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Abstract 
This manuscript describes the stationary action formulation of classical mechanics as a 
constrained extremization problem using differential forms. The general method entails 
treating the parameterization relationship as a constraint applied to the action integral, 
and the conditions that arise from writing the equivalent unconstrained action are then 
associated with the force law to derive the Lagrangian and Hamiltonian terms. 
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1. Introduction 
This manuscript describes the stationary action formulation of classical mechanics as a 
constrained extremization problem using differential forms. The essence of the method 
involves treating the relationship between parameters of the action integral as a 
constraint. Since the stationary action formulation constitutes an extremization problem, 
it is straightforward to incorporate the constraint using the method of Lagrange 
multipliers. The conditions that arise from writing the equivalent unconstrained action are 
then associated with the Newton’s second law, from which the Lagrangian and 
Hamiltonian terms naturally emerge. The advantage of this approach is the elegant 
conceptual framework, which leads to concise derivations. 

The remainder of the manuscript is arranged as follows. Section 2 contains an 
overview of the Euler-Lagrange equation. Section 3 describes the conventional 
formulation of classical mechanics, as well as an alternative formulation. Section 4 
contains a short overview and conclusion. The Appendix demonstrates how the method 
may be applied in the context of relativity. 
 
2. The Euler-Lagrange Equation 
It is most appropriate to begin by solving the Euler-Lagrange equation (see Ch. 6 in [1]) 
in terms of differential forms. The objective is to determine under what condition the 
following integral is extremized: 

      dtttvtxLS ,, . 

(1) 
The quantity S is known as the action. The quantity L is known as the Lagrangian, and is 
taken to be a function of parameters x, v, and t that bear the relationship: 

0 dtvdx . 
(2) 



Here the d operator represents the exterior derivative, and the ˄ operator is the exterior 
product. In the context of mechanics it is convenient to think of x and v as the position 
and velocity of the mass, and t as time. However, in the broadest sense they represent 
generalized coordinates (see Ch. 1 in [2]). 
 The extremization condition may be formulated by observing that small 
deviations from the extremal path integral should not produce changes in the value of the 
action. Consequently a closed path integral ∂P within the vicinity of the extremal path 
should vanish (see p. 125 in [3]). This condition may be simplified using Stokes’ theorem 
(see Ch. 3.4 in [4]): 

  dSdtdLdtLddtL
PPP

 


0 . 

(3) 
Since the closed surface P is arbitrary this condition reduces to: 

  0 dtdLdtLd . 
(4) 

Note that this is equivalent to requiring that the exterior derivative of the action vanish 
along an open path integral, provided the endpoints of the integral are fixed. 
Consequently the action is a conserved quantity along such a path. 
 The extremization condition of (4) is subject to the parameterization relationship 
(2). Together these constitute a constrained extremization problem that may be solved 
using the method of Lagrange multipliers (see Ch. 5.4 in [4]). In this case the Lagrange 
multiplier λ obeys the expression: 

   dtvdxddtLd   . 
(5) 

By inspection it is obvious that: 
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(6) 
With this information it is possible to combine the Lagrangian and the parameterization 
relationship to obtain a single unconstrained expression for the action. When the 
unconstrained Lagrangian equation is substituted into (1), the unconstrained action Su 
becomes: 
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(7) 
 The desired solution may be recovered by performing the extremization procedure 
on the unconstrained action. In this case the analogue of the condition in (4) becomes: 
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(8) 
This expression is only satisfied when the leading term in the last line vanishes, which 
results in the solution of the Euler-Lagrange equation: 

dt
x

L

v

L
d 














. 

(9) 
Although the extremization condition is formulated differently, the remaining algebra of 
this section is essentially the same as that found in Ch. 35 of [5]. Note that since each 
spatial dimension is represented by a constraint it is trivial to extend this approach to 
additional dimensions simply by including additional Lagrange multipliers. 
 
3. Classical Mechanics 
3.1 Conventional Formulation 
The connection between the Euler-Lagrange equation and classical mechanics is made by 
comparing (9) with Newton’s second law that relates the total force F and momentum p = 
mv of an object with mass m (see Ch. 7 in [1]): 

  dtFmvd  . 
(10) 

The force is therefore the product of mass and acceleration F = ma. This expression is 
very general and can accommodate non-inertial reference frames by including pseudo 
force contributions to the total force (see Ch. 9 in [1]). Given the similarity of (9) and 
(10), it is clear that the equations of motion are equivalent to the solution of the Euler-
Lagrange equation when the following relationships hold: 
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(11) 
Consequently the equations of motion may be derived from a principle of stationary 
action. 

