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Abstract—To make a decision under certainty, multicriteria
decision methods aims to choose, rank or sort alternatives on
the basis of quantitative or qualitative criteria and preferences
expressed by the decision-makers. However, decision is often
done under uncertainty: choosing alternatives can have different
consequences depending on the external context (or state of the
word). In this paper, a new methodology called Cautious Ordered
Weighted Averaging with Evidential Reasoning (COWA-ER) is
proposed for decision making under uncertainty to take into
account imperfect evaluations of the alternatives and unknown
beliefs about groups of the possible states of the world (scenarii).
COWA-ER mixes cautiously the principle of Yager’s Ordered
Weighted Averaging (OWA) approach with the efficient fusion
of belief functions proposed in Dezert-Smarandache Theory
(DSmT).
Keywords: fusion, Ordered Weighted Averaging (OWA),
DSmT, uncertainty, information imperfection, multi-
criteria decision making (MCDM)

I. INTRODUCTION

A. Decisions under certainty, risk or uncertainty

Decision making in real-life situations are often difficult
multi-criteria problems. In the classical Multi-Criteria De-
cision Making (MCDM) framework, those decisions consist
mainly in choosing, ranking or sorting alternatives, solutions
or more generally potential actions [17] on the basis of
quantitative or qualitative criteria. Existing methods differs on
aggregation principles (total or partial), preferences weight-
ing, and so on. In total aggregation multicriteria decision
methods such as Analytic Hierarchy Process (AHP) [19], the
result for an alternative is a unique value called synthesis
criterion. Possible alternatives (Ai) belonging to a given set
A = {A1, A2, . . . , Aq} are evaluated according to preferences
(represented by weights wj) expressed by the decision-makers
on the different criteria (Cj) (see figure 1).

Decisions are often taken on the basis of imperfect infor-
mation and knowledge (imprecise, uncertain, incomplete) pro-
vided by several more or less reliable sources and depending
on the states of the world: decisions can be taken in certain,
risky or uncertain environment. In a MCDM context, decision
under certainty means that the evaluations of the alternative
are independent from the states of the world. In other cases,
alternatives may be assessed differently depending on the
scenarii that are considered.

Figure 1. Principle of a multi-criteria decision method based on a total
aggregation principle.

In the classical framework of decision theory under uncer-
tainty, Expected Utility Theory (EUT) states that a decision
maker chooses between risky or uncertain alternatives or
actions by comparing their expected utilities [14]. Let us
consider an example of decision under uncertainty (or risk)
related to natural hazards management. On the lower parts of
torrent catchment basin or an avalanche path, risk analysis
consists in evaluating potential damage caused due to the
effects of hazard (a phenomenon with an intensity and a
frequency) on people and assets at risk. Different strategies
(Ai) are possible to protect the exposed areas. For each of
them, damage will depend on the different scenarii (Sj) of
phenomenon which can be more or less uncertain. An action
Ai (e.g. building a protection device, a dam) is evaluated
through its potential effects rk to which are associated utilities
u(rk) (protection level of people, cost of protection, . . . ) and
probabilities p(rk) (linked to natural events or states of nature
Sk). The expected utility U(a) of an action a is estimated
through the sum of products of utilities and probabilities of
all potential consequences of the action a:

U(Ai) =
∑

u(rk) · p(rk) (1)
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When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can
apply :

• the objective utility (e.g. cost) u(rk) is replaced by a
subjective function (value) denoted v(u(rk)) ;

• the objective weighting p(rk) is replaced by a subjective
function π(p(rk)).

v(·) is the felt subjective value in response of the expected
cost of the considered action, and π(·) is the felt weighting
face to the objective probability of the realisation of the result.
Prospect theory shows that the function v(·) is asymmetric:
loss causes a negative reaction intensity stronger than the pos-
itive reaction caused by the equivalent gain. This corresponds
to an aversion to risky choices in the area of earnings and a
search of risky choices in the area of loss.

In a MCDM context, information imperfection concerns
both the evaluation of the alternatives (in any context of
certainty, risk or ignorance) and the uncertainty or lack of
knowledge about the possible states of the world. Uncertainty
and imprecision in multi-criteria decision models has been
early considered [16]. Different kinds of uncertainty can be
considered: on the one hand the internal uncertainty is linked
to the structure of the model and the judgmental inputs re-
quired by the model, on the other hand the external uncertainty
refers to lack of knowledge about the consequences about a
particular choice.

