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Abstract

The U(1) × SO(4) covariant derivative produces an action where
the SO(4) generators do not commute with the Dirac matrices be-
cause the generators themselves are constructed from those matrices.
This yields additional interactions absent in SU(2) and SU(3) Yang
Mills theories. The contributions from these interactions produce T-
matrix elements consistent with the Newtonian and post Newtonian
interactions found in the low energy limit of classical general relativity
theory for both matter-matter and matter-photon interactions. The
theory here proposed not only reproduces the observed experimental
results of general relativity, but it is also renormalizable and more
importantly it can be coupled to the standard model in a trivial way.
Thus, SO(4) × SU(3) × SU(2) × U(1) Yang Mills best describes all
interactions in nature.



1 Introduction

In 1974 Yang [1] proposed a theory based on Yang Mills gauge fields that
yielded equations of motion similar to those obtained from general relativity.
However, the theory did not receive a very wide audience since at the time
general relativity reproduced the observed experimental results. That same
year the problem of the absence of renormalization in general relativity was
raised in [2], but Yang Mills gravity was not revisited as a possible solution
and instead string theory became the favorite candidate. Despite its progress,
string theory has not been able to couple properly to the standard model and
suffers from an embarrassment of riches in terms of parameters and Calabi-
Yau manifolds, as well as all its different limits.

Here we revisit the concept proposed in [1] which recently was shown to
have black hole solutions for SU(2) gauge group [3]. We propose a standard
Yang Mills theory coupled to matter so that dimensional analysis shows that
it is renormalizable. However, we use a SO(4) gauge group constructed with
Dirac gamma matrices [4]:

T ab = − i

4
[γa, γb]. (1)

This construction has the peculiarity that it does not commute with the
Dirac gamma matrices. This feature is absent in the standard model where
the gauge group always commute with the gamma matrices. The non-
commutation produces terms which enrich the theory with additional cou-
plings which are absent in the standard model. In turn vertices arise which,
using the same formalism used in [5], produce tree-level two-body scattering
amplitudes that reproduce the born terms for the Newtonian interaction. In
addition, the 1-loop correction reproduces the post-Newtonian interaction
which is needed to reproduce the observed experimental precision of perihe-
lia. In addition, the theory also yields at tree-level the correct factor due to
Einstein for the deflection of light and gravitational redshift, after suitable
choice of parameter.

A connection exists between QED and the low energy limit of classical
electrodynamics. This connection requires two steps, each with its own map.
The first step maps the low energy limit contributions to the scattering am-
plitude of QED with the Born approximation for the Schrodinger equation
with the Coulomb potential [6]. The second step requires taking the limit
h̄ → 0 of the Feynman’s path integral for this Schrodinger equation that
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then yields the non relativistic limit of classical electrodynamics. QED then
succeeds because its low energy non relativistic limit coincides with the low
energy limit of electromagnetism and therefore with low energy experimental
results. This composition of two maps differs from the most salient string
theory map where only a single map connects the theory directly, through
a beta-function calculation, to the classical Hilbert Einstein action. As op-
posed to QED, that map avoids altogether the non relativistic limit of the
quantum theory.

However, also in string theory a connection can be established between
the fundamental theory and the classical theory by matching the scattering
amplitude of the fundamental theory to the deflection angle derived from
general relativity [7][8][9][10]. The Schrodinger equation bridges QED and
the low energy classical of electromagnetic interactions. The classical limit
exists because the nature of the interaction allows particles to interact with
each other even over macroscopic distances. Only long range forces have a
classical limit. Short ranged interactions, such as Strong and weak interac-
tions, have no such a limit, because particles do not interact with each other
over large distances. It is then unclear how string theory would distinguish
short range and long range interactions when such limiting procedure is used.

The long range nature of the gravitational interactions suggests the exis-
tence of a classical limit. Therefore, a map between the fundamental quantum
gravity theory and its low energy classical limit should exit and even better
the Schrodinger equation bridges these extremes. In [5], the non renormal-
izable action for general relativity was quantized and the scattering ampli-
tude between two massive particles found to correspond with that of the
Schrodinger equations with Newtonian and post Newtonian potential. Thus,
through the Feynman path integral, the quantized Hilbert Einstein action
maps to its expected low energy classical limit. The mapping followed the
same procedure used for QED and extended by [5] to general relativity with-
out renormalization. In [5] the map scattering for a photon interacting with
a massive particle were not explored. However, necessary vertices to obtain
the classical limit through the Schrodinger equation exist and suggest that
that such a limit also then exists when the photon energy represents the
mass of a particle. However, the scattering amplitudes must be corrected by
1-loop contributions. These 1-loop contributions diverge in the ultraviolet
limit. Thus, although its success, use of dimensional analysis shows that
the starting quantum action and the needed scattering amplitudes cannot be
mapped to its low energy classical limit after renormalization.
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Here we apply the same procedure used in QED and [5] to the renormal-
izable action derived from the covariant derivative Dµ acting on a fermionic
matter field ψ

