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Generalized Multiple Importance Sampling
Vı́ctor Elvira?, Luca Martino†, David Luengo‡, Mónica F. Bugallo]

Abstract

Importance Sampling methods are broadly used to approximate posterior distributions or some of their moments. In its

standard approach, samples are drawn from a single proposal distribution and weighted properly. However, since the performance

depends on the mismatch between the targeted and the proposal distributions, several proposal densities are often employed for

the generation of samples. Under this Multiple Importance Sampling (MIS) scenario, many works have addressed the selection

or adaptation of the proposal distributions, interpreting the sampling and the weighting steps in different ways. In this paper,

we establish a general framework for sampling and weighting procedures when more than one proposal is available. The most

relevant MIS schemes in the literature are encompassed within the new framework, and, moreover novel valid schemes appear

naturally. All the MIS schemes are compared and ranked in terms of the variance of the associated estimators. Finally, we provide

illustrative examples which reveal that, even with a good choice of the proposal densities, a careful interpretation of the sampling

and weighting procedures can make a significant difference in the performance of the method.

Index Terms

Monte Carlo Methods, Multiple Importance Sampling, Bayesian Inference.

I. INTRODUCTION

Importance Sampling (IS) is a well-known Monte Carlo technique applied to compute integrals involving target probability

density functions (pdfs) [1, 2]. The standard IS technique draws samples from a single proposal pdf and assigns them weights

based on the ratio between the target and the proposal pdfs, both evaluated at the sample value. The choice of a suitable

proposal pdf is crucial for obtaining a good approximation of the target pdf using the IS method. Indeed, although the validity

of this approach is guaranteed under mild assumptions, the variance of the estimator depends notably on the discrepancy

between the shape of the proposal and the target [1, 2].

Several advanced strategies have been proposed in the literature for designing efficient IS schemes [2, Chapter 2], [3, Chapter

9], [4]. A powerful approach is based on using a population of different proposal pdfs. This approach is often referred to as

multiple importance sampling (MIS) and several possible implementations have been proposed [5, 6, 7]. In general, MIS

strategies provide more robust algorithms, since they avoid to entrust the performance of the method to a single proposal.

Moreover, many algorithms have been proposed in order to conveniently adapt the set of proposals in MIS [8, 9, 10].

When a set of proposal pdfs is available, the way of sampling and weighting the samples is not unique, unlike the case of

using a single proposal. Indeed, different MIS algorithms in the literature (both adaptive and not adaptive) have implicitly and

independently interpreted the sampling and weighting procedures in different ways [6, 8, 9, 7, 10, 11, 12]. Namely, there are

several possible combinations of sampling and weighting schemes when a set of proposal pdfs is available, which lead to valid
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MIS approximations of the target pdf. However, these different possibilities can largely differ in terms of performance of the

corresponding estimators.

In this paper, we introduce a unified framework for MIS schemes, providing a general theoretical description of the possible

sampling and weighting procedures when a set of proposal pdfs is used for producing an IS approximation. Within this

unified context, it is possible to interpret that all the MIS algorithms draw samples from a equal-weighted mixture distribution

obtained from the set of available proposal pdfs. Three different sampling approaches and five different functions to calculate

the weights of the generated samples are proposed and discussed. Moreover, we state two basic rules for possibly devising new

valid sampling and weighting strategies within the proposed framework. All the analyzed combinations of sampling/weighting

provide consistent estimates of the parameters of interest.

The proposed generalized framework includes all of the existing MIS methodologies that we are aware of (applied within

different algorithms, e.g. in [7, 8, 11, 10, 12]) and allows the design of novel techniques (here we propose three new schemes,

but more can be introduced). An exhaustive theoretical analysis is provided by introducing general expressions for sampling

and weighting in this generalized MIS context, and by proving that they yield consistent estimators. Furthermore, we compare

the performance of the different MIS schemes (the proposed and the existing ones) in terms of the variance of the estimators

and effective sample size. We illustrate the performance of all the methods by means of three numerical examples, highlighting

the differences among the different MIS schemes in terms of performance and computational cost. In particular, in the first two

examples, where the proposal pdfs are intentionally well chosen, evidence the significative effects produced by the different

interpretations of the sampling and weighting schemes in MIS.

The rest of this paper is organized as follows. In Section II, we describe the problem and we revisit the standard IS

methodology. In Section III, we discuss the sampling procedure in MIS, propose three new sampling strategies, and analyze

some distributions of interest. In Section IV, we propose five different weighting functions, some of them completely new, and

show their validity. The different combinations of sampling/weighting strategies are analyzed in Section V, establishing the

connections with existent MIS schemes, and describing three novel MIS schemes. In Section VI, we analyze the performance

of the different MIS schemes in terms of the variance of the estimators and the effective sample size. Section VIII presents

some descriptive numerical examples where the different MIS schemes are simulated, and finally, Section IX contains some

concluding remarks.

II. PROBLEM STATEMENT AND BACKGROUND

Let us consider a system characterized by a vector of dx unknown parameters, x ∈ Rdx , and a set of dy observed data

made about the system, y ∈ Rdy .1 A general objective is to extract the complete information about the latent state, x, given

the observations, y, by means of studying the posterior density function (pdf) defined as

π̃(x|y) =
`(y|x)h(x)

Z(y)
∝ π(x|y) = `(y|x)h(x), (1)

where `(y|x) is the likelihood function, h(x) is the prior pdf, and Z(y) is the normalization factor.2 The objective is to

approximate the pdf of interest (referred to as target pdf) by Monte Carlo-based sampling [1, 2, 3]. The resulting approximation

of π(x) will be denoted as π̂(x) and will be attained using importance sampling (IS) techniques.

1Vectors are denoted by bold-faced letters, e.g., x, while regular-faced letters are used for scalars, e.g., x.
2In the sequel, to simplify the notation, the dependence on y is removed, e.g., Z ≡ Z(y).
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A. Standard Importance Sampling

Importance Sampling is a general Monte Carlo technique for the approximation of a pdf of interest by a random measure

composed of samples and weights [1]. In its original formulation, a set of N samples, {xn}Nn=1, is drawn from a single proposal

pdf, q(x), characterized by tails that are heavier than those of the target pdf, π(x). A particular sample, xn, is assigned a

weight, wn, which measures the adequacy of that particular sample in the approximation of the posterior pdf. Namely, the

importance weight is given by

wn =
π(xn)

q(xn)
, n = 1, . . . , N, (2)

which represents the ratio between the target pdf, π, and the proposal pdf, q, both evaluated at xn. The samples and the weights

form the random measure χ = {xn, wn}Nn=1 that approximates the measure of the target pdf as

π̂IS(x) =
1

NẐ

N∑

n=1

wnδxn(x), (3)

where δxn(x) is the unit delta measure concentrated at xn and Ẑ = 1
N

∑N
j=1 wj is an unbiased estimator of Z =

∫
π(x)dx

[1]. Fig. 1 (a) displays an example of a target pdf and a proposal pdf, as well as the samples and weights that form a random

measure approximating the posterior.

Although the weights of Eq. (2) are broadly used in the literature, the concept of a properly weighted sample, suggested in

[1, Section 14.2] and in [2, Section 2.5.4], can be used to construct more general weights. More specifically, following the

definition in [2, Section 2.5.4], a set of weighted samples is considered proper with respect to the target π if, for any square

integrable function g,

Eq[wng(xn)] = cEπ[g(x)], ∀n = {1, . . . , N}, (4)

where c is a constant value, also independent from the index n, and the expectation of the left hand side is performed w.r.t.

to the joint pdf of wn and xn, q(w,x). Note that in this way, not only xn but also wn (for a given value of xn) can be a

r.v. Thus, one can design any joint q(w,x) as long as the restriction of Eq. (4) is fulfilled [4]. In the sequel, we extend the

concept of properly weighted sample within the context of the MIS approach (see in particular Section IV-A).

 

 

Target pdf

Proposal pdf

Weighted samples

(a) Single proposal pdf (standard IS).

 

 

Target pdf

Proposal pdf #1

Proposal pdf #2

Weighted samples (pdf #1)

Weighted samples (pdf #2)

(b) Two proposal pdfs (MIS).

Fig. 1: Approximation of the target pdf, π(x), by the random measure χ.
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III. SAMPLING IN MULTIPLE IMPORTANCE SAMPLING

MIS-based schemes consider a set of N proposal pdfs,3

{qN (x)}Nn=1 ≡ {q1(x), . . . , qN (x)}.

and proceed by generating M samples, {xm}Mm=1 (where M 6= N , in general) from the set of proposal pdfs and by properly

weighting the drawn samples. As a visual example, Fig. 1 (b) displays a target pdf and two proposal pdfs as well as the

samples and weights that form a random measure approximating the posterior.

It is in the way that the sampling and the weighting are performed that different variants of MIS can be devised. In this

section we focus on the generation of samples {xm}Mm=1. For clarity in the explanations and the theoretical proofs, we consider

M = N , i.e., the number of samples to be generated coincides with the number of proposal pdfs. All the considerations can

be automatically extended for the case M = kN , with k ≥ 1 and k ∈ N.

Note that the use of the complete set of N proposal pdfs can be interpreted as a single proposal equal-weighted mixture of

pdfs, i.e.,

ψ(x) ≡ 1

N

N∑

n=1

qn(x). (5)

This is an important interpretation for motivating some of the sampling and weighting schemes discussed in this paper. More

precisely, here we describe some basic ways of sampling from a mixture of proposal pdfs and we focus on different statistical

properties that will be very useful in the different MIS interpretations.

A. Sampling from a mixture of proposal pdfs

In order to provide a better explanation of the discussed sampling procedures, we employ a simile with the urn sampling

problem. Let us consider an urn that contains N balls, where each ball is assigned an index j ∈ {1, . . . , N}, representing the

j-th proposal of the complete set of available proposal pdfs, {qj(x)}Nj=1. Then, a generic sampling scheme for generating N

samples from ψ(x) is given below. Starting with n = 1:

1) Draw a ball from the urn, i.e., choose an index jn ∈ {1, . . . , N} using some suitable approach. This corresponds to the

selection of a proposal pdf, qjn .

2) Generate a sample xn from the selected proposal pdf, i.e., xn ∼ qjn(xn).

3) Set n = n+ 1 and go to step 1.

Therefore, obtaining the set of samples {xn}Nn=1 ≡ {x1, ...,xN} from the mixture pdf ψ is in general a two step sequential

procedure. First, the n-th index jn is drawn according to some conditional pdf, P (jn|j1:n−1), where j1:n−1 ≡ {j1, . . . , jn−1}
is the sequence of the previously generated indexes. 4 Then, the n-th sample is drawn from the selected proposal pdf as

xn ∼ p(xn|jn). Within this context, one can formulate the joint probability distribution of the current sample and all indexes

used to generate the samples from 1 to n as

p(xn, j1:n) = P (j1:n−1)P (jn|j1:n−1)p(xn|jn)

= P (j1)

[
n∏

i=2

P (ji|j1:i−1)

]
p(xn|jn), (6)

3The term normalized refers to the fact that the integral of each of the individual proposal pdfs equals to one.
4We use simplified argument-wise notation where p(xn) denotes the pdf of the continuous random variable (r.v.) Xn, while P (jn) denotes the probability

mass function (pmf) of the discrete r.v. Jn. Also, p(xn, jn) denotes the joint pdf and p(xn|jn) is the conditional pdf of Xn given Jn = jn. If the argument

of p(·) is different from xn, then it denotes the evaluation of the pdf as a function, e.g., p(z|jn) denotes the pdf p(xn|jn) evaluated in z.
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where

p(xn|jn) = qjn(xn), (7)

for all n ∈ {1, . . . , N} represents the conditional pdf of the n-th sample given the n-th selected index, i.e., the selected proposal

pdf, qjn(xn). The full joint distribution of all samples and indexes is given by

p(x1:N , j1:N ) = P (j1)

[
N∏

i=2

P (ji|j1:i−1)

][
N∏

i=1

p(xi|ji)
]
.

(8)

The corresponding graphical model is depicted in Fig. 2.

