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Abstract 

Feynman pointed out on a logic and mathematical paradox in particle physics. The paradox is that 

we get for the same entity only local dependence and global dependence at the time. This 

contradiction is coming from the dual nature of the particle viewed as a wave. In the first capacity it 

has only local dependence in the second (wave) capacity it has a global dependence. The classical 

logic has difficulties to resolve this paradox.  Changing the classical logic to logic makes the 

paradox apparent. Particle has the local property or zero dependence with other particles, media has 

total dependence so is a global unique entity. Now, in set theory, any element is independent from 

the other so disjoint set has not element in common. With this condition we have that the true false 

logic can be applied and set theory is the principal foundation. Now with conditional probability 

and dependence by copula the long distance dependence has effect on any individual entity that 

now is not isolate but can have different type of dependence or synchronism ( constrain ) which 

effect is to change the probability of any particle. So particle with different degree of dependence 

can be represented by a new type of set as fuzzy set in which the boundary are not completely 

defined or where we cannot separate a set in its parts as in the evidence theory. In conclusion the 

Feynman paradox and Bell violation can be explained at a new level of complexity by many valued 

logic and new type of set theory. 

1. Bell inequality 

 

Let X = { }, ,....,1 2x x xn  be a set of elements with joint probabilities 
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Also in the classical probability theory ( ) ( ) ( ) ( )p A B p A p B p A B∪ = + − ∩ and the probability of a 

set is the sum of probabilities of its elements:  
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because the intersection of elementary events is empty.  
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In a graphic way it is shown in Fig. 1 

 

 
Figure 1. Set theory intersections or elements 

 

These sets have the following Bell inequality.  
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Now we introduce a dependence between events.  Consider an event with property A and another 

event with a negated property AC. These events can be called dependent (correlated). This 

dependence takes place for particles.  Consider an event with property 
CA C∩  that is with both 

properties A and CC at the same time. We cannot measure the two properties by using one 

instrument at the same time, but we can use the correlation to measure the second property if two 

properties are correlated.  We can also view an event with property 
CA C∩ as two events: event eA 

with property A and ��� with the property C in the opposite state (negated).  The number of pairs of 

events (��, ���) is the same as the number of events with the superposition of A and CC, � ∩ 
� . In 

this d’Espagnat  explains the connection between the set theory and Bell’s inequality. It is known 

that the Bell’s inequality that gives us the reality condition is violated .  Conclusion. The Bell 

inequality is based on the classical set theory that is connected with the classical logic. The set 

theory assumes empty overlap (as a form of independence) of elementary elements which is the 

basis for the Bell inequality. Thus the logic of dependence can differ from the logic of 

independence. Thus we must use a theory beyond the classical set theory.  

2. Dependence and independence in the double slit experiment as physical 

image of copula and fuzzy 

 

The goal of this section is to analyze the double slits experiment [Feynman, 1988] as a 

demonstration of the need to build a separate theory to deal with dependent/related evens under 

uncertainty.  The design and results of the double slits experiment is outlined in Fig. 5a,b [Double-

slit experiment, 2015], where points in Fig 2b show particles (elementary probability event) that 

pass slits. 

 

 

(a) Double slit experiment design 



 

(c) Distribution of independent particles (events )   (b) Result  of double slit experiment: electron 

buildup over time 

Figure 2.    

Fig. 5c shows theoretical result of the double slit expreiment when only the set theory is used to 

combine events: one event e1 for one slid and another event e2 for the second slid. In this set-

theoretical approach it is assumed that events e1 and e2 are elementary events that do not overlap 

(have empty intersection, “incompatible”, completely independent). In this case, the probability that 

either one of these two events will occur is  

��� ∪ ��) � ���) � ����)   

In classical logic it is always true that variable is self-dependent (that is the repeat of the process 

produces the same result).  In the probability calculus it is not the case. The random factors can 

change the output when the situation is repeated.  Quite often the probabilistic approach is applied 

to study frequency of independent phenomena.  In the case of dependent variables we cannot derive 

p(x1,x2) as a product of independent probabilities,  p(x1)p(x2) and must use  multidimensional 

probability distribution with dependent valuables. The common technique for modeling it is a 

Bayesian network. In the Bayesian approach the evidence about the true state of the world is 

expressed in terms of degrees of belief in the form of Bayesian conditional probabilities. The 

conditional probability is the main element to express the dependence or inseparability of the two 

states x1 and x2 in the probability theory. The joint probability p(x1,x2,…,xn) is represented via 

multiple conditional probabilities to express the dependence between variables.  The copula 
approach introduces a single function  1 2( , )c u u  denoted as density of copula  as a way to model 

the dependence or inseparability of the variables with the following property in the case of two 

variables. The copula allows representing the joint probability p(x1,x2)  as a combination (product) 

of single dependent part c(u1,u2) and independent parts: probabilities p(x1) and p(x2).The 

investigation of copulas and their applications is a rather recent subject of mathematics. From one 

point of view, copulas are functions that join or 'couple' one-dimensional distribution functions u1 

and u2 and the corresponding joint distribution function.  

 



3. Conditional probability ,dependence in probability calculus and 

copula 

A joint probability distribution  
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e.g., for two variables 1 2 1 2 1( , ) ( ) ( | )p x x p x p x x= . A function 1 2( , )c u u  is a density of copula  

 
if  p(x1,x2) = c(u1,u2)p(x1)p(x2) = p(x1)p(x2|x1) 

where u1=∫p(x1) dx1 and u1=∫p(x2) dx2.   
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An alternative representation of a cumulative function C 
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Copula properties [13.14.15.16.17].  

