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Abstract

Packaged entanglement states encapsulate the necessary physical quantities as an entirety for
completely identifying the particles. They are important for particle physics and matter teleportation.
Here we proposed the new packaged entanglement states (of two particles and more than two particles)
in which the charge does not conserve in the process of wave function collapse. We also discussed the
particle teleportation and entanglement transfer using the new packaged entanglement states. It is
shown that a particle always converts into its conjugating particle during the particle teleportation
process.
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1 Introduction
An early article [1] has studied the charge conjugation of a “particle-antiparticle” pair (A, B) and shown
that the pair can form the so-called packaged entanglement states,∣∣Ψ+

〉
AB

=
1√
2

(
|P 〉A

∣∣P̄〉
B

+
∣∣P̄〉

A
|P 〉B

)
,∣∣Ψ−〉

AB
=

1√
2

(
|P 〉A

∣∣P̄〉
B
−
∣∣P̄〉

A
|P 〉B

)
,

(1.1)

where |P 〉 denotes the particle’s quantum state and
∣∣P̄〉 denotes the antiparticle’s quantum state. |Ψ±〉AB

are the eigenstates of the charge conjugation operator C [2]. These states package in all the necessary
physical quantities for completely identifying the particles. They are different to the states with one degree
freedom entanglement [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], hyperentanglement [14, 15, 16, 17, 18] or multimode
entanglement [19, 20, 21, 22, 23, 24]. Furthermore, the particles in the packaged entanglement states are
indeterminate and hermaphroditic. Due to these interesting properties, the packaged entanglement states
could be important for particle physics [2] and be useful in matter teleportation [25], medicine [26], remote
control, and energy transfer.

However, the packaged entanglement states |Ψ±〉AB are construct on basis of a particle-antiparticle
pair in which the total charge is conserved (zero) in the wave function collapse. From a mathematical
point of view, this is not the only possibility. There must exist other forms of packaged entanglement



states in which the total charge are not conserved in the wave function collapse, i.e., the total charge are
not equal before and after the wave function collapse. The physical properties and possible applications
of these new packaged entanglement states are unknown yet.

In this article we constructed the mathematical expressions for the new packaged entanglement states
and show that the wave function collapse does not result in a particle-antiparticle pair, but two identical
particles (either two similar particles or two similar antiparticles). In other words, the total charge is not
conserved in the wave function collapse and the C-symmetry is broken. The new packaged entanglement
states can also be used as the quantum channels for particle teleportation. But the receiver’s particle
always conjugates to the sender’s particle.

2 Packaged entanglement states
As mentioned before, the packaged entanglement states |Ψ±〉AB are constructed under the constraint
condition of zero total charge. Thus, they strictly obey the law of charge conservation. We shall now
remove this constraint condition and construct the new packaged entanglement states which do not obey
the law of charge conservation. Let us first study the packaged entanglement states of two particles and
then generalize it to M > 2 particles later.

2.1 Packaged entanglement states of two particles
Consider the following two quantum states of a particle pair,∣∣Φ+

〉
AB

=
1√
2

(
|P 〉A |P 〉B +

∣∣P̄〉
A

∣∣P̄〉
B

)
,∣∣Φ−〉

AB
=

1√
2

(
|P 〉A |P 〉B −

∣∣P̄〉
A

∣∣P̄〉
B

)
.

(2.1)

Applying the charge conjugation operator C to |Φ±〉AB , we have

C
∣∣Φ±〉

AB
=

1√
2

(−1)J
(∣∣P̄〉

A

∣∣P̄〉
B
± |P 〉A |P 〉B

)
= ±(−1)J

∣∣Φ±〉
AB

.

(2.2)

where J = L+ S is the total angular momentum quantum number, L is the orbital angular momentum
quantum number, and S is the total spin quantum number.

Eq.(2.2) shows that |Φ±〉AB are also the eigenstates of the charge conjugation operator C. The
C-parity (or charge parity) [27] depends on the total angular momentum quantum number J . As the
eigenstates of C, therefore, |Φ±〉AB must exist.