. . . . . .

qjn
(xn)qj3(x3)qj2(x2)qj1(x1)

j2 j3 jn

x2x1 x3 xn

j1

Fig. 2: Graphical model associated to the generic sampling scheme.

B. Selection of the proposal pdfs

In the sequel, we describe three mechanisms for obtaining the sequence of indexes, j1:N ≡ j1, . . . , jN of the proposal pdfs:

two random mechanisms (with and without replacement) and a deterministic scheme which is a particular case of special

interest. The resulting sampling methods will be labeled as S1, S2, and S3, respectively, for easier reference later in the paper.

All the mechanisms share the property that

1

N

N∑

n=1

P (Jn = k) =
1

N
, ∀k ∈ {1, . . . , N}, (9)

i.e., all the indexes have the same probability of being selected.

S1: Random index selection with replacement:

This is the standard sampling scheme where N indexes are independently drawn from the set {1, . . . , N}, i.e., from the

multinomial distribution defined by the N possible values, each with probability 1/N . Thus, in this case, we have

P (jn|j1:n−1) = P (jn) =
1

N
. (10)

With this type of index sampling, several jn’s may take the same value, i.e., there may ultimately be more than one

sample, xn with n = 1, . . . , N , generated from the same proposal pdf and there may be proposal pdfs that are not used

for generating any samples.

S2: Random index selection without replacement:

In this case, when an index is selected from the set of available values, that particular index is discarded for future

generations of indexes. This can be formulated as the indexes being uniformly and sequentially drawn from different sets,
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i.e.,

j1 ∈ I1 = {1, . . . , N},

j2 ∈ I2 = {1, . . . , N} \ {j1},

j3 ∈ I3 = {1, . . . , N} \ {j1, j2},

and, more generally, jn ∈ In = {1, . . . , N}\{j1:n−1}. The conditional probability mass function (pmf) of the n-th index

given the previous ones is given by

P (Jn = k|j1:n−1) =





1

N − n+ 1
if k ∈ In,

0 if k /∈ In,
(11)

where |In| = N − n+ 1. Note that, the marginal pmf of the j-th index is again5

P (jn) =
1

N
. (12)

Under this scheme, once an index is selected and a sample is generated from the corresponding proposal pdf, no more

samples will be generated from that particular proposal pdf. One can observe that at each generation step (i.e., for each

sample to be generated), the number of available proposal pdfs is reduced (the proposal pdfs that were previously used

are discarded). Note that with this strategy, exactly one sample is drawn from each of the possible proposal pdfs.

S3: Deterministic index selection without replacement: This sampling is a particular case of sampling S2 where a fixed

deterministic sequence of indexes is drawn. For instance, and without loss of generality,

j1 = 1, j2 = 2, . . . , jn = n, . . . , jN = N.

Therefore, the n-th sample is deterministically drawn from qn(xn), i.e,

xn ∼ qjn(xn) = qn(xn). (13)

We can express the conditional pmf of the n-th index given the n− 1 previous ones as

P (jn|j1:n−1) = P (jn) = 1jn=n, (14)

where 1 denotes the indicator function. Again, each of the N proposal pdfs is used to generate one, and only one, sample

of the set of samples {xn}Nn=1. This particular index selection procedure has been used by different algorithms in the

MIS literature (e.g., APIS [10]), and it is also implicitly present in the particle filtering literature (e.g. bootstrap PF [13]).

C. Distributions of interest of the n-th sample, xn

In the following, we discuss some important distributions related to the set of generated samples. These distributions are of

utmost importance for understanding the different methods for weighting the samples that are discussed in the next section.

The considered sampling framework operates in a sequential way, i.e., samples are generated one after another. Under that

perspective, the distribution of the n-th sample given all the knowledge of the process up to that point is p(xn|j1:n−1,x1:n−1) =

p(xn|j1:n−1). This is of particular interest, since this is the pdf of the r.v. Xn after the n−1 precedent samples have been drawn

(since the sequence j1:n−1 is known). In the random index selection with replacement (S1), this distribution corresponds to

5There are N ! equiprobable configurations (permutations) of the sequence {j1, . . . , jN}, and in (N − 1)! the k-th index is drawn at the n-th position,

∀k, n = 1, . . . , N . Therefore P (Jn = k) =
(N−1)!
N !

= 1
N
∀k, n = 1, . . . , N .
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p(xn|j1:n−1) = ψ(xn). For the random index selection without replacement (S2), we have p(xn|j1:n−1) = 1
|In|

∑
∀k∈In qk(x).

Finally, under the deterministic index selection scheme (S3), p(xn|j1:n−1) = qn(xn).

Once the n-th index jn has been selected, the n-th sample, xn, is distributed as p(xn|jn) = qjn(xn). Note that this is

common to any valid sampling method within the proposed framework. The marginal distribution of this n-th sample xn is,

in general and regardless the specific sampling procedure, given by

p(xn) =

N∑

k=1

p(xn|Jn = k)P (Jn = k)

=

N∑

k=1

qk(xn)P (Jn = k). (15)

While p(xn|jn) is the same for the three proposed sampling methods (and to any other that one can implement under this

framework), the marginal distribution P (Jn = k) differs for the different methods. Namely, when randomly selecting the

indexes (with (S1) or without (S2) replacement), this marginal distribution amounts to P (Jn = k) = 1
N ,∀n, ∀k, and therefore

p(xn) = 1
N

∑N
k=1 qk(xn) = ψ(xn). In the case of the deterministic index selection (S3), P (Jn = k) = 1k=n, and therefore

p(xn) = qn(xn), i.e., the distribution of the r.v. Xn is the n-th proposal pdf, and not the whole mixture as in the other

sampling schemes with random index selection.

D. Distributions of interest beyond xn

In the proposed framework we draw N samples that we will use, following IS arguments, for approximation of the target

distribution or for the calculation of estimators. The traditional IS approach focuses just on the distribution of the r.v. Xn.

Here, we are also interested in the distribution of the samples regardless of their index n. The reason is that, in MIS schemes,

the N samples can be used jointly regardless of their specific order of appearance. More precisely, we introduce a generic r.v.

defined as

X = Xn with n ∼ U{1, 2, . . . , N}, (16)

where U{1, 2, . . . , N} is the discrete uniform distribution on the set {1, 2, . . . , N}. Namely, the r.v. X is equal to Xn chosen

uniformly within the set {X1, . . . ,XN}. Therefore, the density of X is given by the expression6

f(x) =
1

N

N∑

n=1

pxn(x), (17)

where pxn(x) denotes the marginal pdf of Xn, given by Eq. (15), evaluated at x.7 In the sampling schemes with random

index selection (S1 and S2), since pxn(x) = ψ(x), we also have f(x) = 1
N

∑N
n=1 ψ(x) = ψ(x), whereas in the sampling

with deterministic index selection (S3), since pxn(x) = qn(x), we have f(x) = 1
N

∑N
n=1 qn(x) = ψ(x).

Note that, in all the sampling schemes, X is distributed according to the mixture ψ(x), as expected. Moreover, one can also

obtain the conditional pdf of X given the sequence of indexes as

f(x|j1:N ) =
1

N

N∑

k=1

pxk(x|j1:N ) =
1

N

N∑

k=1

qjk(x). (18)

Note that in this case, f(x|j1:N ) = ψ(x) for the schemes without replacement at the index selection (S2 and S3), but

f(x|j1:N ) = 1
N

∑N
n=1 qjn(x) for the case with replacement (S1), i.e., conditioned to the selection of the indexes, some

proposal pdfs may not appear while others may appear repeated.

6Again, we use a simplified argument-wise notation where f(x) denotes de pdf of the r.v. X of Eq. (16).
7In Eq. (17), we have used the notation pxn (x), instead of p(x) as in Eq. (15), for denoting the marginal pdf of Xn evaluated in x. However, in the rest

of the paper, we use the simpler one, p(xn).
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TABLE I: Summary of the distributions of the r.v.’s Jn, Xn and X, for the three different sampling procedures.
Selection of the indexes

Distributions With replacement

Without Replacement

Text referencesrandom selection deterministic selection

S1 S2 S3

Jn ∼ P (jn)
1
N

1
N

1jn=n Eqs. (10)-(12)-(14)

Jn|J1:n−1 ∼ P (jn|j1:n−1)
1
N

1
|In|

1jn∈In 1jn=n Eqs. (10)-(11)-(14)

Xn|J1:n−1 ∼ p(xn|j1:n−1) ψ(xn)
1
|In|

∑
∀k∈In qk(xn) qn(xn) Sect. III-C

Xn|Jn ∼ p(xn|jn) qjn (xn) qjn (xn) qjn (xn) = qn(xn) Eq. (7)

Xn ∼ p(xn) ψ(xn) ψ(xn) qn(xn) Eq. (15)

X|J1:N ∼ f(x|j1:N ) 1
N

∑N
n=1 qjn (x) ψ(x) ψ(x) Eq. (18)

X ∼ f(x) ψ(x) ψ(x) ψ(x) Eq. (17)

X1:N ∼ p(x1:N )
∏N
n=1 ψ(xn) ψ(x1)

∏N
n=2

1
|In|

∑
`∈In q`(xn)

∏N
n=1 qn(xn) Sect. III-D; Eq. (19)

Remark 1. (Sampling): In the proposed framework, we consider valid, any sequential sampling scheme for generating the set

{X1, . . . ,XN} such that the pdf of the r.v. X defined in Eq. (16) is given by ψ(x). Further considerations about the r.v. X

and connections with variance reduction methods [1, 3] are given in Appendix A.

Table I summarizes the discussed distributions of interest related to the different index selection schemes. In particular,

different distributions of the r.v.’s indexes Jn, and samples Xn and X are shown. Note that, related to the previous remark, in

the three considered index selection procedures presented in this section, the pdf of the r.v. X is the mixture ψ(x). However,

different procedures yield different conditional and marginal distributions that will be exploited to justify different strategies

for calculation of the importance weights in the next section. Finally, the last row of the table shows the joint distribution

p(x1:N ) of the variables X1, . . . ,XN , i.e., p(x1:N ) =
∏N
n=1 ψ(xn) and p(x1:N ) =

∏N
n=1 qn(xn) for the sampling with

replacement (S1) and deterministic selection (S3), respectively. For the sampling without replacement and random selection

this joint distribution is

p(x1:N ) = ψ(x1)

N∏

n=2

1

|In|
∑

`∈In
q`(xn), (19)

with In = {1, . . . , N} \ {j1:n−1}.

IV. WEIGHTING IN MULTIPLE IMPORTANCE SAMPLING

The weighting step is used to evaluate the adequacy of the samples generated from the proposal pdfs with respect to the

general objective of approximating the target π(x). The weight assigned to the n-th sample is proportional to the ratio between

the target pdf evaluated at the sample value, π(xn), and the proposal pdf evaluated at the sample value, i.e.,

wn =
π(xn)

ϕPn(xn)
, (20)

where the generic function ϕPn represents the proposal pdf from which it is interpreted that the n-th sample is drawn. In

general, this function may be parameterized by a subset or the entire sequence of indexes j1:N , i.e., Pn ⊆ {j1, ..., jN} (further

details are given below).

It is on this interpretation of what the proposal pdf used for the generation of the sample is (the evaluation of the denominator

in the weight calculation) that different weighting strategies can be devised.
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A. Mathematical justification

Let us consider the integral I =
∫
g(x)π(x)dx, where π(x) is the target distribution and g is any square integrable function

w.r.t. π(x). The generic IS estimator of I is given by

Î =
1

NZ

N∑

n=1

wng(xn) (21)

where wn is the importance weight of the n-th sample, xn, and Z =
∫
π(x)dx is the normalizing constant. In standard IS,

when Z is known, Î is an unbiased estimator of I . Otherwise, if the target distribution is only known up to the normalizing

constant, Z, then one can estimate it as

Ẑ =
1

N

N∑

n=1

wn, (22)

which is an unbiased estimator and asymptotically consistent with the number of samples under some mild assumptions

regarding the tails of the proposal and target distributions [1]. Therefore, Î is also asymptotically consistent, even when Z is

unknown and is replaced with Ẑ instead [1].

