Intern. J. Fuzzy Mathematical Archive Vol. 9, No. 1, 2015, 111-118 ISSN: 2320 –3242 (P), 2320 –3250 (online) Published on 8 October 2015 www.researchmathsci.org

International Journal of **Fuzzy Mathematical Archive**

Smarandache–Boolean–Near–Rings and Algorithms

N. Kannappa¹ and *P. Tamilvani*²

¹Department of Mathematics, T.B.M.L. College, Porayar-609307 Tamil Nadu. e-mail id : sivaguru91@yahoo.com ² Department of Mathematics, Poompuhar College (Autonomous) Melaiyur-609107, Tamil Nadu. e-mail id: sivaguru91@yahoo.com

 Received 16 September 2014; accepted 2 October 2014

*Abstract***.** In this paper we introduced Smarandache-2-algebraic structure of Booleannear-ring namely Smarandache-Boolean-near-ring. A Smarandache-2-algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exists a proper subset M of N, which is embedded with a stronger algebraic structure A_1 , stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, form the unit element if any, from the whole set. We define Smarandache-Boolean-near-ring and obtain some of its algorithms through Boolean-ring with left-ideals, direct summand, Boolean-*l*-algebra, Brouwerian algebra, Compatibility, maximal set and Polynomial Identities.

Keywords: Boolean-ring, Boolean-near-ring, Smarandache-Boolean-near-ring, left-ideal, direct summand, Boolean-*l*-algebra, Brouwerian algebra, Compatibility, maximal set and Polynomial Identities

AMS Mathematics Subject Classification (2010): 46C20, 15A09

1. Introduction

i

In order that New notions are introduced in algebra to better study the congruence in number theory by Smarandache [4]. By \langle proper subset \rangle of a set A we consider a set P included in A, and different from A, different form the empty set, and from the unit element in A – if any they rank the algebraic structures using an order relationship:They say that the algebraic structures $S_1 \ll S_2$ if: both are defined on the same set; all S_1 laws are also S_2 laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S_1 laws, or S_2 has more laws than S_1 .

For example: Semi group \ll Monoid \ll group \ll ring \ll field, or Semi group \ll commutative semi group, ring<< unitary , ring etc. They define a General special structure to be a structure SM on a set A, different form a structure SN, such that a proper subset of A is an structure, where $SM \ll$

2. Preliminaries

Definition 2.1. A left near-ring A is a system with two binary operations, addition and multiplication, such that

(i) the elements of A form a group $(A,+)$ under addition,

- (ii) the elements of A form a multiplicative semi-group,
- (iii) $x(y + z) = xy + xz$, for all $x, y, z \in A$

In particular, if A contains a multiplicative semi-group S whose elements generate $(A,+)$ and satisfy

(iv) $(x+y)s = xs + vs.$ for all $x,y \in A$ and $s \in S$, then we say that A is a distributively generated near-ring.

Definition 2.2. A near-ring (B,+,.) is Boolean-Near-Ring if there exists a Boolean-ring $(A, +, \Lambda, 1)$ with identity such that • is defined in terms of +, Λ and 1, and for any $b \in B$, $b.b = b.$

Definition 2.3. A near-ring $(B, +,.)$ is said to be idempotent if $x^2 = x$, for all $x \in B$. If $(B, +, \cdot)$ is an idempotent ring, then for all a, $b \in B$, $a + a = 0$ and $a.b = b.a$

Definition 2.4. A Boolean-near-ring $(B, +, \cdot)$ is said to be Smarandache-Boolean-nearring whose proper subset A is a Boolean-ring with respect to same induced operation of B.

Definition 2.5. (Alternative definition for S-Boolean-near-ring) If there exists a nonempty set A which is a Boolean-ring such that it superset B of A is a Boolean-near-ring with respect to the same induced operation, then B is called Smarandache-Boolean-nearring. It can also written as S-Boolean-near-ring.

3. Algorithms

Left – Ideal: Clay and Lawver [2] have introduced the left-ideals of $(B, +, \cdot)$ in $P(x)$ are the subgroups of the groups $(P(x), +)$, where $P(x) = \{b \in B / b \land x = b\} = B_{\zeta}$ is a maximal sub-z-ring. It also contained in an ideal. Let $A = I_0$ Nowto construct a set B as follows.