Similarly to |Ψ±〉AB , the states |Φ±〉AB are also entanglement states because they cannot be expressed
as the direct product of the particle state and antiparticle state.[28, 29] Furthermore, as the eigenstates
of the charge conjugation operator C, the entanglement states |Φ±〉AB also package in all the physical
properties capable of completely identifying the particles, i.e., the particle’s electric charge (Q), baryon
number (B), lepton number (L), isospin (I3), charm (C), strangeness (S), topness (T ), and bottomness
(B′).

The packaged entanglement states |Φ±〉AB have an interesting property. If a measurement is per-
formed on the particle pair, |Φ+〉AB (or |Φ−〉AB) will collapse and break the C-symmetry (the symmetry
of physical laws under the charge conjugation operator C) [2, 30, 31]. More specifically, if a measurement
is performed on A, it will collapse into either a particle, or an antiparticle. If A collapse into a particle,
then B will also collapse into a particle, i.e., the wave function |Φ+〉AB (or |Φ−〉AB) will collapse into
|P 〉A |P 〉B . If A collapse into an antiparticle, then B will also collapse into an antiparticle, i.e., the wave
function |Φ+〉AB (or |Φ−〉AB) will collapse into

∣∣P̄〉
A

∣∣P̄〉
B
. This process break the C-symmetry of the

particle-antiparticle pair. Therefore, the law of charge conservation does not hold in this process.
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2.2 Packaged entanglement states of more than two particles
The above stated packaged entanglement state can be generalized to a system with M > 2 particles.
Because each particle has two states P and P̄ , there are totally 2M packaged entanglement states, i.e.,∣∣Φ±〉
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(2.3)

On the right sides of each equation in Eq.(2.3), the second half conjugates to the first half. Thus, if
one apply the charge conjugation operator C to one of these equations, then he/she can obtain the same
equation with a coefficient. This means that all the packaged entanglement states in Eq.(2.3) are the
eigenstates of C.

If the numbers of P s and P̄ s in the first half (or the second half) combinations on the right side of
a state in Eq.(2.3) are equal (M must be an even number), then the C-symmetry holds in the collapse
of this wave function. There are totally CM/2

M = M !/[(M/2)!]2 such states. If M = 2, then |Φ±〉3 (see
Eq.(2.3)) reduces to Eq.(1.1).

On the other hand, if the numbers of P s and P̄ s in the first half (or the second half) combinations
on the right side of a state in Eq.(2.3) are unequal, then the C-symmetry does not hold in the collapse of
this wave function. For example, if a measurement is performed on |Φ±〉1, then they will either collapse
into the separable states |P 〉1 |P 〉2 |P 〉3 · · · |P 〉M−1 |P 〉M or ±

∣∣P̄〉
1

∣∣P̄〉
2

∣∣P̄〉
3
· · ·
∣∣P̄〉

M−1

∣∣P̄〉
M
. These

processes break the C-symmetry. Therefore, the law of charge conservation does not hold in the collapse
of these wave functions. If M = 2, then |Φ±〉1 reduces to Eq.(2.1).

3 Applications

3.1 Particle teleportation to a single receiver
We shall now discuss the particle teleportation [25] using the packaged entanglement states in Eq.(2.1).
The protocol is similar to that proposed in Ref. [1]. Let us first choose the packaged entanglement states
|Φ+〉AB to carry out the calculation (see Fig. 1).

Consider that Alice want to teleport a particle X to Bob. Denote the quantum state of X as

|φ〉X = α |P 〉X + β
∣∣P̄〉

X
, (3.1)

where α = 1, β = 0 if X is a particle, and α = 0, β = 1 if X is an antiparticle.
Now create a quantum channel, i.e., a particle pair (A, B) in the packaged entanglement state

|Φ+〉AB = 1√
2

(
|P 〉A |P 〉B +

∣∣P̄〉
A

∣∣P̄〉
B

)
. One of the particles (particle A) is sent to Alice and another

(particle B) is sent to Bob. Before Alice carry out any further operation, the complete state of the three
particles (X, A, B) is

|φ〉X
∣∣Φ+

〉
AB

=
α√
2

(
|P 〉X |P 〉A |P 〉B + |P 〉X

∣∣P̄〉
A

∣∣P̄〉
B

)
+

β√
2

(∣∣P̄〉
X
|P 〉A |P 〉B +

∣∣P̄〉
X

∣∣P̄〉
A

∣∣P̄〉
B

)
.

