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§1. Introduction.

The Wallis formula is often written as

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· 10

9
· 10

11
· 12

11
· 12

13
· 14

13
· 14

15
· · · = π

2
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, . . . of the left-hand

side of (1.1a) converges to
π

2
. Since the partial product of the first 2n terms

p2n =

[
22n(n!)2

(2n)!
√

2n+ 1

]2
we may rewrite (1.1a) as

lim
n→+∞

22n(n!)2

(2n)!
√
n

=
√
π, (1.1b)

which is often used to obtain the ubiquitous Stirling formula

lim
m→+∞

em m!

mm
√
m

=
√

2π, (1.2)

described in McCartin, 2006 as ”providing an intriguing connection between π
and e. ” To obtain (1.2) we rewrite (1.1b) as

lim
m→+∞

(fm)2

f2m
=
√

2π, fm =
em m!

mm
√
m
. (1.3)
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Since fm > 0,
fm+1

fm
=

e(
1 + 1

m

)m+0.5 = e

(
m

m+1

)m+0.5

< 1, sequence fm is pos-

itive and monotonically decreasing and as such must have a non-negative limit.

To show that lim
m→+∞

fm 6= 0 , consider sequence gm =
(m− 1)fm

m
which has

the same limit as sequence fm. Since
gm+1

gm
=

e m2

m2 − 1

(
m

m+1

)m+0.5

> 1 , then

lim
m→+∞

gm > g2 > 0 and thus lim
m→+∞

fm > 0. Formula (2) is obtained by sim-

ple application of the laws of limits to (1.3) as follows
√

2π = lim
m→+∞

(fm)2

f2m
=(

lim
m→+∞

fm

)2
lim

m→+∞
f2m

= lim
m→+∞

fm. Thus (1.2) and (1.1) are equivalent in the sense that

each one of them implies the other.
Of many applications of the Stirling formula one is the derivation of the nor-

mal distribution as the limiting case of the binomial distribution. In a typical
derivation found in many textbooks, one considers an infinite row of cells num-
bered by integers and a one-dimensional random walk of a point P that starts
at the cell K=0 and at each step jumps from the point it occupies to either the

right or left adjacent cell with probability
1

2
.

. . . −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 . . .

The probability of finding point P at a cell K after N steps is given by the
following table:

K=. . . −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .

N=0 . . . 0 0 0 0 0 0 0 1
20

0 0 0 0 0 0 0 0 . . .

N=1 . . . 0 0 0 0 0 0
1
21 0

1
21 0 0 0 0 0 0 0 . . .

N=2 . . . 0 0 0 0 0
1
22 0

2
22 0

1
22 0 0 0 0 0 0 . . .

N=3 . . . 0 0 0 0
1
23 0

3
23 0

3
23 0

1
23 0 0 0 0 0 . . .

N=4 . . . 0 0 0
1
24 0

4
24 0

6
24 0

4
24 0

1
24 0 0 0 0 . . .

N=5 . . . 0 0
1
25 0

5
25 0

10
25 0

10
25 0

5
25 0

1
25 0 0 0 . . .

N=6 . . . 0
1
26 0

6
26 0

15
26 0

20
26 0

15
26 0

6
26 0

1
26 0 0 . . .

N=7 . . .
1
27 0

7
27 0

21
27 0

35
27 0

35
27 0

21
27 0

7
27 0

1
27 0 . . .

The nonzero entries are
1

2N
multiples of the binomial coefficients

N !(
N+K

2
!
) (

N−K
2

!
) ,

|K| 6 N written as even functions of K . The probability P (K,N) of finding
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point P at a cell labeled K is given by

P (K,N) =


N !

2N
(
N+K

2
!
) (

N−K
2

!
) , if |K| 6 N ; N −K is even,

0, otherwise.

(1.4)

For N sufficiently large and |K| � N , formula (2) allows us to approximate

N ! ≈
√

2πNNNe−N ,
N ±K

2
! ≈

√
π(N ±K)

(
N ±K

2

)N±K
2

e−
N±K

2 which

upon substitution into
N !

2N
(
N+K

2
!
) (

N−K
2

!
) lead to approximation

N !

2N
(
N+K

2
!
) (

N−K
2

!
)

≈
√

2

πN
e−

K2

2N of the binomial distribution by the normal distribution .

The given derivation of the normal distribution is based on formula (1.2)
with all difficulties buried in (1.2), or equivalently in (1.1). One would assume
that formulas as fundamental as (1.1) and (1.2) had an intuitive proof, yet as
pointed out in Gowers (2008), all proofs of (1.1) seem to contain a non-intuitive
step with an identity or an estimate magically pulled out of a hat. Attempts to
find a simple intuitive proof have led to a rather large number of publications
some of which are listed in Bibliography, yet none seems to be fully intuitive.
Most assume that formulas (1.1) are known and try to construct an appropriate
proof. But is it possible to arrive at formulas (1.1) in a completely natural way
without any magical steps? The author of this paper thinks it is and will show
how in the next section based on the ideas outlined in Kovalyov (2009).