We recall that in standard IS, there is just one proposal pdf, q(x), from which the samples are drawn, and therefore, the

weight is always calculated as wn = π(xn)
q(xn) for n = 1, ...N . The extension to MIS is not straightforward: for instance, one

could reasonably state that xn comes from the marginal distribution p(xn) (which depends on the specific sampling scheme),

while p(xn|jn) = qjn(xn) could also be intuitively considered as the proposal distribution if the realization jn of the r.v. Jn

is observed (as it always happens).

Our approach is based on analyzing which weighting functions yield proper estimators. We consider the definition of

properness by Liu [2, Section 2.5] and we extend (or relax) it to the MIS scenario. Namely, Liu-properness in standard IS

states that a weighted sample {xn, wn} drawn from a single proposal q is proper if, for any square integrable function g,

Eq[g(x)w(x)]

Eq[π(x)]
= Eπ[g(x)], (23)

i.e., w can be in any form as long as the condition of Eq. (23) is fulfilled. Note that, for a deterministic weight assignment,

the only proper weights are the ones considered by the standard IS approach. However, many different proper weights can be

designed if a probabilistic weight function is considered for a given value of x.

The extension to the MIS scenario is not straightforward, since there are several valid sampling procedures and, in each of

them, different interpretations of the proposal pdf of each sample. Therefore, we propose a generalized properness condition in

the MIS scenario over the whole estimator. Namely, given a specific sampling method, we consider that the set of weighting

functions {wn}Nn=1 is proper if

Ep(x1:N ,j1:N )

[
1
N

∑N
n=1 wng(xn)

]

Ep(x1:N ,j1:N )

[
1
N

∑N
n=1 wn

] = Eπ[g(x)]. (24)

This is equivalent to impose the restriction

Ep(x1:N ,j1:N )

[
ZÎ
]

Ep(x1:N ,j1:N )

[
Ẑ
] = I, (25)

which is fulfilled if E[Î] = I and E[Ẑ] = Z. Note that the MIS properness is fulfilled by any set of weighting functions

{wn}Nn=1 that yield an unbiased generic estimator Î , i.e., E[Î] = I . Note that the MIS properness is a relaxation of the one

proposed by Liu, i.e., any Liu-proper weighting scheme is also proper a according to our definition, but not vice versa.
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Following the general sampling framework defined in Section III (see Eq. (8)),

E[Î] =
1

Z

∑

j1:N

∫ (
1

N

N∑

n=1

wng(xn)

)
p(x1:N , j1:N )dx1:N

=
1

ZN

N∑

n=1

∑

j1:N

∫
wng(xn)P (j1:N ) ·

[
N∏

i=1

p(xi|ji)
]
dx1:N .

Here we impose the weight function to have the (deterministic) structure wn = π(xn)
ϕPn (xn) , where π(xn) is the target density

and ϕn(xn) is a generic function parametrized by a set of parameters Pn, and both terms are evaluated at xn.8 The expectation

of the generic estimator can be then computed as

E[Î] =
1

ZN

N∑

n=1

∑

j1:N

∫
π(xn)g(xn)

ϕPn(xn)
P (j1:N )p(xn|jn)dxn. (26)

Remark 2. (Weighting): In the proposed framework, we consider valid any weighting scheme (i.e., any function ϕPn at the

denominator of the weight) that yields E[Î] ≡ I in Eq. (26).

In the following, we show that various distributions related to the generation of the samples (discussed in Section III) can

be used as the denominator of the weight, yielding valid estimators.

B. Weighting functions

Here we present several possible functions ϕPn , that yield an unbiased estimator of I according to Eq. (26). The different

choices for ϕPn come naturally from the sampling densities discussed in the previous section. More precisely, they correspond

to the appropriate evaluation at xn of the five different functions in Table I related to the distributions of the generated samples.

From now on, p(·) and f(·), which correspond to the pdfs of Xn and X respectively, are used as functions and the argument

represents a functional evaluation.

W1: ϕPn(xn) = ϕj1:n−1(xn) = p(xn|j1:n−1)

Since the sampling process is sequential, this option is of particular interest. It interprets the proposal pdf as the conditional

density of xn given all the previous proposal indexes of the sampling process.

W2: ϕPn(xn) = ϕjn(xn) = p(xn|jn) = qjn(xn)

It interprets that if the index jn is known, ϕ is the proposal qjn .

W3: ϕPn(xn) = p(xn)

It interprets that xn is a realization of the marginal p(xn). This is probably the most “natural” option (as it does not

assume any further knowledge in the generation of xn) and is a usual choice for the calculation of the weights in some

of the existing MIS schemes (see Section V).

W4: ϕPn(xn) = ϕj1:N (xn) = f(xn|j1:N ) = 1
N

∑N
k=1 qjk(xn)

This interpretation makes use of the distribution of the r.v. X conditioned on the whole set of indexes (defined in Section

III-D).

W5: ϕPn(xn) = ϕ(xn) = f(xn) = 1
N

∑N
k=1 qk(xn)

8Note that, in an even more generalized framework, the n-th weight wn could hypothetically depend on more than one sample of the set x1:N if one

could properly design the function ϕn that yields valid estimators.
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TABLE II: Summary of the different generic functions ϕPn . The distributions depend on the specific sampling scheme used

for drawing the samples as shown in Table III.

ϕPn
W1 W2 W3 W4 W5

p(xn|j1:n−1) p(xn|jn) p(xn) f(x|j1:N ) f(x)

wn =
π(xn)

ϕPn (xn)
π(xn)

p(xn|j1:n−1)
π(xn)
p(xn|jn)

π(xn)
p(xn)

π(xn)
f(xn|j1:N )

π(xn)
f(xn)

TABLE III: Specific function, ϕPn , at the denominator of weight, wn = π(xn)
ϕPn (xn) , resulting from the combination of the

different sampling schemes (Section III-D) and weighting functions (Section IV-B).

ϕPn
W1 W2 W3 W4 W5

p(xn|j1:n−1) p(xn|jn) p(xn) f(x|j1:N ) f(x)

S1: with replacement ψ(xn) [R3] qjn (xn) [R1] ψ(xn) [R3] 1
N

∑N
k=1 qjk (xn) [R2] ψ(xn) [R3]

S2: w/o (random) 1
|In|

∑
∀k∈In qk(xn) [N2] qjn (xn) [N1] ψ(xn) [N3] ψ(xn) [N3] ψ(xn) [N3]

S3: w/o (deterministic) qn(xn) [N1] qn(xn) [N1] qn(xn) [N1] ψ(xn) [N3] ψ(xn) [N3]

This option considers that all the xn are realizations of the r.v. X defined in Section III-D (see Appendix A for a thorough

discussion of this interpretation).

Although some of the selected functions ϕPn may seem more natural than others, all of them yield valid estimators. The

proofs can be found in Appendix A. Table II summarizes the discussed functions ϕPn that can be used to evaluate the

denominator for the weight calculation, wn = π(xn)
ϕPn (xn) . Other proper weighting functions are described in Section VII-B.

V. MULTIPLE IMPORTANCE SAMPLING SCHEMES

In this section, we describe the different possible combinations of the sampling strategies considered in Section III) and the

weighting functions devised in Section IV. We note that, even though we have discussed three sampling procedures and five

alternatives for weight calculation, once combined the fifteen possibilities only lead to six unique MIS methods. Three of the

methods are associated to the sampling scheme with replacement (S1), while the other three methods correspond to the sampling

schemes without replacement (S2 and S3). Note that for each specific sampling (i.e., with or without replacement), different

weighting options can yield the same function in the denominator (e.g. for the deterministic sampling without replacement,

S3, the denominators for weighting options 1, 2 and 3 are identical, always yielding wn = π(xn)
qn(xn) ). Table III summarizes the

possible combinations of sampling/weighting and indicates the resulting MIS method within brackets. The six MIS methods

are labeled either by an R indicating that the method uses sampling with replacement or with an N to denote that the method

corresponds to a sampling scheme with no replacement. We remark that these schemes are examples of proper MIS techniques

fulfilling Remarks 1 and 2.

A. MIS schemes with replacement

In all R schemes, the n-th sample is drawn with replacement (i.e., S1) from the whole mixture ψ:

[R1]: Sampling with replacement, S1, and weight denominator W2:

For the weight calculation of the n-th sample, only the mixand selected for generating the sample is evaluated in the

denominator.

[R2]: Sampling with replacement, S1, and weight denominator W4:

With the N selected indexes jn, for n = 1, ..., N , one forms a mixture composed by all the corresponding proposal
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pdfs. The weight calculation of the n-th sample considers this a posteriori mixture evaluated at the n-th sample in

the denominator, i.e., some proposals might be used more than once while other proposals might not be used.

[R3]: Sampling with replacement, S1, and weight denominator W1, W3, or W5:

For the weight calculation of the n-th sample, the denominator applies the value of the n-th sample to the whole

mixture ψ composed of the set of initial proposal pdfs (i.e., the function in the denominator of the weight does not

depend on the sampling process). This is the approach followed by the so called mixture PMC method [9].

2 2 4 1

2 2 4 1

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(a) Scheme R1

2 2 4 1 2 2 4 1 2 2 4 1 2 2 4 1

2 2 4 1

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(b) Scheme R2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 2 4 1

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(c) Scheme R3

Fig. 3: Example of a realization of the indexes selection (N = 4) with the procedure S1 (with replacement), and the

corresponding possible denominators for weighting: (a) [R1]: ϕn(xn) = qjn(xn); (b) [R2]: ϕn(xn) = 1
N

∑N
k=1 qjk(xn);

(c) [R3]: ϕn(xn) = ψ(xn) = 1
N

∑N
k=1 qk(xn).

Figure 3 displays these three MIS schemes related to the sampling with replacement, S1. It shows a possible realization of

the MIS schemes for M = N = 4 samples and pdfs. For each scheme, this figure depicts for each n-th sample, the index jn

of the proposal pdf that was actually selected to draw the sample, and the function ϕn that was used for the denominator of

the weight calculation. Note that all these MIS schemes allow for repetition in the selected proposal pdf (since the selection of

proposal pdfs is done with replacement). In Fig. 3(a), the denominator of the weight calculation only considers the evaluation

of the actual proposal pdf from which the sample was generated (scheme R1). In Fig. 3(b) the denominator of the weight

accounts for the mixture of proposal pdfs selected, but evaluated at the n-th sample value (scheme R2). Finally, in Fig. 3(c),

the weight evaluation uses the complete mixture ψ of initial proposal pdfs evaluated at the sample value (scheme R3).

B. MIS schemes without replacement

In all N schemes, exactly one sample is generated from each proposal pdf. This corresponds to having a sampling strategy

without replacement.

[N1]: Sampling without replacement (random or deterministic), S2 or S3, and weight denominator W2 (for S2) or W1,

W2, or W3 (for S3):

For calculating the denominator of the n-th weight, the specific mixand used for the generation of the sample is used.

This is the approach frequently used in particle filtering [13] and in the standard PMC method [8].

[N2]: Sampling without replacement (random), S2, and weight denominator W1:

This MIS implementation draws one sample from each mixand, but the order matters (it must be random) since the
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calculation of the n-th weight uses for the evaluation of the denominator the mixture pdf formed by the proposal

pdfs that were still available at the generation of the n-th sample.

[N3]: Sampling without replacement (random or deterministic), S2 or S3, and weight denominator W3, W4, or W5 (for

S2), or W4 or W5 (for S3):

In the calculation of the n-th weight, one uses for the denominator the whole mixture. This is the approach, for

instance, of [10, 11]. As showed in Section VI, this scheme has several benefits over the others.

4 1 3 2

4 1 3 2

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(a) Scheme N1

1 2 3 4 1 2 3 2 3 2

4 1 3 2

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(b) Scheme N2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4 1 3 2

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(c) Scheme N3

Fig. 4: Example of a realization of the indexes selection (N = 4) with the procedure S2 (without replacement), and the

corresponding possible denominators for weighting: (a) [N1]: ϕn(xn) = qjn(xn); (b) [N2]: ϕn(xn) = 1
|In|

∑
∀k∈In qk(xn);

(c) [N3]: ϕn(xn) = 1
N

∑N
k=1 qk(xn).