(3.2)
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Figure 1: (Color online) Schematic diagram for particle teleportation using the packaged entanglement
states |Φ±〉AB = 1√

2

(
|P 〉A |P 〉B ±

∣∣P̄〉
A

∣∣P̄〉
B

)
, and particle-antiparticle annihilation phenomenon.

Thereafter, Alice sends out her information stored on particle X by annihilating particle X with
particle A. Eq.(3.2) will collapse into a state |Φ+〉′XAB which only has terms including |P 〉X

∣∣P̄〉
A

and∣∣P̄〉
X
|P 〉A, i.e., ∣∣Φ+

〉′
XAB

= α
(
|P 〉X

∣∣P̄〉
A

) ∣∣P̄〉
B

+ β
(∣∣P̄〉

X
|P 〉A

)
|P 〉B

= α
∣∣PP̄〉

XA

∣∣P̄〉
B

+ β
∣∣P̄P〉

XA
|P 〉B .

(3.3)

where
∣∣PP̄〉

XA
and

∣∣P̄P〉
XA

are the particles produced by the |P 〉X
∣∣P̄〉

A
and

∣∣P̄〉
X
|P 〉A annihilation,

respectively.
Eq.(3.3) shows that Bob’s particle B becomes related to X after Alice annihilate X with A. If

|φ〉X = |P 〉X (i.e., X is a particle, see Eq.(3.1)), then Eq.(3.3) becomes∣∣Φ−〉′
XAB

=
∣∣PP̄〉

XA

∣∣P̄〉
B
, (3.4)

and B becomes an antiparticle conjugating to X. If |φ〉X =
∣∣P̄〉

X
(i.e., X is an antiparticle), then Eq.(3.3)

becomes ∣∣Φ−〉′
XAB

=
∣∣P̄P〉

XA
|P 〉B , (3.5)

and B becomes an particle conjugating to X.
Eq.(3.4) and Eq.(3.5) show that Bob’s particle B always conjugates to particle X after Alice sent out

her information. This means that Bob can receive the packaged information of particle X sent to him
by Alice (carried by X) and therefore can successfully decode the packaged information by referring to
Eq.(3.4) and Eq.(3.5)

Similarly, one can repeat the above particle teleportation process using the packaged entanglement
state |Φ−〉AB (see Eq.(2.1)). Now Eq.(3.3) becomes∣∣Φ−〉′

XAB
= −α

∣∣PP̄〉
XA

∣∣P̄〉
B

+ β
∣∣P̄P〉

XA
|P 〉B . (3.6)

If |φ〉X = |P 〉X , then |Φ−〉′XAB = −
∣∣PP̄〉

XA

∣∣P̄〉
B
. If |φ〉X =

∣∣P̄〉
X
, then |Φ−〉′XAB =

∣∣P̄P〉
XA
|P 〉B .

On can see that using |Φ+〉AB , Bob always obtain a particle (particle B) conjugating to that of Alice
(particle X). However, as shown in Ref. [1], when using |Ψ+〉AB , Bob always obtain a particle identical
to that of Alice.
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3.2 Particle teleportation to multiple receivers
We shall now show that Alice can teleport particles to multiple receivers [32, 33] using an entanglement
state in Eq.(2.3). For simplicity, let us choose the first one in Eq.(2.3) (similar to the so-called GHZ state
[34]) to carry out the calculation, i.e.,∣∣Φ+

〉
1

=
1√
2

(
|P 〉

⊗
M

+
∣∣P̄〉⊗M

)
. (3.7)