§2. Intuitive derivation of the Wallis formula and the
normal distribution.

For simplicity’s sake let us take

N = 2n is even . (2.1)

Then

P (−2k, 2n)=P (2k, 2n)=



(2n)!

22n (n!)2
· (n!)2

(n+ k)!(n− k)!
=

(2n)!

22n (n!)2

k∏
j=1

n− (k − j)
n+ j

=
(2n)!

22n (n!)2

k∏
j=1

1− k−j
n

1 + j
n

, if 0 6 k 6 n,

0, if k > n. (2.2)
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Coefficients P (2k, 2n) also satisfy

n∑
k=−n

P (2k, 2n) =
n∑

k=−n

(2n)!

22n(n+ k)!(n− k)!
=

(
1

2
+

1

2

)2n

= 1. (2.3)

The main idea of the derivation of (1.1b) is to estimate P (2k, 2n) in (2.2) by

using rather intuitive approximations 1−k − j
n
≈ e

j−k
n , 1+

j

n
≈ e

j
n ,

1− k−j
n

1 + j
n

≈ e−
k
n

which lead to
k∏
j=1

1− k−j
n

1 + j
n

≈ e−
k2

n ,
22n (n!)2

(2n)!
P (2k, 2n) ≈ e−

k2

n and

22n (n!)2

(2n)!
√
n

n∑
k=−n

P (2k, 2n)︸ ︷︷ ︸
=1 due to (2.3)

≈
n∑

k=−n

1√
n
e−

k2

n

︸ ︷︷ ︸
approaches

√
π

as n→+∞

which, in turn, imply (1.1). The prob-

lem is that the approximations are valid only for |j| 6 |k| � n, |k− j| 6 |k| � n
and as k gets close to ±n the approximations lose their validity for values of j
and k − j close to n.

To turn these ideas into a rigorous proof we break up the set −n 6 k 6 n
into the core |k| 6 nε+0.5 and two tails nε+0.5 < |k| 6 n, with 0 < ε < 0.5 to

be determined later, so that inside the core approximations 1 − k − j
n
≈ e

j−k
n ,

1 +
j

n
≈ e

j
n are valid while the total probability of P being outside the core

approaches zero as n→ +∞ .

-n · · · · · · −n0.5+ε · · · · · · -5 -4 -3 -2 -1 0 1 2 3 4 5 · · · · · · n0.5+ε · · · · · · n︸ ︷︷ ︸
right tail
n0.5+ε<k6n

︸ ︷︷ ︸
left tail

−n6k<−n0.5+ε

︸ ︷︷ ︸
the core consists of integers k such that |k| 6 n0.5+ε

For large n the total probability of P being in one of the two tails is

1−
∑

|k|<n0.5+ε

P
(
2k, 2n

)
=
∑

|k|>n0.5+ε

P
(
2k, 2n

)
= 2

∑
k>n0.5+ε

P
(
2k, 2n

)
6 2−n

2ε

n, (2.4)

and hence goes to 0 as n→ +∞. Indeed, taking for simplicity’s sake k > 0 ,∑
k>n0.5+ε

P
(
2k, 2n

)
=

(2n)!

22n (n!)2︸ ︷︷ ︸
this term is
less than 0.5

∑
n0.5+ε<k6n

k∏
j=1

n− (k − j)
n+ j

< 0.5
∑

n0.5+ε<k6n

k∏
j=1

n− k + j

n+ j
=

0.5
∑

n0.5+ε<k6n

k∏
j=1

(
1− k

n+ j︸ ︷︷ ︸
replacing
j with k
makes it
larger

)
6 0.5

∑
n0.5+ε<k6n

k∏
j=1

(
1− k

n+ k

)
= 0.5

∑
n0.5+ε<k6n

[(
1 +

k

n

)− k
n

]n
︸ ︷︷ ︸

replacing k with

n0.5+ε makes it
larger
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6 0.5
∑

n0.5+ε<k6n

[(
1 +

1

n0.5−ε

)−n0.5−ε]n2ε

6 0.5

[(
1 +

1

n0.5−ε

)−n0.5−ε

︸ ︷︷ ︸
≈ 1
e
< 1

2
for large n

]n2ε ∑
n0.5+ε<k6n

1︸ ︷︷ ︸
<n

6
0.5n

2n2ε .