It is easy to determine the action that results in the proper equations of motion. 
First derive the expression for the Lagrangian by integrating (11): 

  tgdxF
mv

L  2

2

. 

(12) 
The first term in the Lagrangian is the kinetic energy and the second term is the potential 
energy. The quantity g is an arbitrary time-dependent function. The expression for both 



the constrained (1) and unconstrained (7) forms of the action follows from the 
substitution of the Lagrangian in (12): 
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(13) 
By inspection of the integrals (7) and (13) the partial derivatives of the unconstrained 
action may be identified: 
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(14) 
The first expression in (14) entails that the time derivative of the unconstrained action 
may be related to the total energy which is also known as the Hamiltonian H. This may 
be recognized as the Hamilton-Jacobi equation (see Ch. 10 in [2]). The second expression 
in (14) entails that the spatial derivative of the unconstrained action is the momentum. 
 
3.2 Alternative Formulation 
From a philosophical standpoint a few aspects of the conventional formulation are 
uncomfortable. For example, the force law (10) takes a form similar to that of 
parameterization relationship (2). However, only the parameterization relationship is 
treated as a constraint for the method of determining Lagrange multipliers. It is also 
disappointing that energy conservation is only recovered when additional conditions are 
placed on the action. 
 It is possible to formulate the principle of stationary action in an alternative 
manner that accommodates these objections. In particular this leads to a less ambiguous 
formulation of energy conservation. Intuitively the new method arises from a motivation 
to eliminate the inconsistent treatment of constraints. Unfortunately, treating the two 
constraints on equal footing is intractable. Since it is unfeasible to treat the two different 
constraints simultaneously, in the alternative method one is abandoned. Specifically the 
force law is retained in favor of the parameterization relationship. This can be justified by 
noting that the force law determines the acceleration and velocity, which is sufficient to 
infer the position. Consequently, the explicit relationship between the position and 
velocity posed by the parameterization constraint is tautological. Equivalently, this 
approach might be interpreted as reparameterizing the Lagrangian such that the 
parameterization constraint and the force law constraint become identical. 

For this approach the most appropriate parameters are momentum, force, and 
time. From Newton’s second law (10) the force law constraint may be written: 

0 dtFdp . 
(15) 

Consequently the objective is to extremize the following action: 



      dtttFtpLS ,, . 

(16) 
The same extremization procedure is followed as before. The solution may be obtained 
by inspection through the comparison of the expression in (16) with the expressions in (1) 
and (9): 
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(17) 
The solution in (17) is the relationship that must exist for the action to be extremal 

when subject to the force law constraint. Notably, it has the same form as that of the 
constraint. The next step in this approach is simply to demand a self-consistency whereby 
the solution of the unconstrained action reproduces the constraint applied to the 
constrained action. Applying this self-consistency principle, it is clear that expression 
(17) and the force law constraint (15) are equivalent when the following relationships 
hold: 
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(18) 
It is easy to determine the action that results in the proper equations of motion. First 
derive the expression for the Lagrangian by integrating (18): 

 tgpFL  . 
(19) 

The quantity g is an arbitrary time-dependent function. 
It is simple to determine the constrained and unconstrained forms of the 

alternative extremal action (16) by substituting the Lagrangian in (19) into expressions in 
(1) and (7): 
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(20) 
Here the quantity C is a constant of integration that appears when the evaluated integral is 
left indefinite. Energy conservation arises from comparing the distinct but equivalent 
forms of the action. To see this subtract the integrals in (20) and rearrange the terms: 
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(21) 
Along the extremal path the actions are constant and equal to one another. The 
nonconstant terms in (21) may be recognized as the product of kinetic energy and mass, 
and the product of potential energy and mass. Consequently the expression may be 
identified as the product of total energy and mass. Energy conservation arises by 



evaluating the definite form of the integral in (21) for two points of the extremal path 
given by times t1 and t2: 

   12 tmHtmH  . 
(22) 

Since the starting and ending times are arbitrary the quantities on either side of (22) must 
be conserved along the entire extremal path. The mass may be divided out, leaving only 
the total energy terms. 
 