B. Objectives and goals

Several decision support methods exist to consider both
information imperfection, sources heterogeneity, reliability,
conflict and the different states of the world when evaluating
the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches and
Evidential Reasoning1(ER).

Figure 2. Information imperfection in the different decision support methods

• Dempster-Shafer-based AHP (DS-AHP) has introduced
a merging of Evidential Reasoning (ER) with Analytic

1Evidential Reasoning refers to the use of belief functions as theoretical
background, not to a specific theory of belief functions (BF) aimed for
combining, or conditioning BF. Actually, Dempster-Shafer Theory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM [25] are different
approaches of Evidential Reasoning.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5];

• Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

• ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,
possibility theory and belief functions theory too. This
method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process
consists in considering that consequences of actions (Ai)
depend of the state of nature represented by a finite set
S = {S1, S2, . . . , Sn}. For each state, the MCDM method
provides an evaluation Cij . We assume that this evaluation
Cij done by the decision maker corresponds to the choice
of Ai when Sj occurs with a given (possibly subjective)
probability. The evaluation matrix is defined as C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n.



S1 · · · Sj · · · Sn

A1 C11 · · · C11 · · · C1n
...

...
Ai Ci1 · · · Cij · · · Cin
...

...
Aq Cq1 · · · Cqj · · · Cqn

 = C (2)

Existing methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section II, we
briefly recall the basis of DSmT. Section III presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi-
criteria decision method AHP , and Yager’s Ordered Weighted
Averaging (OWA) approach for decision making with belief
structures. The contribution of this paper concerns the section
IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alternatives
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.



II. BELIEF FUNCTIONS AND DSMT

Dempster-Shafer Theory (DST) [21] offers a powerful math-
ematical formalism (the belief functions) to model our belief
and uncertainty on the possible solutions of a given problem.
One of the pillars of DST is Dempster-Shafer rule (DS) of
combination of belief functions. The purpose of the devel-
opment of Dezert-Smarandache Theory (DSmT) [22] is to
overcome the limitations of DST by proposing new underlying
models for the frames of discernment in order to fit better
with the nature of real problems, and new combination and
conditioning rules for circumventing problems with DS rule
specially when the sources to combine are highly conflicting.
In DSmT, the elements θi, i = 1, 2, . . . , n of a given frame Θ
are not necessarily exclusive, and there is no restriction on θi
but their exhaustivity. Some integrity constraints (if any) can
be include in the underlying model of the frame. Instead of
working in power-set 2Θ, we classically work on hyper-power
set DΘ (Dedekind’s lattice) - see [22], Vol.1 for details and
examples. A (generalized) basic belief assignment (bba) given
by a source of evidence is a mapping m : DΘ → [0, 1] such
that

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1 (3)

The generalized credibility and plausibility functions are de-
fined in almost the same manner as within DST, i.e.

Bel(A) =
∑
B⊆A
B∈DΘ

m(B) and Pl(A) =
∑

B∩A̸=∅
B∈DΘ

m(B) (4)

In this paper, we will work with Shafer’s model of the frame
Θ, i.e. all elements θi of Θ are assumed truly exhaustive and
exclusive (disjoint). Therefore DΘ = 2Θ and the generalized
belief functions reduces to classical ones. DSmT proposes
a new efficient combination rules based on proportional
conflict redistribution (PCR) principle for combining highly
conflicting sources of evidence. Also, the classical pignistic
transformation BetP (.) [26] is replaced by the by the more
effective DSmP (.) transformation to estimate the subjective
probabilities of hypotheses for classical decision-making. We
just recall briefly the PCR fusion rule # 5 (PCR5) and Dezert-
Smarandache Probabilistic (DSmP) transformation. All details,
justifications with examples on PCR5 and DSmP can be found
freely from the web in [22], Vols. 2 & 3 and will not be
reported here.
• The Proportional Conflict Redistribution Rule no. 5:

PCR5 is used generally to combine bba’s in DSmT framework.
PCR5 transfers the conflicting mass only to the elements
involved in the conflict and proportionally to their individual
masses, so that the specificity of the information is entirely
preserved in this fusion process. Let m1(.) and m2(.) be
two independent2 bba’s, then the PCR5 rule is defined as
follows (see [22], Vol. 2 for full justification and examples):
mPCR5(∅) = 0 and ∀X ∈ 2Θ \ {∅}

2i.e. each source provides its bba independently of the other sources.