Figures 4 and 6 display the three MIS schemes related to the sampling without replacement, S2 and S3, respectively. Note

that the sampling always yields one sample from each of the proposal pdfs of the available set. In Fig. 4 (a), the denominator of

the weight calculation only considers the evaluation of the actual proposal pdf from which the sample was generated (scheme

N1). In Fig. 4(b), the denominator of the weight accounts for the mixture of proposal pdfs available when the n-th sample was

generated and evaluated at the n-th sample value (scheme N2). Finally, in Fig. 4(c) the weight evaluation uses the complete

mixture of initial proposal pdfs evaluated at the sample value (scheme N3). We can see that schemes in Figs. 4 (a) and 6 (a)

are equivalent. The MIS schemes of Fig. 4 (c) and Fig. 6 (b) are also equivalent. In both cases, this equivalency is due to

the fact that the order does not play any role in the construction of the estimators or the sample approximation of the target

density.

Figure 5 illustrates the possible proper combinations of sampling procedures and weighting functions. Table IV summarizes

the six resulting MIS schemes and their references in literature, indicating which sampling procedure and weighting function

must be applied to obtain the n-th weighted sample xn. We consider N1 and N3 associated to S3 (they can also be obtained

with S2) since it is a simpler sampler than S2.

Within the proposed framework, we have considered three sampling procedures and five general weighting functions. All

the different algorithms in the literature (that we are aware of) correspond to one of the MIS schemes described above. Section

VII-C provides more details about the MIS schemes used by the different algorithms available in literature. Several new valid

schemes have also appeared naturally. Namely, schemes R1, R2, and N2 are novel, and their advantages and drawbacks are

analyzed in the following sections. Furthermore, following the sampling and weighting remarks provided above, new proper

MIS schemes can easily be proposed within this framework.
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S1

S2

S3

R1

R3

N2

R2

N1

N1

N3

N3

Sampling
schemes

Function
'Pn

(xn)

1

N

NX

n=1

qjn(xn)

1

|In|
X

k2In

qk(xn)

 (xn)

qjn
(xn)

Fig. 5: Proper combinations of sampling procedures and weighting functions applied to the n-th sample xn.

1 2 3 4

1 2 3 4

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(a) Scheme N1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4Available proposals:

jn (sampling):

ϕn(x) (weights):

(b) Scheme N3

Fig. 6: Indexes selection (N = 4) with the procedure S3 (without replacement), and the corresponding possible denominators

for weighting: (a) ϕn(xn) = qjn(xn); (b) ϕn(xn) = ψ(xn) = 1
N

∑N
k=1 qk(xn).

TABLE IV: Summary of the sampling procedure and the weighting function of each MIS scheme.

MIS scheme Sampling w(xn) Used in

R1 S1 π(xn)
qjn (xn)

Novel

R2 S1 π(xn)
1
N

∑N
k=1

qjk
(xn)

Novel

R3 S1 π(xn)
ψ(xn)

[9]

N1 S3 π(xn)
qn(xn)

[8]

N2 S2 π(xn)
1
|In|

∑
∀k∈In qk(xn)

Novel

N3 S3 π(xn)
ψ(xn)

[10, 11]

VI. QUALITY MEASURES OF THE SCHEMES

In this section we analyze the MIS schemes presented in the previous section in terms of objective quality measures. In

particular, we provide an exhaustive variance analysis. Moreover, a discussion about the effective sample size and the application

of resampling procedures is provided.

A. Variance Analysis

A central objective in importance sampling entails the computation of a particular moment of r.v. with pdf π̃(x) = π(x)
Z . For

sake of completeness of this section, let us revisit the general forms of the estimators. We recall that the goal is approximating

I =
1

Z

∫
g(x)π(x)dx, (27)
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where g can be any square integrable function of x [2].

In standard importance sampling, the moment in Eq. (27) can be estimated by drawing N independent samples xn from a

single proposal density q(x) and building the estimator

Ĩ =
1

NẐ

N∑

n=1

wng(xn), (28)

where wn = π(xn)
q(xn) for n = 1, ..., N , and Ẑ = 1

N

∑N
j=1 wj . Under mild assumptions about the tails of the distributions, Î

provides a consistent estimator of I [1]. If the normalizing constant Z of the target π(x) is known, the estimator

Î =
1

NZ

N∑

n=1

wng(xn), (29)

is also unbiased [1, 2]. Furthermore, it is well known that the variance of both estimators is directly related to the discrepancy

between π̃(x)|g(x)| and q(x) (for a specific choice of g) [1, 14]. For a general g, a common strategy is decreasing the mismatch

between the proposal q(x) and the target π̃(x).

In MIS, a set of N proposal pdfs {qn(x)}Nn=1 is used to draw the N samples. While the MIS estimators preserve the same

structure as in Eqs. (28) and (29), the way the samples are drawn (see the sampling procedures in Section III) and the function

used for the weight calculation (see Section IV) can make a substantial difference in the performance. In fact, although the

six different MIS schemes that appear in Section V yield an unbiased estimator (see Appendix A), the performance of that

estimator can be dramatically different. In the following, we focus on the variance of the unbiased estimator Î of Eq. (29) in

all the studied schemes. The details of the derivations are in Appendix B. In particular, the estimators of the three methods

with replacement present the following variances

Var(ÎR1) =
1

Z2N2

N∑

k=1

∫
π2(x)g2(x)

qk(x)
dx− I2

N
, (30)

Var(ÎR2) =
1

Z2N

1

NN

∑

j1:N

∫
π2(x)g2(x)

f(x|j1:N )
dx

− 1

Z2N2

1

NN

∑

j1:N

N∑

n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn(xn)dxn

)2

, (31)

and

Var(ÎR3) =
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx− I2

N
. (32)

On the other hand, the variances associated to the estimators of the three methods without replacement are

Var(ÎN1) =
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

qn(xn)
dxn −

I2

N
, (33)

Var(ÎN2) =


 1

Z2N2

N∑

n=1

∑

j1:n−1

∫
π2(xn)g2(xn)

p(xn|j1:n−1)
P (j1:n−1)dxn




−


 1

Z2N2

N∑

n=1

∑

j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjndxn

)2

P (j1:n),

(34)
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and

Var(ÎN3) =
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx

− 1

Z2N2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

. (35)

One of the goals of this paper is to provide the practitioner with solid theoretical results about the superiority of some

specific MIS schemes. In the following, we state two theorems that relate the variance of the estimator with these six methods,

establishing a hierarchy among them. Note that obtaining an IS estimator with finite variance essentially amounts to having a

proposal with heavier tails than the target. See [1, 15] for sufficient conditions that guarantee this finite variance.

Theorem 1. For any target distribution π(x), any square integrable function g, and any set of proposal densities {qn(x)}Nn=1

such that the variance of the corresponding MIS estimators is finite,

V ar(ÎR1) = V ar(ÎN1) ≥ V ar(ÎR3) ≥ V ar(ÎN3)

Proof: See Appendix B.

Theorem 2. For any target distribution π(x), any square integrable function g, and any set of proposal densities {qn(x)}2n=1

such that the variance of the corresponding MIS estimators is finite,

V ar(ÎR1) = V ar(ÎN1) ≥ V ar(ÎR2) = V ar(ÎN2) ≥ V ar(ÎN3) (36)

Proof: See Appendix C.

First, let us note that the scheme N3 outperforms (in terms of the variance) any other MIS scheme in the literature that we

are aware of. Moreover, for N = 2, it also outperforms the other novel schemes R2 and N2. While the MIS schemes R2 and

N2 do not appear in Theorem 1, we hypothesize that the conclusions of Theorem 2 might be extended to N > 2. The intuitive

reason is that, regardless of N , both methods partially reduce the variance of the estimators by placing more than one proposal

at the denominator of some or all the weights.

The variance analysis of Ĩ in Eq. (28) implies a ratio of dependent r.v.’s, and therefore, it cannot be performed without

resorting to an approximation, e.g., by means of a Taylor expansion as it is performed in [16, 17, 3]. In this case, the bias of

Ĩ is usually considered negligible compared to the variance for large N . With this approximation, the variance depends on the

variances of the numerator (which is a scaled version of Î), the variance of Ẑ, and the covariance of both. Therefore, although

we prove several relations in terms of the variance for Î and Ẑ, the same conclusions for the normalized estimator ÎMIS cannot

strictly be proved in the general case. However, it is reasonable to assume that methods that reduce the variance of Î and Ẑ,

in general will also reduce the variance of Ĩ . In Section VIII, this hypothesis is reinforced by means of numerical simulations.

B. Effective Sample Size

Let us consider again the problem of estimating the integral of Eq. (27). If one could draw N independent samples directly

from the normalized target distribution, Xn ∼ π̃(xn) for n = 1, ..., N , the estimator of I would be given by

Ī =
1

N

N∑

n=1

g(xn). (37)
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The efficiency of an importance sampling method is often measured with the so-called effective sample size (ESS). In

its original formulation, the ESS measures the increase of variance w.r.t. to the estimator of Eq. (37) [16, 17]. In standard

importance sampling (i.e., with a single proposal), the ESS of the IS estimator of Eq. (28) is approximated as [16, 17]

ESSIS =
NVarq[Ĩ]

Varπ̃[Ī]
≈ N

1 + Varq[w]
. (38)

An appropriate extension of Eq. (38) to MIS is not straightforward, since the samples are drawn from different proposal pdfs.

Noting that in standard IS Varq[Ẑ] =
Varq [w]
N , we propose the following natural extension of the ESS to the MIS approach:

ESSMIS ≈
N

1 +NVar[Ẑ]
, (39)

where the variance of Ẑ is now calculated over the joint distribution p(x1:N , j1:N ). In this way, methods with a lower value

of Var[Ẑ] present a higher value of ESS. Therefore, the analysis of the variance of the generic estimator Î (Section VI-A) can

be straightforwardly applied here, yielding the same hierarchy among the different MIS schemes.

Since the variances involved in the ESS calculation cannot usually be obtained in a closed form, practitioners in Sequential

Monte Carlo methods often use an approximation of the variance. In particular, as a rule of thumb, the following expression

is commonly is used

ÊSS =
1

∑N
n=1 w̄

2
n

, (40)

where w̄n = wn∑N
k=1 wk

is the n-th normalized weight [18, 19]. Note that ÊSS = N (maximum value) when all weights are

equal, whereas ÊSS = 1 (minimum value) when all weights are zero except one.

Note that MIS schemes with lower E[
∑N
n=1 w̄

2
n] will yield a bigger ÊSS in average. Therefore, we have

N∑

n=1

E[w̄2
n] =

N∑

n=1

E


 w2

n(∑N
k=1 wk

)2




=
1

N2

N∑

n=1

E

[
w2
n

Ẑ2

]
. (41)

It is not straightforward to analyze this ratio of dependent r.v. However, since Ẑ ≈ Z for large N, we can consider that

MIS schemes with smaller
∑N
n=1E[w2

n] have bigger ÊSS in average. In particular, regarding the proof of Theorem 1 at the

variance analysis, and under the assumption of Ẑ = Z, we can see that the MIS schemes R3 and N3 outperform R1 and N1

(compare the first terms of Eqs. (30)-(35) and see the Appendix A for more details). Nevertheless, this interpretation must be

taken carefully, since it comes from several approximations and assumptions. Following these lines, in [3, Chapter 9], is stated

that ÊSS “is a convenient way to interpret the amount of inequality in the weights but it does not translate cleanly into a

comparison of variances”.

In addition, we recall that the original effective sample size is defined as a ratio (scaled by N ) that measures the loss in

terms of variance of the Importance Sampling estimator w.r.t. to the ideal estimator Ī . In some specific cases, the estimator of

the MIS scheme may have less variance than in direct target sampling (see the second example of Section VIII). Therefore,

ÊSS of Eq. (40), which is derived through several approximations and assumptions, might not always be capturing the essence

of the effective sample size.

