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Change Detection in Heterogeneous Remote
Sensing Images Based on Multidimensional

Evidential Reasoning
Zhun-ga Liu, Grégoire Mercier, Jean Dezert, and Quan Pan

Abstract—We present a multidimensional evidential reasoning
(MDER) approach to estimate change detection from the fusion
of heterogeneous remote sensing images. MDER is based on a
multidimensional (M-D) frame of discernment composed by the
Cartesian product of the separate frames of discernment used
for the classification of each image. Every element of the M-D
frame is a basic joint state that allows to describe precisely the
possible change occurrences between the heterogeneous images.
Two kinds of rules of combination are proposed for working
either with the free model, or with a constrained model depending
on the integrity constraints one wants to take into account in the
scenario under study. We show the potential interest of the MDER
approach for detecting changes due to a flood in the Gloucester
area in the U.K. from two real ERS and SPOT images.

Index Terms—Belief functions, change detection, Dezert-
Smarandache Theory (DSmT), Dempster–Shafer Theory (DST),
remote sensing (RS).

I. Introduction

IN CHANGE detection from heterogeneous remote sensing
(RS) images, many works have been devoted to change

measure [1]–[5]. Recent works have also been done on the
classification of changed features [6]–[10]. Particularly, an
unsupervised change detection approach has been proposed
in [4] for dealing with multisource and multisensor remote
sensing images that allows to integrate the estimates of sta-
tistical terms achieved on the difference images. In [5], the
similarity between the predicted image obtained from optical
image and the SAR image is used to detect the damages
caused by an earthquake. The heterogeneous remote sensing
images are usually acquired from different kinds of sensors.
Therefore, the classification does not necessarily involve the
same classes definition (i.e., surface roughness from radar
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versus chlorophyll from optical sensor, etc.). Moreover, the
images usually include uncertain information due to noises,
and imprecise information due to lack of knowledge specially
at the transition between areas [11]. The limited quality of
information makes the detection of changes between hetero-
geneous remote sensing images difficult to accomplish. In this
letter, the change detection is considered as a classification
problem, and we envisage the fusion of the classified images as
appropriate for the change detection in heterogeneous remote
sensing images. The fusion of classified images requires
efficient tools for working with uncertain, imprecise, and
even conflicting pieces of information. The theories of Evi-
dences, including the Dempster–Shafer Theory (DST) [12] and
Dezert–Smarandache Theory (DSmT) [13] propose theoretical
frameworks to deal with uncertain and imprecise information.
These theories have already been applied for the fusion of
remote sensing images [14], [15].

The classical DST framework is not well adapted for change
detection between images. Indeed, all the conflicting masses
of belief that could be used to detect the changes are added
altogether in a total degree of conflict that enters in the
normalization constant of Dempster–Shafer (DS) fusion rule.
To overcome the flaws and limitations of DST and DS rule
[16], [17], new possible modelings of the frame of discernment
and rules of combination were proposed in DSmT [13] for
dealing separately with all the partial conflicts. Unfortunately,
for change detection in RS images, the partial conflicting
elements do not model sufficiently well the change occurrences
since the element A ∩ B = B ∩ A cannot distinguish the
change occurrences from A to B or from B to A. In our
previous works [18], [19], a dynamic evidential reasoning
(DER) approach had been developed for the change detection
from RS images issued from the same type of remote sensor
(e.g., a pair of SPOT images). In DER approach, the classes of
these images were elements of the same frame of discernment.
In this letter, we mainly focus on the change detection from
the heterogeneous remote sensing images (e.g., from optical
and radar images), where the classes of the images can be
defined in distinct frames of discernments.

We propose a general multidimensional evidential reason-
ing (MDER) approach, which is effective for the change
detection from both heterogeneous and homogenous re-
mote sensing images. MDER is designed for the fu-
sion of multisources classified images using same or dis-
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tinct frames of discernment depending on the classifica-
tions done on the images. MDER can be considered as an
extension of classical evidential reasoning methods (DST,
DSmT, and DER) for working under the multidimensional
(M-D)1 frame of discernment composed by the Cartesian
product of the separate monodimensional (1-D) frames.2 The
elements of the M-D frame are called basic joint states. The
space of the fusion result lies in the M-D power-set, which is
constructed by the basic joint states with the union operator.
The number of dimensions of the basic joint state depends
on the number of images available. The joint states offer
a better representation of the image mapping and change
occurrences in the fusion of different images. The MDER
approach provides a more refined information than what we
get from the classical evidential reasoning approaches when
working only in a 1-D frame. For dealing with different
situations encountered in real applications, we provide two
rules of combination adapted for the free and the constrained
models of the M-D frame of discernment.