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑
X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (5)

where all denominators in (5) are different from zero. If a
denominator is zero, that fraction is discarded. Additional
properties of PCR5 can be found in [9]. Extension of PCR5
for combining qualitative bba’s can be found in [22], Vol. 2 &
3. All propositions/sets are in a canonical form. A variant of
PCR5, called PCR6 has been proposed by Martin and Osswald
in [22], Vol. 2, for combining s > 2 sources. The general
formulas for PCR5 and PCR6 rules are given in [22], Vol. 2
also. PCR6 coincides with PCR5 for the fusion of two bba’s.

• DSmP probabilistic transformation: DSmP is a serious
alternative to the classical pignistic transformation BetP since
it increases the probabilistic information content (PIC), i.e.
it reduces Shannon entropy of the approximate subjective
probability measure drawn from any bba – see [22], Vol. 3,
Chap. 3 for details and the analytic expression of DSmPϵ(.).
When ϵ > 0 and when the masses of all singletons are
zero, DSmPϵ(.) = BetP (.), where the well-known pignistic
transformation BetP (.) is defined by Smets in [26].

In the Evidential Reasoning framework, the decisions are
usually achieved by computing the expected utilities of the acts
using either the subjective/pignistic BetP{.} (usually adopted
in DST framework) or DSmP (.) (as suggested in DSmT
framework) as the probability function needed to compute
expectations. Usually, one uses the maximum of the pignistic
probability as decision criterion. The maximum of BetP{.} is
often considered as a balanced strategy between the two other
strategies for decision making: the max of plausibility (opti-
mistic strategy) or the max. of credibility (pessimistic strat-
egy). The max of DSmP (.) is considered as more efficient
for practical applications since DSmP (.) is more informative
(it has a higher PIC value) than BetP (.) transformation. The
justification of DSmP as a fair and useful transformation for
decision-making support can also be found in [10]. Note that
in the binary frame case, all the aforementioned decision
strategies yields same final decision.

III. BELIEF FUNCTIONS AND MCDM

Two simple methods for MCDM under uncertainty are
briefly presented: DSmT-AHP approach and Yager’s OWA
approach. The new Cautious OWA approach that we propose
will be developed in the next section.

A. DSmT-AHP approach

DSmT-AHP aimed to perform a similar purpose as AHP
[18], [19], SMART [30] or DS/AHP [1], [3], etc. that is to find
the preferences rankings of the decision alternatives (DA), or
groups of DA. DSmT-AHP approach consists in three steps:

• Step 1: we extend the construction of the matrix for taking
into account the partial uncertainty (disjunctions) between



possible alternatives. If no comparison is available be-
tween elements, then the corresponding elements in the
matrix is zero. Each bba related to each (sub-) criterion
is the normalized eigenvector associated with the largest
eigenvalue of the ”uncertain” knowledge matrix (as done
in standard AHP approach).

• Step 2: we use the DSmT fusion rules, typically the PCR5
rule, to combine bba’s drawn from step 1 to get a final
MCDM priority ranking. This fusion step must take into
account the different importances (if any) of criteria as it
will be explained in the sequel.

• Step 3: decision-making can be based either on the
maximum of belief, or on the maximum of the plausibility
of DA, as well as on the maximum of the approximate
subjective probability of DA obtained by different prob-
abilistic transformations.

The MCDM problem deals with several criteria having
different importances and the classical fusion rules cannot be
applied directly as in step 2. In AHP, the fusion is done from
the product of the bba’s matrix with the weighting vector of
criteria. Such AHP fusion is nothing but a simple component-
wise weighted average of bba’s and it doesn’t actually process
efficiently the conflicting information between the sources. It
doesn’t preserve the neutrality of a full ignorant source in
the fusion. To palliate these problems, we have proposed a
new solution for combining sources of different importances
in [23]. Briefly, the reliability of a source is usually taken into
account with Shafer’s discounting method [21] defined by:{

mα(X) = α ·m(X), for X ̸= Θ

mα(Θ) = α ·m(Θ) + (1− α)
(6)

where α ∈ [0; 1] is the reliability discounting factor. α = 1
when the source is fully reliable and α = 0 if the source is
totally unreliable. We characterize the importance of a source
by an importance factor β in [0, 1]. β factor is usually not
related with the reliability of the source and can be chosen
to any value in [0, 1] by the designer for his/her own reason.
By convention, β = 1 means the maximal importance of the
source and β = 0 means no importance granted to this source.
From this β factor, we define the importance discounting by{

mβ(X) = β ·m(X), for X ̸= ∅
mβ(∅) = β ·m(∅) + (1− β)

