Martin Erik Horn: Sandwich Products and Reflections,

PhyDid B – Paper DD 17.7, DPG spring conference 2015 at Wuppertal. URL: http://phydid.physik.fu-berlin.de/index.php/phydid-b/article/view/642

5. Overview: Reflection formulas

Reflection at a poin	nt (rej	pres	ented by scalar ℓ):	
Scalars:	$\mathbf{k}_{\mathrm{ref}}$	=	$\ell k \ell^{-1}$	{1}
Vectors:	$\mathbf{r}_{\mathrm{ref}}$	= -	$\ell \mathbf{r} \ell^{-1}$	{2}
Bivectors:	\mathbf{A}_{ref}	=	$\ell \mathbf{A} \ell^{-1}$	{3}
Trivectors:	$\mathbf{V}_{\mathrm{ref}}$	= -	$\ell \mathbf{V} \ell^{-1}$	{4}
Quadvectors:	$oldsymbol{Q}_{ ext{ref}}$	=	$\ell \ oldsymbol{Q} \ \ell^{-1}$	{5}
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}}$	= -	$\cdot \ell \boldsymbol{P} \ell^{-1}$	{6}
Hexavectors:	$H_{\rm ref}$	=	$\ell \boldsymbol{H} \ell^{-1}$	{7}
Septavectors:	$S_{\rm ref}$	= -	$\cdot \ell S \ell^{-1}$	{8 }

Reflection at an axis (represented by vector n):

Scalars:	$\mathbf{k}_{ref} = \mathbf{n} \mathbf{k} \mathbf{n}^{-1}$	{9 }
Vectors:	$\mathbf{r}_{ref} = \mathbf{n} \mathbf{r} \mathbf{n}^{-1}$	{10}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{n} \mathbf{A} \mathbf{n}^{-1}$	{11}
Trivectors:	$\mathbf{V}_{\text{ref}} = \mathbf{n} \mathbf{V} \mathbf{n}^{-1}$	{12}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{n} \boldsymbol{Q} \mathbf{n}^{-1}$	{13}
Pentavectors:	$\boldsymbol{P}_{\text{ref}} = \mathbf{n} \boldsymbol{P} \mathbf{n}^{-1}$	{14}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \mathbf{n} \boldsymbol{H} \mathbf{n}^{-1}$	{15}
Septavectors:	$S_{\rm ref} = \mathbf{n} S \mathbf{n}^{-1}$	{16}

Reflection at a plane (represented by bivector N):

Scalars:	$k_{ref} = \mathbf{N} \mathbf{k} \mathbf{N}^{-1}$	{17}
Vectors:	$\mathbf{r}_{ref} = -\mathbf{N} \mathbf{r} \mathbf{N}^{-1}$	{18}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{N} \mathbf{A} \mathbf{N}^{-1}$	{19}
Trivectors:	$\mathbf{V}_{\text{ref}} = -\mathbf{N} \mathbf{V} \mathbf{N}^{-1}$	{20}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{N} \boldsymbol{Q} \mathbf{N}^{-1}$	{21}
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}} = -\mathbf{N} \boldsymbol{P} \mathbf{N}^{-1}$	{22}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \mathbf{N} \boldsymbol{H} \mathbf{N}^{-1}$	{23}
Septavectors:	$\boldsymbol{S}_{\mathrm{ref}}$ = $-\mathbf{N} \boldsymbol{S} \mathbf{N}^{-1}$	{24}

Reflection at a 3d space or reduced spacetime (represented by trivector **T**):

Scalars:	$\mathbf{k}_{ref} = \mathbf{T} \mathbf{k} \mathbf{T}^{-1}$	{25}
Vectors:	$\mathbf{r}_{ref} = \mathbf{T} \mathbf{r} \mathbf{T}^{-1}$	{26}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{T} \mathbf{A} \mathbf{T}^{-1}$	{27}
Trivectors:	$\mathbf{V}_{\text{ref}} = \mathbf{T} \mathbf{V} \mathbf{T}^{-1}$	{28}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{T} \boldsymbol{Q} \mathbf{T}^{-1}$	{29}
Pentavectors:	$\boldsymbol{P}_{\text{ref}} = \mathbf{T} \boldsymbol{P} \mathbf{T}^{-1}$	{30}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \mathbf{T} \boldsymbol{H} \mathbf{T}^{-1}$	{31}
Septavectors:	$S_{\rm ref} = \mathbf{T} S \mathbf{T}^{-1}$	{32}

Reflection at a 4d hyperspace or spacetime (represented by quadvector **Q**):