B contains a unique minimal ideal I_0 contained in all other non – zero ideals. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache -Boolean-near-ring.

Algorithm 3.1.

 Step 1: Consider a Boolean-ring A Step 2: Let $A = I_0$, be an ideal Step 3: Let I_i , i= 0,1,2,3,...... be supersets of I_0 . Step 4: Let $B = \bigcup I_0$ Step 5: Choose the sets I from I_i's subject to a,b and $c \in B$ such that $(a + b)$.c + a .c + b .c = x \land c \in Iiand $x \in B$ we have $P(x) \subseteq I$

Step 6: Verify that $\bigcap I_j = I_0 \neq \{0\}$

Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Direct Summand

Clay and Lawver [2] has introduced the concept of direct summand. Let A be an ideal of B, then A is a direct summand if and only if $A = P(x)$. Now to construct a set B as

Smarandache–Boolean–Near–Rings and Algorithms

follows. B contains a unique minimal direct summand M_0 contained in all other non – zero direct summands. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-nearring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.2.

 Step 1: Consider a Boolean-ring A Step 2: Let $A = M_0$, be a direct summand. Step 3: Let M_i , $i = 0,1,2,3,...$ be supersets of M_0 . Step 4: Let $B = \bigcup M_i$ Step 5: Choose the sets Mj from M_i's subject to for all $x \in B$ such that M₀ is a direct summand we have $M_0 = P(x)$ and $B = P(x) + P(x^1)$, where $P(x)$ and $P(x^1)$ are ideals of B and $x, x^1 \in B$. +P(x¹), where P(x) and P(x¹) are ideals of B and x, $x^1 \in B$. Step 6: Verify that $\bigcap M_j = M_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Boolean-*l***-Algebra**

 Rao has introduced the notions of Boolean-*l-*algebraand lattice ordered groups. In [8] he proved A is a Boolean-ring if and only if A is a Boolean-*l*-algebra such that $x \le a$ implies $x \bigcap (a-x) = 0$. He has established that the class of Boolean-*l*-algebra is a subclass of DRI semigroups also. Let $A = I_0$. Now to construct a set B as follows.

B contains a unique minimal Boolean-*l*-algebra I_0 contained in all other non – zero Boolean-*l-*algebras. According to G. Pilz [4, Theorem (1.60 (d))], B is Boolean-nearring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.3.

Step 1: Consider a Boolean-ring A

Step 2: Let $A = I_0$, be a Boolean-l-algebra

Step 3: Let I_i , $i = 0,1,2,3,...$ be supersets of I_0 .

Step 4: Let $B = \bigcup I_i$

Step 5: Choose the sets Ij from I_i's subject to for all i_{i1} , $i_{i2} \in Ij$ such that $i_{i1} \le i_{i2}$ implies $i_{i1} \bigcap (i_{i2} - i_{i1}) = 0$

Step 6: Verify that $\bigcap I_1 = I_0 \neq \{0\}$

Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring. **Brouwerian Algebra**

 Rao has established that the class of Brouwerian algebras. Brouwerian algebras being a subclass of Boolean-l-algebras. If (B; -) is a Boolean-ring then (B; -) is a Boolean-l-algebra if and only if B is a Brouwerian such that that $x \le a$ then $a = x \bigcup (a - a)$ x).

Let A be a Boolean – ring. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Brouwerian algebra contained in all other non – zero Brouwerian algebras.

According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.4.

 Step 1: Consider a Boolean-ring A Step 2: Let $A = M_0$ Step 3: Let M_i , $i = 0,1,2,3,...$ be the supersets of M_0 . Step 4: Let $B = \bigcup M_i$ Step 5: Choose the sets Mj from M_i's subject to for all x and $a \in B$ such that x \leq a then $a = x \cup (a-x)$. Step 6: Verify that $\bigcap M_1 = M_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-boolean-near-ring.

Compatibility: A subset A of Boolean-near-ring B is said to be compatibility a $\sim b$ if ab² $= a²b$. Let A =I₀. Now to construct a set B as follows. B contains a unique minimal compatibilityI₀ contained in all other non – zero compatibilities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandacheboolean-near-ring.