(7)

Here, we allow to deal with non-normal bba since mβ(∅) ≥ 0
as suggested by Smets in [24]. This new discounting preserves
the specificity of the primary information since all focal ele-
ments are discounted with same importance factor. Based on
this importance discounting, one can adapt PCR5 (or PCR6)
rule for N ≥ 2 discounted bba’s mβ,i(.), i = 1, 2, . . . N to
get with PCR5∅ fusion rule (see details in [23]) a resulting
bba which is then normalized because in the AHP context,
the importance factors correspond to the components of the
normalized eigenvector w. It is important to note that such
importance discounting method cannot be used in DST when
using Dempster-Shafer’s rule of combination because this rule

is not responding to the discounting of sources towards the
empty set (see Theorem 1 in [23] for proof). The reliability
and importance of sources can be taken into account easily
in the fusion process and separately. The possibility to take
them into account jointly is more difficult, because in general
the reliability and importance discounting approaches do not
commute, but when αi = βi = 1. In order to deal both with
reliabilities and importances factors and because of the non
commutativity of these discountings, two methods have also
been proposed in [23] and not reported here.

B. Yager’s OWA approach

Let’s introduce Yager’s OWA approach [33] for decision
making with belief structures. One considers a collection of q
alternatives belonging to a set A = {A1, A2, . . . , Aq} and
a finite set S = {S1, S2, . . . , Sn} of states of the nature.
We assume that the payoff/gain Cij of the decision maker
in choosing Ai when Sj occurs are given by positive (or null)
numbers. The payoffs q × n matrix is defined by C = [Cij ]
where i = 1, . . . , q and j = 1, . . . , n as in eq. (2). The
decision-making problem consists in choosing the alternative
A∗ ∈ A which maximizes the payoff to the decision maker
given the knowledge on the state of the nature and the payoffs
matrix C. A∗ ∈ A is called the best alternative or the
solution (if any) of the decision-making problem. Depending
the knowledge the decision-maker has on the states of the
nature, he/she is face on different decision-making problems:
1 – Decision-making under certainty: only one state of
the nature is known and certain to occur, say Sj . Then the
decision-making solution consists in choosing A∗ = Ai∗ with
i∗ , argmaxi{Cij}.
2 – Decision-making under risk: the true state of the nature
is unknown but one knows all the probabilities pj = P (Sj),
j = 1, . . . , n of the possible states of the nature. In this
case, we use the maximum of expected values for decision-
making. For each alternative Ai, we compute its expected
payoff E[Ci] =

∑
j pj · Cij , then we choose A∗ = Ai∗ with

i∗ , argmaxi{E[Ci]}.
3 – Decision-making under ignorance: one assumes no
knowledge about the true state of the nature but that it belongs
to S. In this case, Yager proposes to use the OWA operator
assuming a given decision attitude taken by the decision-
maker. Given a set of values/payoffs c1, c2, ..., cn, OWA con-
sists in choosing a normalized set of weighting factors W =
[w1, w2, . . . wn] where wj ∈ [0, 1] and

∑
j wj = 1 and for any

set of values c1, c2, ..., cn compute OWA(c1, c2, . . . , cn) as

OWA(c1, c2, . . . , cn) =
∑
j

wj · bj (8)

where bj is the jth largest element in the collection c1, c2, ...,
cn. As seen in (8), the OWA operator is nothing but a simple
weighted average of ordered values of a variable.
Based on such OWA operators, the idea consists for each
alternative Ai, i = 1, . . . , q to choose a weighting vector
Wi = [wi1, wi2, . . . win] and compute its OWA value Vi ,
OWA(Ci1, Ci2, . . . , Cin) =

∑
j wij · bij where bij is the



jth largest element in the collection of payoffs Ci1, Ci2,. . . ,
Cin. Then, as for decision-making under risk, we choose
A∗ = Ai∗ with i∗ , argmaxi{Vi}. The determination of Wi