Section II details the framework of MDER, while Section III
focuses on the combination rules that allows the classification
of heterogeneous data, as well as the change detection from a
set of heterogeneous data. Section IV presents an application
of MDER using real heterogeneous data (i.e., SPOT and ERS
images). Conclusions and perspectives are given in Section V.

II. Multidimensional Evidential

Reasoning Framework

A. Space of Multidimensional Evidential Reasoning

In the MDER approach, the fusion space is always increas-
ing with the number of sources, no matter if the 1-D frames of
the sources to combine are identical or not. Even if the sources
of evidence obtained from each image are respectively defined
in 1-D frames, their fusion results will be considered in M-D
frame defined by the Cartesian product of these 1-D frames to
better represent the joint state of the heterogeneous images.

Let us consider n sources of evidence respectively de-
fined with respect to n 1-D frames �1, �2, . . . , �n. The
frame of classifications of the ith image (i = 1, . . . , n) is
�i = {yi;1, yi;2, . . . , yi;hi

}, where elements yi;k, k = 1, . . . hi

are the classes available in the ith image. The frames �i

and �j , i �= j can be similar, or different depending on
the classifications done in each image. The M-D frame is
�n � �1 × �2 × · · · × �n, where symbols × denotes the
Cartesian product operator, and � means equals by definition.
The cardinality of �n is |�n| = |�1|×|�2|×· · ·×|�n|, where
|X| being the cardinality of X is the number of singletons in
X. The M-D element (y1, y2, . . . , yn) ∈ �n is called the basic
joint-state of different images, with the interpretation that in
the same region of n sources of coregistered multitemporal
images, the content of this region in the image number i

belongs to yi , for i = 1, . . . , n. The fusion space of MDER
is given by the power set of the product frame, which is

1M-D means that the elements are obtained from multiple frames of
discernment.

21-D here means that the elements are all from the same unique frame of
discernment

2�n

= 2�1×�2×···×�n . The M-D power-set 2�n

is composed by
all the subsets of �n. The cardinality of 2�n

is |2�n | = 2|�n| =
2|�1|×|�2|×···×|�n|. In MDER approach, the operators ∪ and ∩
applied to elements A, B ∈ 2�1 , and C, D ∈ 2�2 must satisfy
the following conditions:

C1) Componentwise distributivity of union:

(A ∪ B, C ∪ D) = (A, C) ∪ (A, D) ∪ (B, C) ∪ (B, D)

C2) Componentwise intersection:

(A, C) ∩ (B, D) = (A ∩ B, C ∩ D)

C3) Vacuity of joint states: (A, ∅) = (∅, A) = ∅.

B. Basic Definitions

In the MDER approach, a basic belief assignment (bba) is
defined as a function m(·) from the M-D power-set 2�n

to
[0, 1], verifying m(∅) = 0 and

∑
A∈2�n

m(A) = 1. (1)

Any element A ∈ 2�n

such that m(A) > 0 is called a M-D
focal element of m(·). All the imprecise joint states can be
decomposed in the canonical disjunctive form using the basic
joint states with the operator ∪ according to the condition
C1. For example, (X ∪ Y, Z) = (X, Z) ∪ (Y, Z). With the
canonical disjunctive form of the joint states, the belief Bel(·)
and plausibility Pl(·) functions are defined by

Bel(A) =
∑

A,B∈2�n |B⊂A

m(B) (2)

Pl(A) =
∑

A,B∈2�n |A∩B �=∅
m(B). (3)

The interval [Bel(A), Pl(A)] is classically interpreted [12]
as the lower and upper bounds of imprecise probability for
decision-making support. The pignistic probability BetP(A)
[20] commonly used to approximate the unknown probability
in [Bel(A), Pl(A)] is calculated by

BetP(A) =
∑

B∈2�n
,B �=∅

|A ∩ B|
|B| m(B). (4)

In MDER, the cardinality of A ∈ 2�n

is the number of the
basic joint states contained in the canonical disjunctive form
of A.