2-D case 
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3-D case   
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General n-D case 
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Conditional copula: 
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In literature commonly 1 2( , ,..., )nC u u u  is denoted as copula and 1 2( , ,...., )nc u u u  is denoted as a 

density of copula. 

4. Examples of Copula and dependence 

When u(x) is a marginal probability F(x), u(x) = F(x) and u is uniformly distributed then the inverse 

function x(u) is not uniformly distributed, but has values concentrated in the central  part as the 

Gaussian distribution. The inverse process is represented graphically in Figures1-3. 

 

Figure 1. Relation between marginal probability F(x) and the random variable x 

 

 



Figure 2.  Symmetric joint probability and copula 

 

Figure 3 Asymmetric joint probability and symmetric copula 
 
Consider another example where a joint probability density function p is defined in the two 
dimensional interval (0,2)×(0,1) as follows,    
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 Then the marginal function in this interval is  
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Next we change the reference 
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This allows us computing the inverse function to identify variables x and y as functions of the 

marginal functions u1 and u2: 
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Then these values are used to compute the copula C in function (1),  
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5. Physical Paradox  and physical meaning of Copula and fuzzy 

theory 
 

  
Feynman’s argument [ 25] involves the idea that classically we think in terms of two distinct and 

incompatible concepts , particles and waves. These concepts are incompatible because particles are 

localized and waves are not. To see this, let us start with a point particle or elementary event. In 

classical mechanics, particles are objects localized in space, and therefore, can only interact with 

systems that local for them.  If a particle then collides with another particle, say constituent of a 

wall placed in the way of the original particle, an interaction will occur. However, as soon as the 

particle loses contact with the wall, the interaction ceases to exist. In other words, particles interact 

locally or have local not global dependence. The second basic concept is the concept of waves. 

Historically, the physics describing a point particle was extended to include the description of 

continuous media, and, more importantly to our current discussion, the vibrations of such media in 

the form of waves. Therefore, waves were considered vibrations of a medium made out of several 

point particles, and the local interactions between two neighboring particles would allow for a 

perturbation in one point of the medium to be propagated to another point of the medium. More 

importantly, such effect depends not only on the position of the particle, but also possibly of all 

other particles or elementary events that make up the medium, and also on all interactions or 

boundary conditions that such particles need to satisfy. In other words, waves interact non-locally.  

Thus, a media and the wave give an example of total (global) dependence in contrast with the 

particle. The paradox is that an element (a particle) has a property (global dependence) of the whole 

media. This is impossible in the classical logic.  The global dependence (non-local interaction of the 

whole system) is a property of the structure of the media.  An element cannot have such a property 

of the whole system because an element has no structure.  To explain why the paradox is only 

apparent we start from Kolmogorov’s probability measure that is defined at the level of 

propositional classical logic and set theory.  



 

5.1 Probability Space  

 

 

Let Ω  be a finite set, F be an algebra over Ω  and p be a real-valued function, p : F R→  . Then 
( , , )F pΩ  is a probability space [Kolmogorov, 1950], and p a probability measure, if and only if: 
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The elements iω   of Ω   are called elementary probability events or simply elementary events. The 

elementary events are disjoint sets. Given two sets of elementary probability events A and B the 

intersection of the two events is given by the expression 
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When the two sets of events are independent we have 
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with a trivial density of copula, c(A,B) = 1.  
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Now when the events ar dijoint one with the other we have  
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The real joint probability for double slit experiment by quantum mechancis is 
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This copula is tabulated as follows:  
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Now for the dependence element as copula we have that set theory is not sufficient because two 

disjoint sets can have a probability ( evidence ) different from the traditional formula 

 

In a graphic way we see the traditional set theory with dependences by arrows 
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Figure 4. Set theory intersections or elements with dependence 

 

Extension of the set theory by evidence theory in quantum mechanics can be found in the paper of  

 

Germano Resconi and others International Journal of Modern Physics C. Vol. 10 No 1 (1999) 
29-62 

Conclusion 

 

Feynman pointed out on a logic and mathematical paradox in particle physics [1]. The paradox is 

that we get for the same entity only local dependence and global dependence at the time. 

This contradiction is coming from the dual nature of the particle viewed as a wave. In the first 

capacity it has only local dependence in the second (wave) capacity it has a global dependence. The 

classical logic has difficulties to resolve this paradox.  Changing the classical logic to logic makes 

the paradox apparent. Particle has the local property or zero dependence with other particles, media 

has total dependence so is a global unique entity. Now, in set theory, any element is independent 

from the other so disjoint set has not element in common. With this condition we have that the true 

false logic can be applied and set theory is the principal foundation. Now with conditional 

probability and dependence by copula the long distance dependence has effect on any individual 

entity that now is not isolate but can have different type of dependence or synchronism ( constrain ) 

which effect is to change the probability of any particle. So particle with different degree of 

dependence can be represented by a new type of set as fuzzy set in which the boundary are not 

completely defined or where we cannot separate a set in its parts as in the evidence theory. In 

conclusion the Feynman paradox and Bell violation can be explained at a new level of complexity 

by many valued logic and new type of set theory. 
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