depends on the decision attitude taken by the decision-maker.
The pessimistic attitude considers for all i = 1, 2, . . . , q,
Wi = [0, 0, . . . , 0, 1]. In this case, we assign to Ai the least
payoff and we choose the best worst (the max of least payoffs).
It is a Max-Min strategy since i∗ = argmaxi(minj Cij).
The optimistic attitude considers for all i = 1, 2, . . . , q,
Wi = [1, 0, . . . , 0, 0]. We commit to Ai its best payoff and
we select the best best. It is a Max-Max strategy since
i∗ = argmaxi(maxj Cij). Between these two extreme atti-
tudes, we can define an infinity of intermediate attitudes like
the normative/neutral attitude (when or all i = 1, 2, . . . , q,
Wi = [1/n, 1/n, . . . , 1/n, 1/n]) which corresponds to the
simple arithmetic mean, or Hurwicz attitude (i.e. a weighted
average of pessimistic and optimistic attitudes), etc. To justify
the choice of OWA method, Yager defines an optimistic index
α ∈ [0, 1] from the components of Wi and proposes to
compute (by mathematical programming) the best weighting
vector Wi corresponding to a priori chosen optimistic index
and having the maximal entropy (dispersion). If α = 1
(optimistic attitude) then of course Wi = [1, 0, . . . , 0, 0] and
if α = 0 (pessimistic attitude) then Wi = [0, 0, . . . , 0, 1]. I
theory, Yager’s method doesn’t exclude the possibility to adopt
an hybrid attitude depending on the alternative we consider. In
other words, we are not forced to consider the same weighting
vectors for all alternatives.

Example 1: Let’s take states S = {S1, S2, S3, S4}, alterna-
tives A = {A1, A2, A3} and the payoffs matrix:


S1 S2 S3 S4

A1 10 0 20 30
A2 1 10 20 30
A3 30 10 2 5

 (9)

If one adopts the pessimistic attitude in choosing W1 =
W2 = W3 = [0, 0, 0, 1], then one gets for each alterna-
tive Ai, i = 1, 2, 3 the following values of OWA’s: V1 =
OWA(10, 0, 20, 30) = 0, V2 = OWA(1, 10, 20, 30) = 1 and
V3 = OWA(30, 10, 2, 5) = 2. The final decision will be the
alternative V3 since it offers the best expected payoff.

If one adopts the optimistic attitude in choosing W1 =
W2 = W3 = [1, 0, 0, 0], then one gets for each alterna-
tive Ai, i = 1, 2, 3 the following values of OWA’s: V1 =
OWA(10, 0, 20, 30) = 30, V2 = OWA(1, 10, 20, 30) = 30 and
V3 = OWA(30, 10, 2, 5) = 30. All alternatives offer the same
expected payoff and thus the final decision must be chosen
randomly or purely ad-hoc since there is no best alternative.

If one adopts the normative attitude in choosing W1 =
W2 = W3 = [1/4, 1/4, 1/4, 1/4] (i.e. one assumes that
all states of nature are equiprobable), then one gets: V1 =
OWA(10, 0, 20, 30) = 60/4, V2 = OWA(1, 10, 20, 30) =
61/4 and V3 = OWA(30, 10, 2, 5) = 47/4. The final decision
will be the alternative V2 since it offers the best expected
payoff.

4 – Decision-making under uncertainty: this corresponds
to the general case where the knowledge on the states of
the nature is characterized by a belief structure. Clearly, one
assumes that a priori knowledge on the frame S of the different
states of the nature is given by a bba m(.) : 2S → [0, 1]. This
case includes all previous cases depending on the choice of
m(.). Decision under certainty is characterized by m(Sj) = 1;
Decision under risk is characterized by m(s) > 0 for some
states s ∈ S; Decision under full ignorance is characterized
by m(S1∪S2∪ . . .∪Sn) = 1, etc. Yager’s OWA for decision-
making under uncertainty combines the schemes used for
decision making under risk and ignorance. It is based on the
derivation of a generalized expected value Ci of payoff for
each alternative Ai as follows:

Ci =
r∑

k=1

m(Xk)Vik (10)

where r is the number of focal elements of the belief structure
(S,m(.)). m(Xk) is the mass of belief of the focal element
Xk ∈ 2S , and Vik is the payoff we get when we select
Ai and the state of the nature lies in Xk. The derivation
of Vik is done similarly as for the decision making under
ignorance when restricting the states of the nature to the subset
of states belonging to Xk only. Therefore for Ai and a focal
element Xk, instead of using all payoffs Cij , we consider
only the payoffs in the set Mik = {Cij |Sj ∈ Xk} and
Vik = OWA(Mik) for some decision-making attitude chosen
a priori. Once generalized expected values Ci, i = 1, 2, . . . , q
are computed, we select the alternative which has its highest
Ci as the best alternative (i.e. the final decision). The principle
of this method is very simple, but its implementation can be
quite greedy in computational resources specially if one wants
to adopt a particular attitude for a given level of optimism,
specially if the dimension of the frame S is large: one needs to
compute by mathematical programming the weighting vectors
generating the optimism level having the maximum of entropy.
As illustrative example, we take Yager’s example3 [33] with
a pessimistic, optimistic and normative attitudes.