Algorithm 3.5.

 Step 1: Consider a Boolean-ring A Step 2: Let $A = I_0$, be a compatibility Step 3: Let I_i , $i = 0,1,2,3,...$ be the supersets of I_0 . Step 4: Let $B = \bigcup I_i$ Step 5:Choose the sets Ij from I_i's subject to for all $a, b \in A$ such that $ab^2 = a^2b \in Ij$ Step 6: Verify that $\bigcap I_j = I_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-boolean near-ring.

Maximal Set: Let B be a Boolean-near-ring and let $A = (..., a, b, c,)$ be a set of pairwise compatible elements of an associate ring R. Let A be maximal in the sense that each element of A is compatible with every other element of A and no other such elements may be found in R. Then A is called maximal compatible set or a maximal set. Let $A = I_0$. Now to construct a set B as follows. B contains a unique minimal maximal setI₀ contained in all other non – zero maximal sets. According to Pilz [4, Theorem $(1.60$] (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.6.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = I_0$, be a maximal set Step 3 : Let I_i , $i = 0,1,2,3,...$ be the supersets of IStep 4 : Let $B = \bigcup I_i$ Step 5 : Choose the sets Ii from I_i's subject to for all $a, b \in I$ such that $a \vee b = a + b - 2a^0b = (a \bigcup b) - (a \bigcap b)$ and $a \wedge b = a^0 b = ab^0 = a \cap b \in I$ j, for all $a, b \in I$ j Step 6 : Verify that $\bigcap I_1 = I_0 \neq \{0\}$

Smarandache–Boolean–Near–Rings and Algorithms

Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Given two numbers $m > n \ge 1$, a ring B is said to be (m,n) – Boolean if $x^m = x^n$, for all x in B. Let $A = I_0$. Now to construct a set B as follows. B contains a unique minimal Polynoimal identity I_0 contained in all other non – zero Polynoimal identities. According to G. Pilz $[4,$ Theorem $(1.60(d))$, B is Boolean-nearring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.7.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = I_0$ Step 3 : Let I_i , $i = 0,1,2,3,...$ be the supersets of I_0 . Step 4 : Let $B = I \cup_i$ Step 5 : Choose the sets Ij from I_i's subject to for all $m, n \in B$ and for all $x \in B$ such that $x^m = x^n \in I$ j Step 6 : Verify that $\bigcap I_j = I_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Let m and n be two positive integers such that $x^{2^{n+1}+2^n} = x$, for all x in B. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non – zero Polynomial identities. According to Pilz $[4,$ Theorem $(1.60 (d))$], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.8.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = M_0$

Step 3 : Let M_i , $i = 0,1,2,3,...$ be the supersets of M_0 .

- Step 4 : Let $B = \bigcup M_i$
- Step 5 : Choose the sets Mj from M_i 's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that x^m

$$
= x^n
$$
 and $x^{2^{n+1}+2^n} = x, \in M_1$

Step 6 : Verify that $\bigcap M_1 = M_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Let m and q be two fixed positive integers and $x^{2^{q(m+1)}+2^m} = x$, for all x in B. Then B is known as a Smarandache-boolean-near-ring.

Let $A = P_0$.

 Now to construct a set B as follows. B contains a unique minimal Polynomial identity P_0 contained in all other non – zero Polynoimal identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandacheboolean-near-ring.

 Algorithm 3.9.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = P_0$ Step 3 : Let P_i , $i = 0,1,2,3,...$ be the supersets of P_0 . Step 4 : Let $B = \bigcup P_i$ Step 5 : Choose the sets Pj from P_i 's subject to for all two positive integers m and q such that $x^{2^{q(m+1)}+2^m} = x, \in$ P_j and for all $x \in P_j$ Step 6 : Verify that \bigcap Pj = P₀ \neq {0} Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Let m and n be two positive integers such that $x^{2^{n+1}+2^n} = x$, for all x in B. Let $A = M_0$.

Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non – zero Polynomial identities. According to Pilz [4, Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandacheboolean-near-ring.