C. Resampling in Adaptive Importance Sampling

Many adaptive importance sampling (AIS) algorithms, such as the standard PMC [8] or sequential Monte Carlo methods

[13, 20], employ resampling steps for updating the parameters of the proposal functions. In the standard multinomial resampling,
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the indexes of the next generation are drawn according to a multinomial pmf parameterized by the normalized IS weights w̄n,

with n = 1, . . . , N . One of the main issues in the application of resampling steps is the loss of diversity, also known as path

degeneracy, in the samples of the next generation. This loss is minimized when the pmf described by the normalized weights

w̄n = wn
NẐ

, with n = 1, . . . , N , coincides with the discrete uniform pmf U{1, 2, . . . , N}, i.e., w̄n = 1
N for all n. Thus, let us

consider the Euclidean distance between these two pmf’s, i.e,

L2 =

N∑

n=1

(
wn∑N
k=1 wk

− 1

N

)2

=
1

N2

1

Ẑ2

N∑

n=1

(
wn − Ẑ

)2

, (42)

where we have used Ẑ = 1
N

∑N
k=1 wk. With simple rearrangements, we have

L2 =
1

N2

1

Ẑ2

[
N∑

n=1

w2
n +NẐ2 − 2Ẑ

N∑

n=1

wn

]

=
1

N2

1

Ẑ2

[
N∑

n=1

w2
n −NẐ2

]

=

N∑

n=1

w̄2
n −

1

N
=

1

ÊSS
− 1

N
, (43)

where ÊSS = 1∑N
n=1 w̄

2
n

(see Eq. (40)). Therefore, maximizing the ÊSS is equivalent to minimizing the Euclidean distance

between the pmf of the resampled index (parametrized by the unnormalized weights) and the discrete uniform pmf. As a

consequence, a MIS scheme that provides a higher ÊSS, also provides a pmf closer to the uniform distribution. Therefore,

from the point of view of reducing the discrepancy of the weights and retaining more diversity after a resampling step, we

can again state that MIS schemes R3 and N3 outperform R1 and N1.

VII. APPLYING THE MIS SCHEMES

A. Computational complexity

In previous section, we have compared the MIS schemes in terms of performance, whereas here we discuss their computational

complexity. Table V compares the total number of target and proposal evaluations in each MIS scheme. First, note that the

estimators of any MIS scheme within the proposed general framework use N weighted samples where the general weight is

given by Eq. (20).9 Therefore, all of them perform N target evaluations in total. However, depending on the function ϕPn

used by each specific scheme at the weight denominator, a different number of proposal evaluations is performed. We see that

R3, and N3 always yield the largest number of proposal evaluations. In R2, the number of proposal evaluations is variable:

although each weight evaluates N proposals, some proposals may be repeated, whereas others may not be used.

In many relevant scenarios, the cost of evaluating the proposal densities is negligible compared to the cost of evaluating the

target function. In this scenario, the MIS scheme N3 should always be chosen, since it yields a lower variance with a negligible

increase in computational cost. For instance, this is the case in the Big Data Bayesian framework, where the target function

is a posterior distribution with many data in the likelihood function. However, in some other scenarios, e.g. when the number

of proposals N is too large and/or the target evaluations are not very expensive, limiting the number of proposal evaluations

can result in a better cost-performance trade off.

9We recall that, in general, one can draw M = kN samples, with k ≥ 1 and k ∈ N.
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MIS Scheme R1 N1 R2 N2 R3 N3

Target Evaluations N N N N N N

Proposal Evaluations N N ≤ N2 N(N + 1)/2 N2 N2

TABLE V: Number of target and proposal evaluations for the different MIS schemes. Note that the number of proposal

evaluations for R2 is a random variable with a range from N to N2.

B. A priori partition approach

The extra computational cost of some MIS schemes occurs because each sample must be evaluated in more than one proposal

qn, or even in all of the available proposals (e.g. the MIS scheme N3). In order to propose a framework that limits the number

of proposal evaluations, let us first define a partition of the set of the indexes of all proposals, {1, . . . , N}, into P disjoint

subsets of L elements (indexes), Jp with p = 1, . . . , P , s.t.

J1 ∪ J2 ∪ . . . ∪ JP = {1, . . . , N}, (44)

where Jk∩Jq = ∅ for all k, q = 1, . . . , P and k 6= q.10 Therefore, each subset, Jp = {jp,1, jp,2, . . . , jp,L}, contains L indexes,

jp,` ∈ {1, . . . , N} for ` = 1, . . . , L and p = 1, . . . , P .

After this a priori partition, one could apply any MIS scheme in each (partial) subset of proposals, and then perform a

suitable convex combination of the partial estimators. This general strategy is inspired by a specific scheme, partial deterministic

mixture MIS (p-DM-MIS), which was recently proposed in [7]. That work applies the idea of the partitions just for the MIS

scheme N3, denoted there as full deterministic mixture MIS (f-DM-MIS). The sampling procedure is then S3, i.e., exactly

one sample is drawn from each proposal. The weight of each sample in p-DM-MIS, instead of evaluating the whole set of

proposals (as in N3), evaluates only the proposals within the subset that the generating proposal belongs to. Mathematically,

the weights of the samples corresponding to the p-th mixture are computed as

wn =
π(xn)

ψp(xn)
=

π(xn)
1
L

∑
j∈Jp qj(xn)

, n ∈ Jp. (45)

Note that the number of proposal evaluations is N ≤ N2

P ≤ N2. Specifically, we have the particular cases P = 1 and P = N

corresponding to the MIS schemes N3 (best performance) and N1 (worst performance), respectively. In [7], it is proved that

for a specific partition with P subsets of proposals, merging any pair of subsets decreases the variance of the estimator Î of

Eq. (29).

The previous idea can be applied to the other MIS schemes presented in Section V (not only N3). In particular, one can

make an a priori partition of the proposals as in Eq. (44), and apply independently any different MIS scheme in each set. For

instance, and based on some knowledge about the performance of the different proposals, one could make two disjoint sets of

proposals, applying the MIS scheme N1 in the first set, and the MIS scheme N3 in the second set.

C. Generalized Adaptive Multiple Importance Sampling

Adaptive Importance Sampling (AIS) methods update over the time the parameters of the proposal pdfs using the information

of the past samples. In that way, they decrease the mismatch between the proposal and the target, and thus improve the

10Note that, for sake of simplifying the notation, we assume that all P subsets have the same number of elements. However this is not necessary, and it is

straightforward to extend the conclusions of this section to the case where each subset has different number of elements
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performance of the MIS scheme [8, 11, 10, 12]. The sampling and weighting options, described in this work within a static

framework for sake of simplicity, can be straightforwardly applied in the adaptive context.

More specifically, let us consider a set of proposal pdfs {qj,t(x)}, with j = 1, . . . , J and t = 1, . . . , T , where the subscript t

indicates the iteration index of the adaptive algorithm, T is the total number of adaptation steps, J is the number of proposals

per iteration, and N = JT is the total number of proposal pdfs. A general adaptation procedure takes into account, at the t-th

iteration, statistical information about the target pdf gathered in all of the previous iterations, 1, . . . , t − 1, using one of the

many algorithms that have been proposed in the literature [9, 8, 11, 10].

Hence, the sampling and the weighting procedures described in previous sections (and therefore the six MIS schemes

considered in Section V) can be directly applied to the whole set of N proposal pdfs. Moreover, in the adaptive context, when

many proposals are considered (the number of proposals grow over the time), the a priori partition approach of Section VII-B

can be useful to limit the computational cost of the different MIS schemes.
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Fig. 7: Graphical representation of the N = JT proposal pdfs used in the generalized adaptive MIS scheme, spread through

the state space Rdx (j = 1, . . . , J) and adapted over time (t = 1, . . . , T ).

Let us assume that, at the t-th iteration, one sample is drawn from each proposal qj,t (sampling S3), i.e.,

Xj,t ∼ qj,t(xj,t),

j = 1, . . . , J and t = 1, . . . , T . Then, an importance weight wj,t is assigned to each sample xj,t. As described exhaustively in

Section IV, several strategies can be applied to build wj,t considering the different MIS approaches. Fig. 7 provides a graphical

representation of this scenario, by showing both the spatial and temporal evolution of the J = NT proposal pdfs. In a generic

AIS algorithm, one weight

wj,t =
π(xj,t)

ϕj,t(xj,t)
, (46)

is associated to each sample xj,t. In the MIS scheme N1, the function employed in the denominator is

ϕj,t(x) = qj,t(x). (47)

In the following, we focus on the MIS scheme N3 in the adaptive framework, considering several choices of the partitioning of

the set of proposals, since this scheme attains the best performance, as shown in Section 6.2. This method, with different choices

of the partitioning of the set of proposals, implicitly appears in several methodologies that have been proposed independently

in the literature of adaptive MIS algorithms. In the full N3 scheme, the function ϕj,t is

ϕj,t(x) = ψ(x) =
1

JT

J∑

k=1

T∑

r=1

qk,r(x), (48)
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where ψ(x) is now the mixture of all the spatial and temporal proposal pdfs. This case corresponds to the blue rectangle in

Fig. 7. Furthermore, two natural alternatives of partial N3 schemes appear in this scenario. The first one uses the following

partial mixture

ϕj,t(x) = ξj(x) =
1

T

T∑

r=1

qj,r(x), (49)

with j = 1, . . . , J , as mixture-proposal pdf in the IS weight denominator. Namely, in this case we consider the temporal

evolution of the j-th single proposal qj,t. Hence, we have P = J mixtures, each one formed by L = T components (red

rectangle in Fig. 7). The other possibility is considering the mixture of all the qj,t’s at the t-th iteration, i.e.,

ϕj,t(x) = φt(x) =
1

J

J∑

k=1

qk,t(x), (50)

with t = 1, . . . , T , so that we have P = T mixtures, each one formed by L = J components (green rectangle in Fig. 7).

The function ϕj,t in Eq. (47) is used in the standard PMC scheme [8]; Eq. (49), in the particular case of J = 1, has been

considered in the adaptive multiple importance sampling (AMIS) algorithm [11]. The choice in Eq. (50) has been applied in

the adaptive population importance sampling (APIS) algorithm [10]. In other techniques, such as Mixture PMC [21, 22, 9], a

similar strategy is employed, but using sampling S1 in the mixture φt(x), i.e., with the MIS scheme R3.

TABLE VI: Summary of possible MIS strategies in an adaptive framework.

MIS scheme Function ϕj,t(x) N
P L

Corresponding Algorithm
LP = N

N1 qj,t(x) JT 1 PMC [8]

Full N3 ψ(x) = 1
JT

∑J
j=1

∑T
t=1 qj,t(x) 1 JT suggested in [7]

Partial (temporal) N3 ξj(x) =
1
T

∑T
t=1 qj,t(x) JT J T AMIS [11], with J = 1

Partial (spatial) N3 φt(x) =
1
J

∑J
j=1 qj,t(x) T J APIS [10]

Partial (spatial) R3 φt(x) =
1
J

∑J
j=1 qj,t(x) T J [9, 21, 22]

Partial (generic) N3 generic ϕj,t(x) in Eq. (51) P L suggested in [7]

Table VI summarizes all the possible cases discussed above. The last row corresponds to a generic grouping strategy of the

proposal pdfs qj,t. As previously described, we can also divide the N = JT proposals into P = JT
L disjoint groups of P

mixtures with L components. Namely, we denote the set of L pairs of indexes corresponding to the p-th mixture (p = 1, . . . , P )

as Jp = {(kp,1, rp,1), . . . , (kp,L, rp,L)}, where kp,` ∈ {1, . . . , J}, r`,p ∈ {1, . . . , T} (i.e., |Jp| = L, with each element being

a pair of indexes), and Jp ∩ Jq = ∅ for any pair p, q = 1, . . . , P, and p 6= q. In this scenario, we have

ϕj,t(x) =
1

L

∑

(k,r)∈Jp
qk,r(x), with (j, t) ∈ Jp. (51)

Note that using ψ(x) and ξj(x) the computational cost per iteration increases as the total number of iterations T grows.