One of the particles (particle A) is sent to the sender Alice and other M − 1 particles are sent to the
multiple receivers: Bob, Carl, David, Edward, Frank, · · · . Before Alice carry out any further operation,
Eq.(3.2) becomes

|φ〉X
∣∣Φ+

〉
1

=
α√
2

[
|P 〉X |P 〉A |P 〉

⊗
(M−1)

+ |P 〉X
∣∣P̄〉

A

∣∣P̄〉⊗(M−1)
]

+
β√
2

[∣∣P̄〉
X
|P 〉A |P 〉

⊗
(M−1)

+
∣∣P̄〉

X

∣∣P̄〉
A

∣∣P̄〉⊗(M−1)
]
.

(3.8)

Thereafter, Alice sends out her information stored on particle X by annihilating particle X with
particle A. Eq.(3.8) becomes∣∣Φ+

〉′
XA(M−1) = α

∣∣PP̄〉
XA

∣∣P̄〉⊗(M−1)
+ β

∣∣P̄P〉
XA
|P 〉

⊗
(M−1)

. (3.9)

If |φ〉X = |P 〉X , then |Φ−〉′XA(M−1) =
∣∣PP̄〉

XA

∣∣P̄〉⊗(M−1). If |φ〉X =
∣∣P̄〉

X
, then |Φ−〉′XA(M−1) =∣∣P̄P〉

XA
|P 〉

⊗
(M−1).

On can see that using |Φ+〉1, the multiple receivers always receive the particles conjugating to particle
X. This confirms that Alice can teleport particles to multiple receivers.

3.3 Transfer of packaged entanglement states
As mentioned before, Alice needs a quantum channel (a particle pair in an entanglement state) to perform
a quantum teleportation. However, if two particles are spatially separated by large distance, then it is
difficult to build up an entanglement state between them. It is even harder to put a separable particle-
antiparticle pair into a packaged entanglement state. In this case, one should consider the possibility of
transferring the entanglement state from other entangled particles to the objective particles which are
originally unrelated. The purpose of this section is to study the entanglement transfer. The procedure is
similar but not exactly like the entanglement swapping [35, 36]. The fundamental difference is that the
entanglement swapping process use Bell measurements to swap the entanglements, but here we will use
particle-antiparticle annihilation phenomenon to transfer the packaged entanglements (see Fig. 2).

Consider that particle A and B are originally in the packaged entanglement state |Φ+〉AB , and particle
C and D are in the packaged entanglement state |Φ+〉CD, i.e.,

∣∣Φ+
〉
AB

=
1√
2

(
|P 〉A |P 〉B +

∣∣P̄〉
A

∣∣P̄〉
B

)
,∣∣Φ+

〉
CD

=
1√
2

(
|P 〉C |P 〉D +

∣∣P̄〉
C

∣∣P̄〉
D

)
.

(3.10)

Apparently, A and D are unrelated, B and C are unrelated. Now we wish to connect A and D in
a packaged entanglement state without touching them. This can be achieved by annihilating B and C.
Before Alice carry out any further operation, the complete state of the four particles (A, B, C, D) is∣∣Φ+

〉
ABCD

=
∣∣Φ+

〉
AB

∣∣Φ+
〉
CD

=
1

2

(
|P 〉A |P 〉B |P 〉C |P 〉D + |P 〉A |P 〉B

∣∣P̄〉
C

∣∣P̄〉
D

+
∣∣P̄〉

A

∣∣P̄〉
B
|P 〉C |P 〉D +

∣∣P̄〉
A

∣∣P̄〉
B

∣∣P̄〉
C

∣∣P̄〉
D

)
(3.11)
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Figure 2: (Color online) Schematic diagram for the entanglement transfer from the packaged entangle-
ment states |Φ+〉AB = 1√

2

(
|P 〉A |P 〉B +

∣∣P̄〉
A

∣∣P̄〉
B

)
and |Φ+〉CD = 1√

2

(
|P 〉C |P 〉D +

∣∣P̄〉
C

∣∣P̄〉
D

)
to the

packaged entanglement state |Ψ+〉AD = 1√
2

(
|P 〉A

∣∣P̄〉
D

+
∣∣P̄〉

A
|P 〉D

)
.