Algorithm 3.10.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = M_0$ Step 3 : Let M_i , $i = 0,1,2,3,...$ be the supersets of M_0 . Step 4 : Let $B = \cup M_i$ Step 5 : Choose the sets M_1 from M_i 's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that x^m $= x^n$ and $x^{2^{n+1}+2^n} = x, \in M_1$ Step 6 : Verify that $\bigcap M_i = M_0 \neq \{0\}$

> Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Let m and n be two positive integers such that $x^{2^{n+1}+2^n} = x$, for all x in B. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non – zero Polynomial identities. According to G. Pilz $[4,$ Theorem (1.60 (d))], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.11.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = M_0$ Step 3 : Let M_i , $i = 0,1,2,3,...$ be the supersets of M_0 . Step 4 : Let $B = \bigcup M_i$

Smarandache–Boolean–Near–Rings and Algorithms

Step 5 : Choose the sets Mj from M_i's subject to for all two positive
integers m and $n \in B$ and for all $x \in M$. such that x^m integers m and $n \in B$ and for all $x \in M_j$ such that x^m

 $= x^n$ and $x^{2^{n+1}+2^n} = x, \in M_1$

Step 6 : Verify that $\bigcap M_j = M_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity : Let m and n be two positive integers such that $x^{2^{n+1}+2^n} = x$, for all x in B. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non – zero Polynomial identities. According to Pilz $[4,$ Theorem (1.60 (d)) , B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.12.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = M_0$ Step 3 : Let M_i , i = 0,1,2,3,...... be the supersets of M_0 . Step 4 : Let $B = \bigcup M_i$ Step 5 : Choose the sets Mj from Mi 's subject to for all two positive integers m and $n \in B$ and for all $x \in M_j$ such that x^m $= x^n$ and $x^{2^{n+1}+2^n} = x, \in M_j$ Step 6 : Verify that $\bigcap Mj = M_0 \neq \{0\}$ Step 7: If step (6) is true, then we write B is a Smarandache-booleannear-ring.

Polynomial Identity: Let B be a Boolean-near-ring and let m, q and r be fixed positive integers with $r < m+1$ such that $x^{2^{q(m+1)+r}+2^m} = x$, for all x in B and $x^{2^{r+1}} = x$, then B is Smarandache-Boolean-near-ring. Let $A = M_0$. Now to construct a set B as follows. B contains a unique minimal Polynomial identity M_0 contained in all other non – zero Polynomial identities. According to Pilz $[4,$ Theorem $(1.60(d))$], B is Boolean-near-ring. Now by definition, B is a Smarandache-boolean-near-ring.

Algorithm 3.13.

 Step 1 : Consider a Boolean-ring A Step 2 : Let $A = M_0$ Step 3 : Let M_i , $i = 0,1,2,3,...$ be the supersets of M_0 . Step 4 : Let $B = \bigcup M_i$ Step 5 : Choose the sets M_1 from M_1 's subject to for all two positive integers m, q and r be three fixed positive integers with r $\langle m+1 \text{ and } \text{for all } x \in M_j \text{ such that }$ $x^{2^{q(m+1)+r}+2^m} = x$, and $x^{2^{r+1}} = x \in M_j$ Step 6 : Verify that $\bigcap Mj = M_0 \neq \{0\}$

Step 7: If step (6) is true, then we write B is a Smarandache-Booleannear-ring.

REFERENCES

- 1. G.Berman and R.J.Silverman, Near-rings, *Amer. Math. Monthly*, 66 (1959) 23-24.
- 2. J.R.Clay and D.A.Lawver, Boolean-near-rings, *Canad. Math. Bull*., 12(3) (1969) 265-273.
- 3. F.Smarandache, Special Algebraic Structures, Gall up, NM87301, USA, 1991.
- 4. G.Pilz, Near-rings, North Holland, Amesterdam, 1983.
- 5. H. El Turkey, Boolean rings, The University of Oklahoma, Dept. of Mathematics, 2009.
- 6. J.Shyong Shiue and W.-M.Chao, On the Boolean-rings, *National Science Council,* (1975) 93-96.
- 7. V.V. Rama Rao, On a common Abstraction of Boolean-rings and Lattice ordered groups II, *Monat. Fur. Math.*, 1969.
- 8. www.gallup.unm.edu/ ~ Smarandache/algebra.htm.