Example 1: Let us consider the following bba’s over �2 =
� × � with � = {θ1, θ2} and � = {ω1, ω2, ω3} : m(θ1, ω2) =
0.5, m(θ1, ω2 ∪ω3) = 0.2 and m(�, ω3) = 0.3. The cardinality
of the imprecise joint states is counted as follows:

|(θ1, ω2 ∪ ω3)| = |(θ1, ω2) ∪ (θ1, ω3)| = 2

|(�, ω3)| = |(θ1 ∪ θ2, ω3)| = |(θ1, ω3) ∪ (θ2, ω3)| = 2
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Then one gets Bel(θ1, w3) = Bel(θ2, w3) = 0 and

Bel(θ1, ω2) = m(θ1, ω2) = 0.5

Pl(θ1, ω2) = m(θ1, ω2) + m(θ1, ω2 ∪ ω3) = 0.7

Pl(θ1, ω3) = m(θ1, ω2 ∪ ω3) + m(�, ω3) = 0.5

Pl(θ2, ω3) = m(�, ω3) = 0.3

BetP(θ1, ω2) = m(θ1, ω2) +
m(θ1, ω2 ∪ ω3)

2
= 0.6

BetP(θ1, ω3) =
m(θ1, ω2 ∪ ω3)

2
+

m(�, ω3)

2
= 0.25

BetP(θ2, ω3) =
m(�, ω3)

2
= 0.15.

III. Combination Rules in Multidimensional

Evidential Reasoning

In DST [12] or in DSmT [13], the source of evidence pro-
vide their bba’s defined on a same frame of discernment, and a
particular attention is focused on the way in which the conflict-
ing masses of belief are redistributed. In the DER approach
[18], the sources of evidences are also defined on the same
frame of discernment and they are sequentially combined. In
the change detection of heterogenous images, the classes of
each image source can be defined in the distinct frames of
discernment because the sets of classes can be different form
one image to another. To deal with this problem, we propose to
combine the sources of evidence in the M-D frame constructed
by the Cartesian product of the distinct 1-D frames. By
doing this, we exploit more efficiently the information in the
fusion process, and thus we can estimate more precisely the
changes between the images, taking into account the integrity
constraints (if any) of the model of the M-D frame.

Let us consider n sources of heterogeneous images to
be fused, and let us assume that the classifications of each
image are respectively defined over the frames �1, . . . , �n.
The bba’s obtained from each image at the same region are
combined as m(·) = [m1 ⊕m2 ⊕· · ·⊕mn](·), where ⊕ denotes
the generic fusion operator. Before applying the fusion of
sources, the original bba mi(.) associated with the i-th image
(for i = 1, 2, . . . , n) needs to be extended to joint states
representation in the M-D frame using the vacuous extension
principle [21] as follows:

mi(A) � mi(�1, . . . , �i−1, A, �i+1, . . . , �n). (5)

This method is called the vacuous extension because we do not
use information provided by the other sources to extend mi(A)
in the M-D frame. Such vacuous extension is very simple since
it does not take into account the temporal correlation among
images. The prior knowledge of the temporal correlation (if
available, depending on the applications) can be taken into
account in the fusion process to improve the performances of
multitemporal classification and change detection.

Two combination models are proposed here. The free com-
bination model is applied if no prior knowledge about the
impossible joint states is known. Whereas, the constrained
combination should be used when some integrity constraints
on the joint states must be taken into account.

A. Combination Rule in the Free Model

In the free model, all elements (joint states) of 2�n

are
allowed to occur. Thus, there is no element that is forced to be
impossible.3 At first, the bba’s drawn from the classifications
done on the images are extended into the M-D frame using
the vacuous extension following (5). Then the conjunctive
combination rule, denoted MDERf , of the extended bba’s in
the M-D frame is defined ∀A, Yi ∈ 2�n

by

MDERf : m(A) =
n∏

i=1
Y1∩Y2∩···∩Yn=A

mi(Yi) (6)

The mass m(A) obtained in (6) can also be computed by the
sequential fusion of the n ≥ 2 original (one dimension) bba’s
as follows for A = (Y, yn) ∈ 2�n

m1⊕···⊕n(A) = m1⊕···⊕n−1(Y )mn(yn) (7)

where Y = (y1, y2, . . . , yn−1) ∈ 2�n−1
and

{
m1⊕···⊕n−1(·) � [m1 ⊕ m2 ⊕ · · · ⊕ mn−1](.)