Indeed, at the t-th iteration all the previous proposals qj,1, . . . , qj,t−1 (for all j) must be evaluated at all the new samples xj,t.

Hence, algorithms based on these proposals quickly become unfeasible as the number of iterations grows. On the other hand,

using φt(x) the computational cost per iteration is controlled by J , remaining constant regardless of the number of adaptive

steps performed.

Through this subsection, we have shown that some of the most relevant adaptive MIS algorithms can be cast within the

proposed generalized MIS framework. Besides this unifying perspective, new adaptive algorithms can be naturally proposed

by modifying the sampling or the weighting schemes of the existing algorithms in the literature.
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VIII. NUMERICAL EXAMPLES

In the previous sections, we have provided several theoretical results for comparing different MIS schemes according to

different quality measures, e.g., ranking them in terms of the variance of the corresponding estimators. In this section, we

provide different numerical results in order to quantify numerically the gap among these methods. In the following, we show

that even in the case where the different proposals are well tuned (in the sense of a small or no mismatch with a multimodal

target), the choice of sampling and the weighting procedure dramatically affects the performance of the MIS estimator.

A. Estimation of the normalizing constant in MIS

Let us consider a normalized bimodal target pdf π(x) = 1
2N (x; ν1, c

2
1) + 1

2N (x; ν2, c
2
2), with means ν1 = −3 and ν2 = 3,

and variances c21 = 1 and c22 = 1. The proposal pdfs are q1(x) = N (x;µ1, σ1) and q2(x) = N (x;µ2, σ2). At this point, we

consider two scenarios:

• Scenario 1: In this case, µ1 = ν1, µ2 = ν2, σ2
1 = c21, and σ2

2 = c22. Then, both proposal pdfs can be seen as a whole

mixture that exactly replicates the target, i.e., π(x) = 1
2q1(x)+ 1

2q2(x). This is the desired situation pursued by an adaptive

importance sampling algorithm: each proposal is centered at each target mode, and their scale parameters perfectly match

the scale of the modes. Fig. 8(a) shows the target pdf in solid black line, and both proposal pdfs in blue and red dashed

lines, respectively. Note that the proposals are scaled (each one integrates up to 1/3 so we can see the perfect matching

between the target and the mixture of proposal densities).

• Scenario 2: In this case, µ1 = −2.5, µ2 = 2.5, σ2
1 = 1.2, and σ2

2 = 1.2. Therefore, there is a mismatch between the target

and the two proposals. Fig. 9(a) shows the target pdf in solid black line, and both proposal pdfs in blue and red dashed

lines, respectively.

The goal is estimating the normalizing constant with the six schemes described in Section V. We use the estimator of Eq. (22)

with N = 2 samples. We recall that depending on the sampling method, each sample might be drawn from each proposal or

both samples might be drawn from the same one. In order to characterize the six estimators, we run 2 · 105 simulations for

each method. Note that, in this case, the true value is Z = 1.

Figure 8(b) shows a box plot representing the 25th and 75th percentiles of the distribution of the estimator Ẑ, obtained with

different MIS methods. Each box is associated with each MIS scheme applied to the Scenario 1 described above. The blue

lower and upper edges of the box correspond to the 25th and 75th percentiles, respectively, while the red line represents the

median. The vertical black dashed whiskers extend to the minimum and maximum. Since the maxima cannot be appreciated

in the figure in some schemes, they are displayed in Table VII jointly with the variance of Ẑ. Note that best methods are

R3 and N3, since they always estimate perfectly the normalizing constant (Z = 1) and the estimator has zero variance. The

reason is that both methods use the whole mixture of proposals at the weight denominator, and the weights are always w = 1.

Note that in this easy scenario the estimator N1, used for instance in standard PMC algorithm [8], fails dramatically. In most

of the realizations ẐN1 ≈ 0.5 because each proposal (which integrates up to one) is adapted to one of the two modes (which

contain roughly half of the probability mass).11 Since E[ẐN1] = Z = 1 (as all the methods in the proposed framework), in a

11In this setup, each proposal approximately covers a different half of the target probability mass, since each one coincides with a different mode of the

target. However, in N1, the weight of each sample only accounts for its own proposal, and therefore there is not an exchange of information among the two

different proposals. Note that if both proposals were covering the same mode (and therefore missing the other one), the weights would be also w = 0.5 in

most of the runs; the lack of information exchange between the two samples, makes impossible to know whether the target mass reported by the weight of

each sample is the same and should be accounted “once”, or whether it is from another area and it should be accounted “twice”.
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MIS Scheme R1 N1 R2 N2 R3 N3

Perfect matching (Sc. 1)
Max. value 7298 35864 51395 260525 1 1

Var(Ẑ) 74925 7891.2 46.2 2284.6 0 0

Mismatch (Sc. 2)
Max. value 39250 77238 132556 97056 1.59 1.59

Var(Ẑ) 1847 6874 10285 5474 0.01 0.01

TABLE VII: (Ex. of Section. VIII-A) Maximum value of the estimator Ẑ in 2 ·105 runs for each MIS scheme, in two different

scenarios.

few runs the value ẐN1 is extremely high as shown in VII). This huge values occur when a sample drawn from the tail of the

proposal falls close to the other mode of the target (where actually the other proposal is placed). This simple example shows

the variance reduction that can be attained in MIS schemes by using all the proposals at the weight denominator.

Figure 9(b) shows an equivalent box plot for Scenario 2. In this case, the mismatch between proposals and target pdfs

worsens all MIS schemes. Note that R3 and N3 do not perfectly approximate Z, but still largely outperform the other schemes.

In particular, the median is still around Ẑ = 1 and their variance is smaller. The maximum values and the variance of Ẑ in all

methods are again provided in Table VII.
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Fig. 8: (Ex. of Section VIII-A) Scenario 1 (perfect matching). Estimation of the normalizing constant.

B. Estimation of an expected value in a perfect proposal-target matching scenario

Let us consider as a target pdf a mixture of three Gaussian pdfs,

π(x) =
1

3
N (x; ν1, c1) +

1

3
N (x; ν2, c2) +

1

3
N (x; ν3, c3),
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Fig. 9: (Ex. of Section. VIII-A) Scenario 2 (proposals-target mismatch). Estimation of the normalizing constant.

with means ν1 = −3, ν2 = 0, and ν3 = 3, and variances c1 = 1,c2 = 1, and c3 = 1. As proposal functions we use

qi(x) = N (x;µi, σi), with µi = νi, and σi = ci with i = 1, 2, 3, i.e., the proposal pdfs can be seen as a whole mixture that

exactly replicates the target, i.e., π(x) = ψ(x) = 1
3q1(x) + 1

3q2(x) + 1
3q3(x). All the pdfs are represented in Fig. 10. Note that

the proposals are scaled (they integrate up to 1/3), so it can be displayed the perfect match between mixture of proposals and

the target.

The goal is estimating the mean of the target pdf with the six MIS schemes. Fig. 11 shows the MSE of the estimator Î for

all the methods w.r.t. the number of total samples (note that some schemes require that the total number of samples is multiple

of M = 3). The results have been averaged over 5 ·106 runs. The solid black line shows the variance of the estimator Ī of Eq.

(37), i.e. sampling directly from the target pdf (since this is possible it in this easy example). Note that the method ÎR3 exactly

replicates the performance of Ī: this method samples from the mixture of Gaussians in the traditional way and the weights,

due to the perfect match, are always w = 1, i.e., ÎR3 and Ī are equivalent. We can see that ÎN3 is the best estimator in terms

of variance, while ÎR1 and ÎN1 present a high variance. Note that, surprisingly, ÎN3 has better performance than sampling from

the target, i.e., estimator Ī . This is because the sampling S3 can be seen as a sampling from the mixture of proposals ψ(x)

(which coincides with the target in this example) with a variance reduction technique, as we discuss in Appendix A. Note

also that the inequality proved in Theorem 1 holds since all methods are unbiased and therefore the MSE is due only to the

variance. We can see that ÎR2 and ÎN2 behave also bad in terms of variance.

Figure 12 shows the variance of the estimator Ĩ of Eq. (28) for all methods. First, note that the MSE of R3 and N3 is the

same than in Fig. 11, since the estimators Î and Ĩ are equivalent in this scenario (since they perfectly estimate the normalizing

constant, i.e., Ẑ = Z). Note that the relations observed and proved for the different MIS schemes in terms of the variance of

the estimator Î , are also kept here when we increase the number of samples.

Figure 13 shows the averaged Effective Sample Size (ESS) calculated with the approximation of Eq. (40). We can see that
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Fig. 10: (Ex. of Section. VIII-B) Target and proposal pdfs.
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Fig. 11: (Ex. of Section. VIII-B) MSE of the MIS estimator Î (unnormalized weights) for the different MIS schemes.

in this perfect matching scenario, R3 and N3 always obtain exactly ÊSS = M since weights have the same value, even though

N3 outperforms R3 in terms of variance. Observing the other MIS schemes, it seems that the ranking in terms of variances is

also preserved in terms of ÊSS.

C. Multidimensional mixture of generalized Gaussian distributions

Let us consider a mixture of multivariate generalized Gaussian distributions (GGD) as a target pdf. In particular

π(x) =
1

3

3∑

k=1

GG(x;µk,αk,βk), x ∈ RDx , (52)

where µk = [µk,1, ..., µk,Dx ]>, αk = [αk,1, ..., αk,Dx ]>, and βk = [βk,1, ..., βk,Dx ]> are respectively the mean, scale, and

shape parameters of each component of the mixture. Each component of the mixture factorizes in all dimensions, i.e., the
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Fig. 12: (Ex. of Section. VIII-B) MSE of the MIS estimator Ĩ (normalized weights) for the different MIS schemes.
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Fig. 13: (Ex. of Section. VIII-B) Effective Sample Size (ÊSS) calculated as in Eq. (40) for the different MIS schemes.

multivariate GGD pdf is the product of N unidimensional GGD pdfs. Namely,

GG(x;µk,αk,βk) =

Dx∏

d=1

κk,d exp

(
−
( |xd − µk,d|

αk,d

)βk,d)
,

where κk,d =
βk,d

2αk,dΓ
(

1
βk,d

) , Γ(·) is the gamma function, and xd is the d-th dimension of x. This family of distributions

includes both Gaussian and Laplace distributions with β = 2 and β = 1, respectively.

In this example, µ1,d = −3, µ2,d = 1, µ3,d = 5, β1,d = 1.1, β2,d = 1.8, β3,d = 5, α1,d = α2,d = α3,d = 1 for all

d = 1, ..., Dx. The expected value of the target π(x) is then Eπ[Xd] = 1 for d = 1, ..., Dx. In order to study the performance

of the different MIS schemes, we vary the dimension of the state space in Eq. (52) testing different values of Dx (with

2 ≤ Dx ≤ 10).

We consider the problem of approximating via Monte Carlo the expected value of the target density, and we compare the
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performance of all MIS schemes. In this example, we use N = 500 non-standardized t-student densities as proposal functions,

where each location parameter has been selected uniformly within the [−6, 6]Dx square, and the scale parameters and the

degree of freedom parameters have been selected as σn,d = 5 and νn,d = 5, respectively, for n = 1, ..., N and d = 1, ..., Dx.

For each method, we draw M = kN samples, with k = 32, and we average all the results over 200 runs.

Fig. 14 shows the MSE in the estimation of the mean of the target (averaged over all dimensions) when we increase the

dimension Dx. Note that the hierarchy established in Section VI-A also holds in this example regardless the dimension. In

this case, methods R1 and N1 behave poorly even at lower dimensions, while the other MIS schemes have a similar behavior.

When we increase the dimension, all the methods degrade, and, at certain point (Dx ≥ 6), the performance of all of them

is similar. Note that in this example, the proposal pdfs are fixed in random locations of the space, which can be considered

covered at low dimensions (since we are using N = 500 pdfs), but this coverage becomes worse as the dimension increases.

This can probably explain the similar performance of all the methods in higher dimensions. If we performed adaptive MIS

algorithms in order to adapt the proposal pdfs, we would expect that the MIS scheme N3 outperformed the other methods

substantially as in previous examples.
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Fig. 14: (Ex. of Section. VIII-C) MSE of the MIS estimator Ĩ (normalized weights) for the different MIS schemes when we

increase the dimension Dx of the state space.