4. Conclusion 
The previous sections detail the formulation of classical mechanics in terms of a 
constrained extremal action principle through the use of differential forms. The 
constrained action approach provides a general conceptual framework that is readily 
extended to relativistic mechanics (see the Appendix). Specifically the method entails 
casting the relationship between parameters of the action integral as constraint. The 
conditions that arise from writing the equivalent unconstrained action are then associated 
with the force law, which leads to the Lagrangian and Hamiltonian terms. An alternative 
approach is also presented that may be interpreted in terms of a self-consistency 
principle. The alternative method results in a less ambiguous formulation of energy 
conservation. 
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Appendix: Relativity 
A.1 Conventional Formulation 
The same approach may be applied in the context of special relativity. Mathematically 
the only modification necessary is to replace the momentum and force with their 
relativistic equivalents that arise as a consequence of Lorentz invariance. The derivation 
begins identically to the classical case, since the relativistic corrections appear only in the 
force law (see Ch. 15 in [1]). The relativistic version of Newton’s second law assumes 
the form: 
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(A1) 
Here c is the vacuum speed of light, m is the rest mass, the relativistic momentum is pr = 
γmv, and the relativistic force is Fr = γ3ma. Given the similarity between the relativistic 
force law and the formulation of the problem leading to the solution of the extremized 
action in (9) it is clear from inspection that the relativistic Lagrangian may be determined 
by the following relationships: 
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(A2) 
The action that results in the proper equations of motion may be determined as 

before, although the integrals are more difficult. First derive the expression for the 
Lagrangian by integrating (A2): 
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(A3) 
Similar to before the second term in the Lagrangian is the potential energy and the 
quantity g is an arbitrary time-dependent function. The first term is not properly 
identified as the kinetic energy in this instance, however. From the Lagrangian in (A3) it 
is easy to derive the expression for both the constrained and unconstrained forms of the 
action using the relativistic equivalents of (1) and (7): 
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(A4) 
By inspection of the integrals in (A4) the partial derivatives of the unconstrained action 
may be identified: 
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(A5) 
Similar to before the first expression in (A5) entails that the time derivative of the 
unconstrained action may be related to the total relativistic energy Hr and may be 
recognized as the relativistic Hamilton-Jacobi equation. Likewise the second expression 
in (A5) entails that the spatial derivative of the unconstrained action is the relativistic 
momentum. 
 
A.2 Alternative Formulation 
The alternative method is also amenable to relativistic corrections in the same vein. 
Given the similarity between the relativistic force law (A1), and the alternative 
formulation of the problem leading to the solution of the extremized action in (17) it is 
clear that they are equivalent when the following relationships hold: 
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(A6) 
The action that results in the proper equations of motion may be determined as before, 
although the integrals are more difficult. First derive the expression for the Lagrangian by 
integrating (A6): 

 tgFpL rr  . 
(A7) 

The quantity g(t) is an arbitrary time-dependent function. From the Lagrangian in (A7) it 
is possible to write expressions for the relativistic equivalents of both the constrained and 
unconstrained forms of the extremal action analogous to the expressions in (20): 
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Here the quantity C is a constant of integration that appears when the evaluated integral is 
left indefinite. 
 Energy conservation arises as before, although some effort must be made to 
arrange the equation in the anticipated form. To see this subtract the distinct but 
equivalent forms of the action in (A8) and rearrange the terms: 
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(A9) 
This may be rewritten as follows: 
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(A10) 
Next gather terms and simplify the expression using the following integral: 
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(A11) 
Combined with (A11) the expression in (A10) reduces to: 

ru mHdtvamcmSSC   2322  . 

(A12) 
Along the extremal path the actions are constant and equal to one another. The 
nonconstant terms in (A12) may be recognized as the product of the total relativistic 
energy and rest mass. Energy conservation arises by evaluating the definite form of the 
integral in (A12) for two points of the extremal path given by times t1 and t2: 



   12 tmHtmH rr  . 
(A13) 

Since the starting and ending times are arbitrary the quantities on either side of (A13) 
must be conserved along the entire extremal path. The rest mass may be divided out, 
leaving only the total relativistic energy terms. 
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