Example 2: Let’s take states S = {S1, S2, S3, S4, S5} with
associated bba m(S1 ∪ S3 ∪ S4) = 0.6, m(S2 ∪ S5) = 0.3
and m(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = 0.1. Let’s also consider
alternatives A = {A1, A2, A3, A4} and the payoffs matrix:

C =


7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

 (11)

The r = 3 focal elements of m(.) are X1 = S1 ∪ S3 ∪ S4,
X2 = S2 ∪ S5 and X3 = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5. X1 and
X2 are partial ignorances and X3 is the full ignorance. One
considers the following submatrix (called bags by Yager) for

3There is a mistake/typo error in original Yager’s example [33].



the derivation of Vik, for i = 1, 2, 3, 4 and k = 1, 2, 3.

M(X1) =


M11

M21

M31

M41

 =


7 12 13
12 5 11
9 3 10
6 11 15



M(X2) =


M12

M22

M32

M42

 =


5 6
10 2
13 9
9 4



M(X3) =


M13

M23

M33

M43

 =


7 5 12 13 6
12 10 5 11 2
9 13 3 10 9
6 9 11 15 4

 = C

• Using pessimistic attitude, and applying the OWA op-
erator on each row of M(Xk) for k = 1 to r, one
gets finally4: V (X1) = [V11, V21, V31, V41]

t
= [7, 5, 3, 6]

t,
V (X2) = [V12, V22, V32, V42]

t
= [5, 2, 9, 4]

t and V (X3). =
[V13, V23, V33, V43]

t
= [5, 2, 3, 4]

t. Applying formula (10)
for i = 1, 2, 3, 4 one gets finally the following generalized
expected values using vectorial notation:

[C1, C2, C3, C4]
t
=

r=3∑
k=1

m(Xk) · V (Xk) = [6.2, 3.8, 4.8, 5.2]
t

According to these values, the best alternative to take is A1

since it has the highest generalized expected payoff.
• Using optimistic attitude, one takes the max value of each

row, and applying OWA on each row of M(Xk) for k = 1 to
r, one gets: V (X1) = [V11, V21, V31, V41]

t
= [13, 12, 10, 15]

t,
V (X2) = [V12, V22, V32, V42]

t
= [6, 10, 13, 9]

t, and V (X3) =
[V13, V23, V33, V43]

t
= [13, 12, 13, 15]

t. One finally gets
[C1, C2, C3, C4]

t
= [10.9, 11.4, 11.2, 13.2]

t and the best al-
ternative to take with optimistic attitude is A4 since it has the
highest generalized expected payoff.
• Using normative attitude, one takes W1 = W2 =

W3 = W4 = [1/|Xk|, 1/|Xk|, . . . , 1/|Xk|] where |Xk| is the
cardinality of the focal element Xk under consideration. The
number of elements in Wi is equal to |Xk|. The generalized
expected values are [C1, C2, C3, C4]

t
= [9.1, 8.3, 8.4, 9.4]

t

and the best alternative with the normative attitude is A4 (same
as with optimistic attitude) since it has the highest generalized
expected payoff.

C. Using expected utility theory

In this section, we propose to use a much simpler ap-
proach than OWA Yager’s approach for decision making under
uncertainty. The idea is to approximate the bba m(.) by a
subjective probability measure through a given probabilistic
transformation. We suggest to use either BetP or (better)
DSmP transformations for doing this as explained in [22]
(Vol.3, Chap. 3). Let’s take back the previous example and
compute the BetP (.) and DSmPϵ(.) values from m(.).

4where Xt denotes the transpose of X .

One gets the same values in this particular example for any
ϵ > 0 because we don’t have singletons as focal elements of
m(.), which is normal. Here BetP (S1) = DSmP (S1) =
0.22, BetP (S2) = DSmP (S2) = 0.17, BetP (S3) =
DSmP (S3) = 0.22, BetP (S4) = DSmP (S4) = 0.22
and BetP (S5) = DSmP (S2) = 0.17. Based on these
probabilities, we can compute the expected payoffs for each
alternative as for decision making under risk (e.g. for C1, we
get 7 · 0.22+ 5 · 0.17+ 12 · 0.22+ 13 · 0.22+6 · 0.17 = 8.91).
For the 4 alternatives, we finally get:

EBetP [C] = EDSmP [C] = [8.91, 8.20, 8.58, 9.25]
t

According to these values, one sees that the best alternative
with this pignistic or DSm attitude is A4 (same as with
Yager’s optimistic or normative attitudes) since it offers the
highest pignistic or DSm expected payoff. This much simpler
approach must be used with care however because there is a
loss of information through the approximation of the bba m(.)
into any subjective probability measure. Therefore, we do not
recommend to use it in general.