m1⊕1(·) � m1(·). (8)

B. Combination Rule in the Constrained Model

In some applications, particular joint states in 2�n

are known
impossible to happen (e.g., a forest seen by a first sensor
that appears without any roughness by a latter radar sensor).
All these impossible joint states are therefore constrained to
be represented by the empty set. The set of all the integrity
constraints is denoted ∅M. The mass of the empty sets forced
by the integrity constraints has to be redistributed to the
other focal elements of 2�n

. Several redistribution principles
can be adopted. In this letter, we propose to redistribute the
conflicting masses to the focal elements, thanks to the classical
normalization procedure adopted in DS rule, because of its
simplicity.4 The combination of n bba’s, denoted MDERDS, is
defined by ∀A ∈ 2�n

MDERDS : m(A) =
1

1 − K

∑
(y1,... ,yn)

M
= A

n∏
i=1

mi(yi) (9)

where yi ∈ 2�i, i = 1, . . . , n, and the total conflicting mass K

is defined by

K =
∑

(y1,... ,yn)∈∅M

m1(y1) · · · mn(yn). (10)

The notation (y1, y2, . . . , yn)
M
= Y , means that the hypothesis

(y1, y2, . . . , yn) is equivalent to Y in the underlying model M
given the integrity constraints. For example, if we have the
constraint (y1;i, y2;j) ∈ ∅M in a 2-D framework, then the joint
state (y1;i, y2;j ∪ y2;k) can be simplified as (y1;i, y2;j ∪ y2;k) =
(y1;i, y2;j) ∪ (y1;i, y2;k) = ∅ ∪ (y1;i, y2;k) = (y1;i, y2;k).

3The impossible event is represented by the empty set in DST and DSmT.
4MDER is a general framework that can be used with different rules of

combinations. We only propose a DS alike fusion rule for MDER here for its
relatively low complexity, but other rules as in [13, vol. 2] can also be used.
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Fig. 1. ERS and SPOT images of Gloucester U.K. (a) ERS image, acquired
on November 16, 1999 before the flood. (b) SPOT image, acquired on October
21, 2000 during the flood. (c) Ground truth.

All the bba’s defined with respect to a 1-D frame can also be
(vacuously) extended to M-D frame using (5) at first, and then
they are combined with a proper redistribution of conflicting
beliefs.

IV. Application of MDER on ERS and SPOT Images

In this section, we show the performances of MDERDS for
the change detection between a pair of heterogenous images
(an ERS and a SPOT image) obtained before and immediately
after a flood in Gloudcester area in U.K. The ERS and Spot
images are shown in Fig. 1, as well as the binary image of
the ground truth.

We want to focus on the application of MDER on fusion of
the classified images, and the appropriate classification method
can be selected according to the actual applications. The
classification of images plays a basic role in change detections
problem, and the more accurate classification results lead to
the better fusion results using MDER or other approaches. A
very recent clustering method called belief functions C-means
(BFCM) [22] as an extension of Fuzzy C-means (FCM) under
belief functions framework can well model the imprecision
and uncertainty. BFCM is applied to classify the pixel values
of each pixel of the images, and its results can be directly
used as bba’s. For decision making, the maximum pignistic
probability is used to select the most likely hypothesis.

The number of clusters for ERS image despeckled by a
refined Lee filter [23] with a 7×7 sliding window is given by
kERS = 3. The classification results are defined in the frame as
[from lower to higher level of surface roughness in Fig. 1(a)]
follows:

θ1 � Dark area θ2 � Gray area

θ3 � White area � � Ignorance.

The SPOT image in Fig. 1(b) was clustered into kSPOT = 5
groups of possible classes as listed below:

ω1 � Red area (covered fields)

ω2 � Dark-red area (wooded area)

ω3 � Green area (bare soil)

ω4 � Dark-green area (vegetation)

ω5 � Bright-green area (bare soil and wet area)

� � Ignorance.

Fig. 2. Fusion results of the pair of ERS and SPOT images: (a) Fusion results
by MDERDS. (b) Comparison of the change detections with ground truth by
MDERDS. (c) Fusion results by DSmC (Ch denotes the change occurrences).
(d) Comparison of the change detections with ground truth by DSmC.