D. Discussion on the experimental results

First of all, note that the numerical simulations provided in this section corroborate the theoretical results of Section VI.

More specifically, the hierarchy shown in Fig. 11, based on MSE of Î , corresponds to the hierarchy in terms of variance of

Î given in Theorems 1 and 2 (the latter for the case of N = 2 proposals). The same hierarchy is represented graphically in

Fig. 14 and, in terms of ÊSS, in Fig. 13. Furthermore, Fig. 12 depicts the MSE of Ĩ: for large enough values of M (so that

a good approximation of Z is attained), the MIS schemes are ordered exactly as in Fig. 11 (as discussed in Section VI-A).

The numerical experiments confirm that N3 provides the best performance. The scheme R3 also presents a good performance

in most cases. A possible interpretation is the following: N3 and R3 apply the whole mixture at the denominator of each weight,

thus providing an exchange of information between all the proposals. This exchange of information is essential in multimodal
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scenarios, where the whole set of proposals, seen as a mixture, should mimic the whole target, but each proposal should adapt

locally to the target. Since the variance of the IS weight depends on the mismatch of the target (numerator) w.r.t. proposal

(denominator), the use of the whole mixture in the denominator reduces the variance of the weight in general, and therefore,

also the variance of the estimator (see the variance analysis in Appendix A). The scheme N3 goes a step further w.r.t. R3,

drawing deterministically one sample from each mixand of ψ(x), which can be seen as drawing N samples from the mixture

ψ(x) with a modified version of stratified sampling, a well-known variance reduction technique (see Appendix A and [3,

Section 9.12]).

The performance of R1 and N1 is, in general, worse than the performance of the other schemes. Both schemes account

at the weight denominator only for the proposal from which the sample is drawn, which in a multimodal scenario can be

problematic (see the example of Section VIII-A). While R1 is a novel scheme that has naturally arisen in this work, and it

probably has little interest from a practical point of view, N1 has been applied in different adaptive MIS algorithms, such as

the original version of PMC [8].

The schemes R2 and N2, that have appeared in this new framework, probably deserve a further analysis. The hierarchy

theoretically proved for N = 2 proposals in Theorem 2 still holds in the numerical examples for N > 2, e.g. in Figs. 11

and 12. In some scenarios, for instance where there is a big number of proposals compared to the modes of the target, these

schemes can attain most of the variance reduction of N1 and N3 while reducing the number of proposal evaluations.

Finally, observe that in Fig. 12, when a small number of samples M is employed, the schemes N1, N2 and N3, i.e., those

with index selection without replacement (S2 and S3), behave better. This occurs because, in this case, the variance associated

to the index selection is reduced by guaranteeing that all proposal pdfs are always used.

IX. CONCLUSIONS

In this work, we have introduced a unified framework for sampling and weighting in the context of multiple importance

sampling (MIS). This framework extends the concept of a proper weighted sample, enabling the design of a wide range of

sampling/weighting combinations. In particular, we have considered three specific sampling procedures and we have proposed

five types of generic weighting functions (related to different conditional and marginal distributions which depend on the

sampling scheme). Moreover, as a result of the combinations of sampling and weighting procedures, we have analyzed six

valid schemes combining adequately the sampling procedures with the corresponding proper weighting functions (three of

them are not present in the literature to the best of our knowledge). Moreover, we have provided a theoretical comparison

of these schemes in terms of variance and effective sample size, establishing a ranking of the different methods in terms of

performance. We have analyzed the behavior of these methods in three different numerical examples which corroborate the

previous theoretical analysis. Furthermore, the computational cost and the application of the proposed schemes to adaptive

importance sampling methods have also been discussed, describing different possible efficient MIS schemes when a population

of proposals is adapted online. Finally, a novel effective sample size measure for MIS has been proposed, and the multinomial

resampling procedure has been analyzed for the different MIS schemes.
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APPENDIX

Let us recall again the sampling procedure S3 (i.e., with deterministic selection of the index):

1) For n = 1, . . . , N :

a) Draw the sample xn ∼ qn(x).

In this case, obviously xn ∼ qn(x) for n = 1, . . . , N . However, if the samples x1, . . . ,xN are used jointly regardless of their

order, then it can interpreted that all of them have been drawn from the following mixture (see [3, Section 9.12]):

ψ(x) =
1

N

N∑

n=1

qn(x). (53)

More formally, a sample z chosen uniformly within the set {xn}Nn=1, is distributed as ψ(x). Namely, drawing an index k∗

uniformly on {1, . . . , N}, then we can write

z = xk∗ ∼ ψ(x).

An equivalent interpretation can be obtained considering a random permutation of the set {xn}Nn=1, denoted as

{z1 = xk1 , . . . , zN = xkN },

where ∪Nn=1kn = {1, . . . , N}. Then, we have zn ∼ ψ(x) for n = 1, . . . , N . The procedure S3 follows similar principle

as a well-known variance reduction method, known as the stratified sampling [1, 2], where the domain of x is divided into

different regions that, in this case, are unbounded and overlapped [3, Section 9.12]. Finally, note that the approach S3 can

also be seen as the application of a quasi-Monte Carlo technique [23] for generating the deterministic sequence of indexes

k1 = 1, k2 = 2, . . . , kJ = N (uniform, in the sense of low-discrepancy sequence [23]) and then drawing xkn ∼ qkn(x) for

n = 1, . . . , N .

In this appendix we prove the unbiasedness of the estimator Î of Eq. (21) for the five weighting options described in Section

IV. We recall that the general expression for the expectation of Î within the proposed framework is

E[Î] =
1

ZN

N∑

n=1

∑

j1:N

∫
π(xn)g(xn)

ϕPn(xn)
P (j1:N )p(xn|jn)dxn. (54)

OPTION 1 (W1): ϕPn(xn) = ϕj1:n−1(xn) = p(xn|j1:n−1). We first marginalize in Eq. (54) over all indexes that do not affect

the n-th weight:

E[Î] =
1

ZN

N∑

n=1

∑

j1:n−1

∑

jn:N

∫
π(xn)g(xn)

ϕj1:n−1(xn)
p(xn, j1:N )dxn

=
1

ZN

N∑

n=1

∑

j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1
(xn)

∑

jn:N

p(xn, j1:N )dxn

=
1

ZN

N∑

n=1

∑

j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1
(xn)

p(xn, j1:n−1)dxn

=
1

ZN

N∑

n=1

∑

j1:n−1

∫
π(xn)g(xn)

ϕj1:n−1
(xn)

p(xn|j1:n−1)P (j1:n−1)dxn

(55)
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Then, substituting ϕj1:n−1
(xn) = p(xn|j1:n−1) into Eq. (55), we have:

E[Î] =
1

ZN

N∑

n=1

∑

j1:n−1

∫
π(xn)g(xn)P (j1:n−1)dxn

=
1

ZN

N∑

n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.

OPTION 2 (W2): ϕPn(xn) = ϕjn(xn) = p(xn|jn). We substitute ϕjn(xn) = p(xn|jn), into Eq. (54):

E[Î] =
1

ZN

N∑

n=1

∑

j1:N

∫
π(xn)g(xn)

p(xn|jn)
P (j1:N )p(xn|jn)dxn

=
1

ZN

N∑

n=1

∑

j1:N

∫
π(xn)g(xn)P (j1:N )dxn

=
1

ZN

N∑

n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.

OPTION 3 (W3): ϕPn(xn) = ϕn(xn) = p(xn). Since ϕn does not depend on any index, we can first marginalize over the

whole set of indexes j1:N in Eq. (54):

E[Î] =
1

ZN

N∑

n=1

∫
π(xn)g(xn)

ϕn(xn)


∑

j1:N

p(xn, j1:N )


 dxn

=
1

ZN

N∑

n=1

∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn. (56)

Then, substituting ϕn = p(xn) in Eq. (56):

E[Î] =
1

ZN

N∑

n=1

∫
π(xn)g(xn)dxn

=
1

Z

∫
π(x)g(x)dx = I.

OPTION 4 (W4): ϕPn(x) = ϕj1:N (x) = f(x|j1:N ) = 1
N

∑N
n=1 qjn(x). In this case, the expectation of Î can be expressed as:

E[Î] =
1

ZN

∑

j1:N

P (j1:N )

∫ N∑

n=1

π(xn)g(xn)

ϕj1:N (xn)
qjn(xn)dxn

=
1

ZN

∑

j1:N

P (j1:N )

∫
π(x)g(x)

ϕj1:N (x)

N∑

n=1

qjn(x)dx. (57)

Substituting ϕj1:N (x) = f(x|j1:N ) = 1
N

∑N
n=1 qjn(x) in Eq. (57):

E[Î] =
1

Z

∑

j1:N

∫
π(x)g(x)

1
N

∑N
n=1 qjn(x)

[
1

N

N∑

n=1

qjn(x)

]
P (j1:N )dx

=
1

Z

∑

j1:N

∫
π(x)g(x)P (j1:N )dx

=
1

Z

∫
π(x)g(x)dx = I.
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OPTION 5 (W5): ϕPn(x) = ϕ(x) = f(x) = 1
N

∑N
n=1 qn(x) = ψ(x). Now, the expectation of Î becomes

E[Î] =
1

ZN

∑

j1:N

P (j1:N )

∫ N∑

n=1

π(xn)g(xn)

ϕ(xn)
qjn(xn)dxn

=
1

Z

∫
π(x)g(x)

ϕ(x)

∑

j1:N

[
1

N

N∑

n=1

qjn(x)

]
P (j1:N )dx

=
1

Z

∫
π(x)g(x)

ϕ(x)
ψ(x)dx, (58)

where, in the last step, we have used the fact that

∑

j1:N

[
1

N

N∑

n=1

qjn(x)

]
P (j1:N ) = f(x) = ψ(x)

for any valid sampling procedure within this framework (see Remark 1 and Section III-D for more details). Substituting

ϕ(x) = ψ(x) in Eq. (58)

E[Î] =
1

Z

∫
π(x)g(x)

ψ(x)
ψ(x)dx

=
1

Z

∫
π(x)g(x)dx = I. (59)

Let us consider the unbiased estimator,

Î =
1

ZN

N∑

n=1

wn(xn)g(xn), (60)

that approximates I . Then, the variance of Î can be expressed in the general form as

Var(Î) = Ep(x1:N ,j1:N )

[(
Î − Ep(x1:N ,j1:N )[Î]

)2
]

= Ep(x1:N ,j1:N )[Î
2]− E2

p(x1:N ,j1:N )[Î]. (61)

In the general case of Eq. (61), the N terms of the sum of the estimator in Î are dependent. However, in the specific cases

where they are independent, the variance of a sum of r.v.’s can be simplified as the sum of the variances, i.e.,

Var(Î) =
1

Z2N2

[
N∑

n=1

Ep(xn,jn)[w
2
n(xn)g2(xn)]

−
N∑

n=1

E2
p(xn,jn)[wn(xn)g(xn)]

]

=
1

Z2N2

[
N∑

n=1

N∑

jn=1

∫
π2(xn)g2(xn)

ϕ2
Pn(xn)

p(xn|jn)P (jn)dxn

−
N∑

n=1




N∑

jn=1

∫
π(xn)g(xn)

ϕPn(xn)
p(xn|jn)P (jn)dxn




2 ]
.

(62)

In some MIS schemes, the N terms are dependent (due to a sampling without replacement or because the n-th weight

depends on several indexes jk, with at least one k 6= n). Nevertheless, conditioned to the whole set of indexes j1:N , the terms
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of the sum in Eq. (60) are always conditionally independent, so we can apply

Var(Î) =
1

Z2N2

∑

j1:N

[
N∑

n=1

Ep(xn|jn)[w
2
n(xn)g2(xn)]

−
N∑

n=1

E2
p(xn|jn)[wn(xn)g(xn)]

]
P (j1:N )

=
1

Z2N2

∑

j1:N

[
N∑

n=1

∫
π2(xn)g2(xn)

ϕ2
Pn(xn)

p(xn|jn)dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕPn(xn)
p(xn|jn)dxn

)2
]
P (j1:N ).