IV. THE NEW COWA-ER APPROACH

Yager’s OWA approach is based on the choice of given
attitude measured by an optimistic index in [0, 1] to get the
weighting vector W . How is chosen such an index/attitude ?
This choice is ad-hoc and very disputable for users. What to
do if we don’t know which attitude to adopt ? The rational
answer to this question is to consider the results of the two
extreme attitudes (pessimistic and optimistic ones) jointly and
try to develop a new method for decision under uncertainty
based on the imprecise valuation of alternatives. This is the
approach developed in this paper and we call it Cautious OWA
with Evidential Reasoning (COWA-ER) because it adopts the
cautious attitude (based on the possible extreme attitudes) and
ER, as explained in the sequel.

Let’s take back the previous example and take the pes-
simistic and optimistic valuations of the expected payoffs.
The expected payoffs E[Ci] are imprecise since they belong
to interval [Cmin

i , Cmax
i ] where bounds are computed with

extreme pessimistic and optimistic attitudes, and one has

E[C] =


E[C1]
E[C2]
E[C3]
E[C4]

 ⊂


[6.2; 10.9]
[3.8; 11.4]
[4.8; 11.2]
[5.2; 13.2]


Therefore, one has 4 sources of information about the

parameter associated with the best alternative to choose.
For decision making under imprecision, we propose to use
here again the belief functions framework and to adopt the
following very simple COWA-ER methodology based on the
following four steps:

• Step 1: normalization of imprecise values in [0, 1];
• Step 2: conversion of each normalized imprecise value

into elementary bba mi(.);
• Step 3: fusion of bba mi(.) with an efficient combination

rule (typically PCR5);



• Step 4: choice of the final decision based on the resulting
combined bba.

Let’s describe in details each step of COWA-ER. In step 1,
we divide each bound of intervals by the max of the bounds
to get a new normalized imprecise expected payoff vector
EImp[C]. In our example, one gets:

EImp[C] =


[6.2/13.2; 10.9/13.2]
[3.8/13.2; 11.4/13.2]
[4.8/13.2; 11.2/13.2]
[5.2/13.2; 13.2/13.2]

 ≈


[0.47; 0.82]
[0.29; 0.86]
[0.36; 0.85]
[0.39; 1.00]


In step 2, we convert each imprecise value into its bba
according to a very natural and simple transformation [7].
Here, we need to consider as frame of discernment, the finite
set of alternatives Θ = {A1, A2, A3, A4} and the sources
of belief associated with them obtained from the normalized
imprecise expected payoff vector EImp[C]. The modeling for
computing a bba associated to the hypothesis Ai from any
imprecise value [a; b] ⊆ [0; 1] is very simple and is done as
follows: 

mi(Ai) = a,

mi(Āi) = 1− b

mi(Ai ∪ Āi) = mi(Θ) = b− a

(12)

where Āi is the complement of Ai in Θ. With such simple
conversion, one sees that Bel(Ai) = a, Pl(Ai) = b. The
uncertainty is represented by the length of the interval [a; b]
and it corresponds to the imprecision of the variable (here the
expected payoff) on which is defined the belief function for
Ai. In the example, one gets:

Alternatives Ai mi(Ai) mi(Āi) mi(Ai ∪ Āi)
A1 0.47 0.18 0.35
A2 0.29 0.14 0.57
A3 0.36 0.15 0.49
A4 0.39 0 0.61

Table I
BASIC BELIEF ASSIGNMENTS OF THE ALTERNATIVES

In step 3, we need to combine bba’s mi(.) by an efficient
rule of combination. Here, we suggest to use the PCR5 rule
proposed in DSmT framework since it has been proved very
efficient to deal with possibly highly conflicting sources of
evidence. PCR5 has been already applied successfully in all
applications where it has been used so far [22]. We call
this COWA-ER method based on PCR5 as COWA-PCR5.
Obviously, we could replace PCR5 rule by any other rule (DS
rule, Dubois& Prade, Yager’s rule, etc and thus define easily
COWA-DS, COWA-DP, COWA-Y, etc variants of COWA-
ER. This is not the purpose of this paper and this has no
fundamental interest in this presentation. The result of the
combination of bba’s with PCR5 for our example is given
in of Table II.

