when

On,0
Cn—Bno log n + log log 2
n,0

<b, where Ppg= Tog log n — log log 2 and a,,,g=(Ioglogn)'1.

Let us compute, for b < a, the probabilities of correct decision; using the Khintchine

convergence of types theorem :

Qn — Bnyo

1) 6=0: Prob( A(b);
O, 0
2) 6>0: Prob| Qn -~ Bn0 -G(-1/010)=1;"
On,0
3) 8<0: Qn = Bn,0 —G(- 1/018) .
Qno

The techmquc is thus consistent in the usual sense, whatever 0 <b <a <+ oo may be; in
fact if the decision technique is such that for 8 =0 the limit probability of correct decision is
A(a) — A(b), butif 80 the limit probability of correct decision is 1. We could improve the
situation by putting the significance level o, =1 - (A(ap) — A(bp)) = 0 with convenient
restrictions in by and a,. But this does not seem to be needed because it is well known that for
large « (i.e, for small ® in von Mises-Jenkinson form) both the Fréchet and the Weibull
distributions are very close to the Gumbel distribution. Following on from the previous remark, it
seems natural to solve only the statistical trilemma (8 <0, 8 =0 or 8 >0) and not a statistical
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dilemma or one-sided test of hypothesisof 6 =0vs. >0 or §=0vs. 8 <0. The latter
would correspond to the partial acceptance of 8 >0 or 0 <0 which lead to a one-sided test as a
consequence of assuming stronger previous knowledge or a stronger plausibility. Thus we will not

deal with one-sided tests.

It remains now to obtain the one equation for (b, a) and the best seems, from what has been
said, that the length of the Gumbel decision interval a—b should be the smallest possible with the
condition A(a)—A(b) = 1 - a.. The use of Lagrange multipliers gives the equations

AQ@)- AB)=1-a
A@@)= A'(b).

The values corresponding to the usual significance levels are :

o b a
.050 - 1.561334 3.161461
025 - 1.719620 3.841321
.010 - 1.893550 4.740459
.001 —2.22295] 7.010001

Examples of quick exploration of data, as well as the analysis of univariate models and
statistical choice, can be found in the “Some Case Studies” chapter.
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