(63)

A. Variance of the estimators of the MIS schemes

In the following, we analyze the variance of the six MIS schemes discussed through this paper under the assumptions

described in Theorem 1 (see Section VI for more details). Since some schemes arise under more than one sampling/weighting

combination (see Table III), here we always use the combination that facilitates the analysis.

1. [R1] Sampling 1 / Weighting 2: In this scheme, all the terms of the sum in Eq. (60) are independent, so we can use Eq.

(62) for computing the variance of Î . Substituting ϕjn(xn) = p(xn|jn) = qjn(xn) in 62,

Var(ÎR1) =
1

Z2N2

N∑

n=1

N∑

jn=1

[∫
π2(xn)g2(xn)

p2(xn|jn)
p(xn|jn)P (jn)dxn

]

− I2

N

=
1

Z2N2

N∑

n=1



∫ N∑

jn=1

π2(xn)g2(xn)

qjn(xn)
P (jn)dxn


− I2

N

=
1

Z2N2

N∑

n=1

[∫
1

N

N∑

k=1

π2(xn)g2(xn)

qk(xn)
dxn

]
− I2

N

=
1

Z2N2

N∑

k=1

∫
π2(x)g2(x)

qk(x)
dx− I2

N
, (64)

were we have used that P (jn) = 1
N , ∀jn ∈ {1, ..., N}.

2. [R2] Sampling 1 / Weighting 4: The expression for the conditional independence of Eq. (63) is now used substituting
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ϕj1:N (xn) = f(xn|j1:N ) = 1
N

∑N
k=1 qjk(xn) and averaging it over the NN equiprobable sequences of indexes j1:N :

Var(ÎR2) =
1

Z2N2

[∑

j1:N

[ N∑

n=1

∫
π2(xn)g2(xn)

ϕ2
j1:N

(xn)
p(xn|jn)dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕj1:N (xn)
p(xn|jn)dxn

)2 ]
P (j1:N )

]

=
1

Z2N2

1

NN

[∑

j1:N

N∑

n=1

∫
π2(xn)g2(xn)

f2(xn|j1:N )
qjn(xn)dxn

−
∑

j1:N

N∑

n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn(xn)dxn

)2
]

=
1

Z2N

1

NN

[∑

j1:N

∫
π2(x)g2(x)

f2(x|j1:N )

(
1

N

N∑

n=1

qjn(x)

)
dx

− 1

N

∑

j1:N

N∑

n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn(xn)dxn

)2
]

=
1

Z2N

1

NN

[∑

j1:N

∫
π2(x)g2(x)

f(x|j1:N )
dx

− 1

N

∑

j1:N

N∑

n=1

(∫
π(xn)g(xn)

f(xn|j1:N )
qjn(xn)dxn

)2
]
.

(65)

where we have used the identity f(x|j1:N ) = 1
N

∑N
n=1 qjn(xn). This expression for the variance resembles that of scheme

[N3], averaged over the NN possible mixtures (combinations) that can arise with sampling S1.

3. [R3] Sampling 1 / Weighting 3: All the elements are independent in the sum, and the weights do not depend on any index

of the set j1:N . Therefore, we can start with Eq. (62), marginalize over the indexes, and substitute ϕn(xn) = p(xn) = ψ(xn),

Var(ÎR3) =
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

ϕ2
n(xn)

p(xn)dxn

− 1

Z2N2

N∑

n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn

)2

=
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

ψ2(xn)
ψ(xn)dxn

− 1

Z2N2

N∑

n=1

(∫
π(xn)g(xn)

ψ(xn)
ψ(xn)dxn

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx− I2

N
. (66)

4. [N1] Sampling 3 / Weighting 3: The methods that use sampling without replacement introduce correlation at the selection

of the proposals. However, under the perspective of the deterministic sampling (S3), the n-th sample xn is a realization of

the r.v. Xn ∼ qn and is independent of the other samples (see Fig. 6). Marginalizing first Eq. (62) over the indexes, and
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substituting ϕn(xn) = p(xn) = qn(xn):

Var(ÎN1) =
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

ϕ2
n(xn)

p(xn)dxn

− 1

Z2N2

N∑

n=1

(∫
π(xn)g(xn)

ϕn(xn)
p(xn)dxn

)2

=
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

q2
n(xn)

qn(xn)dxn

− 1

Z2N2

N∑

n=1

(∫
π(xn)g(xn)

qn(xn)
qn(xn)dxn

)2

=
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

qn(xn)
dxn −

I2

N
. (67)

5. [N2] Sampling 2 / Weighting 1: In this scheme, we use again the expression for conditional independence of Eq. (63).

Substituting ϕj1:n−1
= p(xn|j1:n−1),

Var(ÎN2) =
1

Z2N2

∑

j1:N

[
N∑

n=1

∫
π2(xn)g2(xn)

ϕ2
j1:n−1

(xn)
p(xn|jn)dxn

−
N∑

n=1

(∫
π(xn)g(xn)

ϕj1:n−1(xn)
p(xn|jn)dxn

)2
]
P (j1:N )

=
1

Z2N2

N∑

n=1

∑

j1:n

[∫
π2(xn)g2(xn)

p2(xn|j1:n−1)
p(xn|jn)dxn

−
(∫

π(xn)g(xn)

p(xn|j1:n−1)
p(xn|jn)dxn

)2
]
P (j1:n)

=
1

Z2N2

N∑

n=1

∑

j1:n−1

∫
π2(xn)g2(xn)

p(xn|j1:n−1)
P (j1:n−1)dxn

− 1

Z2N2

N∑

n=1

∑

j1:n

(∫
π(xn)g(xn)

p(xn|j1:n−1)
qjndxn

)2

P (j1:n)

(68)

Since the the integrals only depend on the set of indexes j1:n, each term of the sum has been first marginalized over jn+1:N .

The first term in the sum can then be further marginalized over jn to obtain the final expression. Note that the variance is the

average of the variance of all the N ! possible sequences of indexes in the sampling without replacement.

6. [N3] Sampling 3 / Weighting 5: We have followed the same arguments of scheme N1. Marginalizing Eq. (62) over all
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the set of indexes j1:N , and substituting ϕn(xn) = f(xn) = ψ(xn):

Var(ÎN3) =
1

Z2N2

N∑

n=1

∫
π2(xn)g2(xn)

ψ2(xn)
qn(xn)dxn

− 1

Z2N2

N∑

n=1

(∫
π(xn)g(xn)

ψ(xn)
qn(xn)dxn

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ2(x)

(
1

N

N∑

n=1

qn(x)

)
dx

− 1

Z2N2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

=
1

Z2N

∫
π2(x)g2(x)

ψ(x)
dx

− 1

Z2N2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

,

(69)

where we have used the identity ψ(x) = 1
N

∑N
n=1 qn(x)dx.

B. Proof of Theorem 1

The proof of Theorem 1 is split in the next three propositions.

Proposition 1. Var(ÎR1) = Var(ÎN1)

Proof: See that Eqs. (64) and (67) are equivalent.

Proposition 2. V ar(ÎN1) ≥ V ar(ÎR3).

Proof: Subtracting Eqs. (66) and (67), we get

Var(ÎR3)− Var(ÎN1) =

=
1

Z2N2

∫ (
N

1
N

∑N
j=1 qj(x)

−
N∑

i=1

1

qi(x)

)
g2(x)π2(x)dx.

Since g2(x)π2(x) ≥ 0 ∀x ∈ Rdx , it is sufficient to show that

1
1
N

∑N
j=1 qj(x)

≤ 1

N

N∑

i=1

1

qi(x)
. (70)

Now, let us note that the left-hand side of Eq. (70) is the inverse of the arithmetic mean of q1(x), . . . , qN (x),

AN =
1

N

N∑

j=1

qj(x),

whereas the right hand side of Eq. (70) is the inverse of the harmonic mean of q1(x), . . . , qN (x),

1

HN
=

1

N

N∑

i=1

1

qi(x)
.

Therefore, the inequality in Eq. (70) is equivalent to stating that 1
AN
≤ 1

HN
, or equivalently AN ≥ HN , which is the well-known

arithmetic mean–harmonic mean inequality for positive real numbers [24, 25, 26].

Proposition 3. V ar(ÎR3) ≥ V ar(ÎN3).
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Proof: Subtracting (66) and (69), we get

Var(ÎN3)− Var(ÎR3) = −I
2

N
+

1

Z2N2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

Therefore, the proposition is proved if

1

Z2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ NI2

If we substitute I with the expression of Eq. (27), multiplying both numerator and denominator by ψ(x) in the integral of the

right-hand side,

1

Z2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ N

(
1

Z

∫
π(x)g(x)

ψ(x)
ψ(x)dx

)2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ N

(∫
π(x)g(x)

ψ(x)

(
1

N

N∑

n=1

qn(x)

)
dx

)2

N∑

n=1

(∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

≥ 1

N

(
N∑

n=1

∫
π(x)g(x)

ψ(x)
qn(x)dx

)2

N

N∑

n=1

a2
n ≥

(
N∑

n=1

an

)2

(71)

with an =
∫ π(x)g(x)

ψ(x) qn(x)dx. The inequality of Eq. (71) holds, since it is the definition of the Cauchy-Schwarz inequality

[24],
(

N∑

n=1

a2
n

)(
N∑

n=1

b2n

)
≥
(

N∑

n=1

anbn

)2

, (72)

with bn = 1 for n = 1, ..., N . �

Proof of Theorem 1. The proof is obtained by applying Propositions 1, 2, and 3.

C. Proof of Theorem 2

Let us first particularize the variance expression for N = 2. From Eq. (67),

Var(ÎN1) = Var(ÎR1)

=
1

4Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)
− I2

2
.

(73)

From Eq. (66),

Var(ÎR3) =
1

2Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx− I2

2
. (74)

From Eq. (69),

Var(ÎN3) =
1

2Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx

− 1

4Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

− 1

4Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

. (75)
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From Eq. (65),

Var(ÎR2) =
1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)
− 1

4
I2

+
1

4Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

. (76)

From Eq. (68),

Var(ÎN2) =
1

4Z2

∫
π2(x)g2(x)
q1(x)+q2(x)

2

dx +
1

8Z2

∫
π2(x)g2(x)

q1(x)
dx

+
1

8Z2

∫
π2(x)g2(x)

q2(x)
dx

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

− I2

4
. (77)

Proposition 4. For N = 2, Var(ÎR2) = Var(ÎN2)

Proof: See that Eqs. (76) and (77) are equivalent.

Proposition 5. For N = 2, Var(ÎN1) ≥ Var(ÎR2) ≥ Var(ÎN3)

Proof: Analyzing Eqs. (73) and (75), we see that Eq. (76) can be rewritten as

Var(ÎR2) =
1

2
Var(ÎN1) +

1

2
Var(ÎN3). (78)

Since in Theorem 1 it is proved that Var(ÎN1) ≥ Var(ÎN3) for any N , the proposition holds at least for N = 2.

Proof of Theorem 2. The proof is obtained by applying Propositions 4 and 5.

Remark 3. We hypothesize that Theorem 2 might also hold for N > 2. The MIS schemes R2 and N2 seem to average estimators

with variance reduction (related to N3) with estimators with worse variance (related to N1).

Remark 4. Note that the scheme R3 does not appear in Theorem 2. Eq. (76) can be rewritten as

Var(ÎR2) =
1

2
Var(ÎR3) +

1

8Z2

(∫
π2(x)g2(x)

q1(x)
dx +

∫
π2(x)g2(x)

q2(x)
dx

)

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q1(x)dx

)2

− 1

8Z2

(∫
π(x)g(x)
q1(x)+q2(x)

2

q2(x)dx

)2

.

The question is then whether the last four terms are larger than 1
2Var(ÎR3). We hypothesize that no inequality can be established

in a general case, i.e., whether the scheme R3 would outperform R2 or not for a given π(x) and g(x), might depend on the

proposals q1(x) and q2(x).