The last step 4 is the decision-making from the resulting bba
of the fusion step 3. This problem is recurrent in the theory
of belief functions and several attitudes are also possible as

Focal Element mPCR5(.)
A1 0.2488
A2 0.1142
A3 0.1600
A4 0.1865

A1 ∪A4 0.0045
A2 ∪A4 0.0094

A1 ∪A2 ∪A4 0.0236
A3 ∪A4 0.0075

A1 ∪A3 ∪A4 0.0198
A2 ∪A3 ∪A4 0.0374

A1 ∪A2 ∪A3 ∪A4 0.1883

Table II
FUSION OF THE FOUR ELEMENTARY BBA’S WITH PCR5

explained at the end of section II. Table III shows what are
the values of credibilities, plausibilities, BetP and DSmPϵ=0

for each alternative in our example.

Ai Bel(Ai) BetP (Ai) DSmP (Ai) Pl(Ai)
A1 0.2488 0.3126 0.3364 0.4850
A2 0.1142 0.1863 0.1623 0.3729
A3 0.1600 0.2299 0.2242 0.4130
A4 0.1865 0.2712 0.2771 0.4521

Table III
CREDIBITITY AND PLAUSIBILITY OF Ai

Based on the results of Table III, it is interesting to note
that, in this example, there is no ambiguity in the decision
making whatever the attitude is taken by the decision-maker
(the max of Bel, the max of Pl, the max of BetP or the max of
DSmP), the decision to take will always be A1. Such behavior
is probably not general in all problems, but at least it shows
that in some cases like in Yager’s example, the ambiguity in
decision can be removed when using COWA-PCR5 instead of
OWA which is an advantage of our approach. It is worth to
note that Shannon entropy of BetP is HBetP = 1.9742 bits is
bigger than Shannon entropy of DSmP is HDSmP = 1.9512
bits which is normal since DSmP has been developed for
increasing the PIC value.
Advantages and extension of COWA-ER: COWA-PCR5
allows also to take easily a decision, not only on a single alter-
native, but also if one wants on a group/subset of alternatives
satisfying a min of credibility (or plausibility level) selected by
the decision-maker. Using such approach, it is of course very
easy to discount each bba mi(.) entering in the fusion process
using reliability or importance discounting techniques which
makes this approach more appealing and flexible for the user
than classical OWA. COWA-PCR5 is simpler to implement
because it doesn’t require the evaluation of all weighting
vectors for the bags by mathematical programming. Only
extreme and very simple weighting vectors [1, 0, . . . , 0] and
[0, . . . , 0, 1] are used in COWA-ER. Of course, COWA-ER can
also be extended directly for the fusion of several sources of
informations when each source can provide a payoffs matrix. It
suffices to apply COWA-ER on each matrix to get the bba’s of
step 3, then combine them with PCR5 (or any other rule) and
then apply step 4 of COWA-ER. We can also discount each



source easily if needed. All these advantages makes COWA-
ER approach very flexible and appealing for MCDM under
uncertainty. In summary, the original OWA approach considers
several alternatives Ai evaluated in the context of different
uncertain scenarii and includes several ways (pessimistic,
optimistic, hurwicz, normative) to interpret and aggregate the
evaluations with respect to a given scenario. COWA-ER uses
simultaneously the two extreme pessimistic and optimistic
decision attitudes combined with an efficient fusion rule as
shown on Figure 3. In order to save computational resources
(if required), we also have proposed a less efficient OWA
approach using the classical concept of expected utility based
on DSmP or BetP.

Figure 3. COWA-ER: Two evolutions of Yager’s OWA method.

V. CONCLUSION

In this work, Yager’s Ordered Weighted Averaging (OWA)
operators are extended and simplified with evidential reasoning
(ER) for MCDM under uncertainty. The new Cautious OWA-
ER method is very flexible and requires less computational
load than classical OWA. COWA-ER improves the existing
framework for MCDM since it can deal also with several
more or less reliable sources. Further developments are now
planned to combine uncertainty about states of the world with
the imperfection and uncertainty of alternatives evaluations
as previously introduced in the ER-MCDA and DSmT-AHP
methods in order to connect them with COWA-ER.
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