Each particle in the packaged entanglement states is a mixture of a particle and an antiparticle, or
a hermaphroditic particle. When particle B encounters C, the particle-antiparticle annihilation phe-
nomenon [37] will force B and C to collapse into a pair of conjugated particles, or a particle-antiparticle
pair in the separable states |P 〉B

∣∣P̄〉
C

or
∣∣P̄〉

B
|P 〉C . Afterwards, the particle-antiparticle pair (B, C)

will annihilate each other. Thus, the |Φ+〉ABCD in Eq.(3.11) will collapse into a state |Φ+〉′ABCD which
only has terms including |P 〉B

∣∣P̄〉
C

and
∣∣P̄〉

B
|P 〉C , i.e.,∣∣Φ+

〉′
ABCD

=
1√
2

(
|P 〉A |P 〉B

∣∣P̄〉
C

∣∣P̄〉
D

+
∣∣P̄〉

A

∣∣P̄〉
B
|P 〉C |P 〉D

)
=
∣∣Ψ+

〉
AD

∣∣PP̄〉
BC

.

(3.12)

where |Ψ+〉AD = 1√
2

(
|P 〉A

∣∣P̄〉
D

+
∣∣P̄〉

A
|P 〉D

)
and

∣∣PP̄〉
BC

are the particles produced by the |P 〉B
∣∣P̄〉

C

and
∣∣P̄〉

B
|P 〉C annihilation.

Eq.(3.12) shows that after the annihilation of particle B and C, particle A andD (originally unrelated)
is now in the packaged entanglement state |Ψ+〉AD. If we choose |Φ−〉AB and |Φ−〉CD in Eq.(3.10), then
Eq.(3.12) becomes |Φ−−〉′ABCD = − |Ψ+〉AD

∣∣PP̄〉
BC

, where |Ψ+〉AD = 1√
2

(
|P 〉A

∣∣P̄〉
D

+
∣∣P̄〉

A
|P 〉D

)
. If

we choose |Φ+〉AB and |Φ−〉CD in Eq.(3.10), then Eq.(3.12) becomes |Φ+−〉′ABCD = − |Ψ−〉AD

∣∣PP̄〉
BC

,
where |Ψ−〉AD = 1√

2

(
|P 〉A

∣∣P̄〉
D
−
∣∣P̄〉

A
|P 〉D

)
.

Furthermore, the above transfer process can be performed in a sequence or chain with any number of
packaged entanglement pairs, i.e.,

A−
︷ ︸︸ ︷
B · · ·C −

︷ ︸︸ ︷
D · · ·E−

︷ ︸︸ ︷
F · · ·G−

︷ ︸︸ ︷
H · · · I −J · · · .

Similarly, one can also use the packaged entanglement states |Ψ±〉AB in Eq.(1.1) to do the calculation.
For example, if we choose |Ψ+〉AB and |Ψ+〉CD, then Eq.(3.12) becomes |Ψ+〉′ABCD = |Ψ+〉AD

∣∣PP̄〉
BC

,
where |Ψ+〉AD = 1√

2

(
|P 〉A

∣∣P̄〉
D

+
∣∣P̄〉

A
|P 〉D

)
.

The above discussion shows that in the entanglement transfer process, one can only obtain the states
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|Ψ±〉AD, but cannot obtain the states |Φ±〉AD. It does not matter which quantum channels you choose
to do the entanglement transfer.

4 Conclusion
The properties of new packaged entanglement states with C-symmetry breaking are studied. This new
packaged entanglement states are also the eigenstates of charge conjugation operator. The application of
the new packaged entanglement states in particle teleportation and entanglement transfer are discussed.
In the particle teleportation process with new packaged entanglement states, a particle is always teleported
to the receiver as a particle conjugating to the original particle. In the entanglement transfer process,
one can only obtain the states that obey the C-symmetry (|Ψ±〉AD), but cannot obtain the states that
break the C-symmetry (|Φ±〉AD).
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