(represented by qu		
Scalars:	$\mathbf{k}_{ref} = \mathbf{Q} \mathbf{k} \mathbf{Q}^{-1}$	{33}
Vectors:	$\mathbf{r}_{ m ref}$ = - Q r Q ⁻¹	{34}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{Q} \mathbf{A} \mathbf{Q}^{-1}$	{35}
Trivectors:	$\mathbf{V}_{\mathrm{ref}}$ = - Q V Q ⁻¹	{36}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{Q} \boldsymbol{Q} \mathbf{Q}^{-1}$	{37}
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}} = - \boldsymbol{Q} \boldsymbol{P} \boldsymbol{Q}^{-1}$	{38}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \boldsymbol{Q} \boldsymbol{H} \boldsymbol{Q}^{-1}$	{39}
Septavectors:	$\boldsymbol{S}_{\mathrm{ref}}$ = - Q \boldsymbol{S} Q ⁻¹	{40}

Reflection at a 5d hyperspace, hyperspacetime or spacetimevelocity (represented by pentavector **P**):

Scalars:	$\mathbf{k}_{ref} = \mathbf{P} \mathbf{k} \mathbf{P}^{-1}$	{41}
Vectors:	$\mathbf{r}_{ref} = \mathbf{P} \mathbf{r} \mathbf{P}^{-1}$	{42}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$	{43}
Trivectors:	$\mathbf{V}_{\text{ref}} = \mathbf{P} \mathbf{V} \mathbf{P}^{-1}$	{44}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{P} \boldsymbol{Q} \mathbf{P}^{-1}$	<i>{</i> 45 <i>}</i>
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}} = \boldsymbol{P} \boldsymbol{P} \boldsymbol{P}^{-1}$	{46}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \boldsymbol{P} \boldsymbol{H} \boldsymbol{P}^{-1}$	{47}
Septavectors:	$S_{\rm ref} = \mathbf{P} S \mathbf{P}^{-1}$	{48}

Reflection at a 6d hyperspace or hyperspacetime (represented by hexavector **H**):

Scalars:	$\mathbf{k}_{ref} = \mathbf{H} \mathbf{k} \mathbf{H}^{-1}$	{49}
Vectors:	$\mathbf{r}_{ref} = -\mathbf{H} \mathbf{r} \mathbf{H}^{-1}$	{50}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{H} \mathbf{A} \mathbf{H}^{-1}$	{51}
Trivectors:	$\mathbf{V}_{ref} = - \mathbf{H} \mathbf{V} \mathbf{H}^{-1}$	{52}
Quadvectors:	$\boldsymbol{Q}_{\mathrm{ref}} = \mathbf{H} \boldsymbol{Q} \mathbf{H}^{-1}$	{53}
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}} = - \mathbf{H} \boldsymbol{P} \mathbf{H}^{-1}$	{54}
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \boldsymbol{H} \boldsymbol{H} \boldsymbol{H}^{-1}$	{55}
Septavectors:	$\boldsymbol{S}_{\mathrm{ref}}$ = - H \boldsymbol{S} H ⁻¹	{56}

Reflection at a 7d hyperspace or hyperspacetime (represented by septavector **S**):

Scalars:	$k_{ref} = \mathbf{S} \mathbf{k} \mathbf{S}^{-1}$	{57}
Vectors:	$\mathbf{r}_{\mathrm{ref}} = \mathbf{S} \mathbf{r} \mathbf{S}^{-1}$	{58}
Bivectors:	$\mathbf{A}_{\mathrm{ref}} = \mathbf{S} \mathbf{A} \mathbf{S}^{-1}$	{59}
Trivectors:	$\mathbf{V}_{\mathrm{ref}} = \mathbf{S} \mathbf{V} \mathbf{S}^{-1}$	<i>{60}</i>
Quadvectors:	$oldsymbol{Q}_{ m ref}$ = S $oldsymbol{Q}$ S $^{-1}$	<i>{</i> 61 <i>}</i>
Pentavectors:	$\boldsymbol{P}_{\mathrm{ref}} = \boldsymbol{S} \boldsymbol{P} \boldsymbol{S}^{-1}$	<i>{</i> 62 <i>}</i>
Hexavectors:	$\boldsymbol{H}_{\mathrm{ref}} = \boldsymbol{S} \boldsymbol{H} \boldsymbol{S}^{-1}$	<i>{</i> 63 <i>}</i>
Septavectors:	$\boldsymbol{S}_{\mathrm{ref}} = \boldsymbol{S} \boldsymbol{S} \boldsymbol{S}^{-1}$	{64}

Similar equations with the same sandwich product structure can be found for reflections at higher-dimensional hyperspaces and hyper-spacetimes.