The class that each cluster corresponds to is identified ac-
cording to the clustering center. The cluster corresponds to
the class of content whose pixel value is most close to the
vector of this clustering center. For example, in the SPOT
image, the related distance is the Euclidean distance in R3

to the spectral signature that characterizes the class center.
The related colors refer to the pseudo-color composition Near
Infrared, Red, Green showed as red, green, blue colors. In ERS
image, which has been filtered, the distance to cluster refers to
the Euclidean distance in R and the level of radiometry (from
dark to white) is related to surface roughness (from θ1 to θ3).

The constrained model is used since we have some prior
knowledge about this region in the image. The covered fields
ω1 and wooded area ω2 are linked with low roughness θ1, and
the bare soils ω3 are linked with high roughness θ3 in the ERS
observation. The vegetation ω4 and the wet area ω5 mainly
correspond to the gray area θ2 in Fig. 1(a). Thus, one has five
consistent joint states (θ1, ω1), (θ1, ω2), (θ3, ω3), (θ2, ω4), and
(θ2, ω5). We also know that the change mainly occurred around
the flooding zone. The flood destroyed the wooded area with
low roughness θ1, and changed it to bare soil ω3. Therefore,
the change occurrence mainly corresponds to the inconsistent
joint state (θ1, ω3). As a result, we select the five consistent
joint states and one inconsistent joint state here.

DSmT has already been applied for change detection of
RS images in [14]. To compare the combination rule DSmC
[13] with MDERDS,5 we mapped the frame � to � as
θ1 � {ω1, ω2}, θ2 � {ω4, ω5}, θ3 � {ω3}. As for the change de-
tection, one has θ1∩ω3 � (ω1∪ω2)∩ω3 = (ω1∩ω3)∪(ω2∩ω3).
So both ω1 ∩ ω3 and ω2 ∩ ω3 will be considered as the useful

5DSmC is the simple conjunctive rule, and all the possible conjunction
between elements are allowed in this letter.
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TABLE I

Performances of the MDER Fusion Results (in %)

Ra Rm Rf Ka

DSmC 65.52 42.46 34.48 55.65
MDERDS 81.80 16.53 18.20 80.30

conflict element representing the change occurrences. All the
other conflict elements are constrained to be empty in the
integrity model, and the conflicting beliefs are proportionally
redistributed to the available elements similarly to the DS rule.
The fusion results by different rules are shown in Fig. 2.

As a measure of performance, we use the accuracy rate Ra =
na/Nd , the missing rate Rm = nm/Nc, the false alarm rate Rf =
nf /Nd , and the Kappa index Ka. na is the number of pixels of
correct change detections, Nd is the total number of pixels of
detected changes, nm is the number of pixels of nondetected
changes, Nc is the total number of pixels of changes in ground
truth, and nf is the number of pixels of false alarms. The
performances obtained by MDERDS and DSmC are listed in
Table I.

As we can see, MDERDS provides much better fusion
results than DSmC because DSmC produces more false alarms
than MDERDS since the intersection element cannot precisely
represent the change occurrences. The Kappa index can com-
prehensively reflects the quality of the classification results
with respect to the change detections. So MDERDS has better
quantitative performance than DSmC according to the Ka

value. However, a fine analysis of results indicates that some
missed detections and false alarms have also occurred. Our
results show that gray and white areas along the river remain
mainly consistent with green areas between the two images. So
they are not considered as change occurrences, which mainly
leads to the miss detections. The reason for the false alarms
mainly lies in changes in some small areas that resemble to
some changes in the flood area. The number of the false
alarms can be reduced if additional prior information about
the location of the flood is taken into account.

V. Conclusion and Perspectives

A MDER approach was proposed for the fusion of the
heterogeneous remote sensing images. The multidimensional
elements in MDER could well represent the joint states of
different images, which was useful for change detection. The
belief function, plausibility function, and pignistic probability
in MDER were defined similarly as in DST. The free model
of MDER was designed for the combination of sources of
evidence, in cases, where no prior knowledge about the joint
states was available. If some constraints on the impossible joint
states were acquired, the constrained model has to be adopted
to get better fusion results with less computational complexity.
MDERDS rule was presented in the constrained model as a
direct extension of DS rule in MDER. The capacity of MDER
to detect and to classify change occurrences was also presented
by a pair of real images (i.e., ERS and SPOT). MDER could
also be used for the heterogeneous images mapping appli-
cations, and the experiments were under progress, as well as
investigations on the use of other fusion rules based on the pro-
portional conflict redistribution principle proposed in DSmT.
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