Inside the core P (2k, 2n) satisfies

e−
k2

n e−n
−0.5+3ε

6
22n (n!)2

(2n)!
P (2k, 2n) 6 e−

k2

n en
−0.5+3ε

, if |k| 6 nε+0.5. (2.5)

Due to P (−2k, 2n) = P (2k, 2n) it suffices to prove (2.5) for k > 0. To do
so we employ inequality

ex−x
2

6 1 + x 6 ex, for |x| � 1. (2.6a)

To prove (2.6a) notice that functions w1(x) = ex − 1− x, w2(x) = 1 + x− ex−x2

are analytic and satisfy w1(0) = w2(0) = w′1(0) = w′2(0) = 0, w′′1(0) = w′′2(0) = 1 .
Thus each of them must of the form 0.5x2 + o(x2) > 0 for x sufficiently small.

Inequality (2.6a) applied with x = −k − j
n

and x =
j

n
gives us

e−
k−j
n
−( k−jn )

2

6 1− k − j
n

6 e−
k−j
n , (2.6b)

e
j
n
−( jn)

2

6 1 +
j

n
6 e

j
n . (2.6c)

Dividing (2.6b) by (2.6c) we obtain

e−
k
n
− (k−j)2

n2 6
1− k−j

n

1 + j
n

6 e−
k
n
+ j2

n2 , (2.6d)

which yields

e
− k

2

n
−

k∑
j=1

(k−j)2

n2

=e
−

k∑
j=1

[
k
n
+

(k−j)2

n2

]
6

k∏
j=1

1− k−j
n

1 + j
n

6 e

k∑
j=1

[
− k
n
+ j2

n2

]
=e
− k

2

n
+

k∑
j=1

j2

n2

. (2.6e)
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Using
1

n2

k∑
j=1

(k−j)2=
k(k−1)(2k−1)

6n2
=

2k3−3k2+k

3n2
6

k3

6n2
6

(n0.5+ε)3

n2
6 n−0.5+3ε,

1

n2

k∑
j=1

j2 =
k(k + 1)(2k + 1)

6n2
=

2k3 + 3k2 + k

6n2
6
k3

n2
6

(n0.5+ε)3

n2
6 n−0.5+3ε valid

for 0<k6n0.5+ε we may further simplify (2.6e) to (2.5).

Multiplying (2.5) by
1√
n

and summing up in k we obtain

[
n−0.5

∑
|k|6n0.5+ε

e−
k2

n

]
e−n

−0.5+3ε

6
22n (n!)2

(2n)!
√
n

∑
|k|6n0.5+ε

P (2k, 2n)6

[
n−0.5

∑
|k|6n0.5+ε

e−
k2

n

]
en
−0.5+3ε

(2.7a)

which upon division by
∑

|k|6n0.5+ε

P (2k, 2n) becomes

[
n−0.5

∑
|k|6n0.5+ε

e−
k2

n

]
e−n

−0.5+3ε

∑
|k|6n0.5+ε

P (2k, 2n)
6

22n (n!)2

(2n)!
√
n
6

[
n−0.5

∑
|k|6n0.5+ε

e−
k2

n

]
en
−0.5+3ε

∑
|k|6n0.5+ε

P (2k, 2n)
. (2.7b)

If we take

0 < ε <
1

6
(2.8)

then lim
n→+∞

en
−0.5+3ε

= lim
n→+∞

e−n
−0.5+3ε

= 1 , lim
n→+∞

∑
|k|6n0.5+ε

P (2k, 2n) = 1 due to

(2.3) and (2.4), lim
n→+∞

1√
n

∑
|k|6n0.5+ε,
k is even

e−
k2

n =

+∞∫
−∞

e−t
2

dt =
√
π and as n → +∞

the limits of the first and third terms in (2.7b) exist and are equal to
√
π . By

the well-known theorem of Calculus the limit of the middle term
22n (n!)2

(2n)!
√
n

must

also exist and be equal to
√
π thus proving (1.1b). Notice that the identity

+∞∫
−∞

e−t
2

dt =
√
π comes from multivariable calculus, its proof follows from the

string of identities

 +∞∫
−∞

e−t
2

dt

2

=

+∞∫
−∞

e−x
2

dx

+∞∫
−∞

e−y
2

dy =

∫∫
R2

e−x
2−y2dxdy =

+∞∫
0

2π∫
0

er
2

rdrdφ =

+∞∫
0

er
2

rdr

︸ ︷︷ ︸
= 1

2

2π∫
0

dφ

︸ ︷︷ ︸
=2π

= π.
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We may rewrite (2.5) as

e−n
−0.5+3ε (2n)!

√
nπ

22n (n!)2
6 P (2k, 2n)

√
nπ e

k2

n 6 en
−0.5+3ε (2n)!

√
nπ

22n (n!)2
. (2.9)

Since the first and third terms of (2.9) approach 1 as n → +∞ , we conclude
that

lim
n→+∞

P (2k, 2n)
√
πn e

k2

n = 1, (2.10a)

and consequently

P (2k, 2n) ≈ 1√
πn

e−
k2

n , (2.10b)

providing us with the simplest case of the Central Limit Theorem.
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