Dµψ = (∂µ +
ie√

1 + 6α2
Aµ + ig(ωab

µ +
α√

1 + 6α2
ǫabνµ Aν)Tab)ψ. (2)

The field ω, the connecton, has SO(4) gauge symmetry, but constructed from
Dirac gamma matrices which has the effect of preventing the commutation
of the SO(4) generators with the gamma matrices. The action obtained
from this covariant derivative guarantees both gauge invariance under U(1)
and SO(4) local transformations. Matching the T-matrix tree and 1-loop
contributions with the Born amplitudes as in [5, 6] requires a Schroedinger
equation with a Newtonian potential along with the post Newtonian correc-
tion expected from general relativity as derived in [4]. While the tree level
contribution to the T-matrix reproduces the Newtonian interactions, the post
Newtonian interactions come from the 1-loop contribution. The action de-
rived from (2) closely relates to Yang Mills gravity [1] which yields equations
very similar to those of Einstein gravity, including the Bianchi identity and
even solutions which resemble Schwarzschild black hole solutions [3].

We apply the methods in [5, 6] to SO(4) Yang Mills to obtain the same
results in the matter-matter sector as in [5]. However, this paper goes a step
further and also produces the desired results for photon-matter interactions
using the same prescription applied to the matter-matter interactions. Thus
the theory here proposed not only reproduces the experimental results, but
also is renormalizable and more importantly it can be coupled to the stan-
dard model in a trivial way. However, the gauge group elements in (2), as
opposed to those considered in [1], do not commute with the Dirac gamma
matrices. This property, absent in other theories like SU(2) and SU(3) gauge
theories, generates terms which couple the connecton to matter fields ψ with
couplings absent in the Yang-Mills sector. While the construction of stan-
dard gauge theories involves only terms of the form {γµ, Dµ} the present
theory also includes terms of the form [γµ, Dµ]. While re-balancing the for-
mer by a constant circles back to redefine the coupling of the theory due to
the presence of a kinetic term ψ̄∂ψ, the re-balancing of the latter structure
does not circle back to redefine the couplings of the theory. This frees the
amount of couplings needed to accommodate the full matter spectrum.

Section 2, details the symmetries and action derived from the covari-
ant derivative (2) and for a single matter field. Section 3 calculates the
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propagators, vertices and T-matrix elements as well as their relation to the
Schroedinger equations with and without post Newtonian corrections. Sec-
tion 4 details the description of the photon interaction with a single matter
field and reproduces the gravitational lensing by a mass point particle. Sec-
tion 5 extends the covariant derivative to include multiple matter fields which
requires multiple connecton fields in order to reproduce both matter and pho-
ton Newtonian and post Newtonian interaction in the non relativistic limit.
Section 6 presents the conclusions.

2 Symmetries and Actions

We consider the following derivative operator Dµ acting on a Dirac spinor
field ψ in 4 dimensions:

Dµψ = (∂µ +
ie√

1 + 6α2
Aµ + ig(ωab

µ +
α√

1 + 6α2
ǫabνµ Aν)Tab)ψ. (3)

The space-time metric, gµν , is flat, does not carry any dynamics and has sig-
nature (+,−,−,−). ǫµνρσ represents the Levi-Civita tensor in 4 dimensions.
The vielbeins eaρ connect space-time coordinates (Greek indices) and fiber
bundle coordinates (Latin indices). In particular eaρe

bρ = ηab and eaρeσa = gρσ.
The metric ηab has signature (+,+,+,+). Aµ represents a U(1) gauge field
while the Tab generate the SO(4) group transformations. The couplings e, g
and α denote coupling constants. The connecton, ωab

µ , has SO(4) gauge sym-
metry and relates to ω̃ab

µ , with antisymmetric indices a and b, in the following
manner

ωab
µ = ω̃ab

µ + eµc e
ν
aω̃

cb
ν . (4)

The antisymmetric indices a and b in ω̃ab
µ ensure that

ωab
µ eνaeρbǫ

µνρσ = ωµabǫ
µabσ = 0. (5)

U(1) transformations with Ω = exp(iλ), with λ a scalar function, act on
the following fields

ψ′ = Ωψ (6)

A′
µ = Aµ −

√
1 + 6α2

e
∂µλ (7)

ω
′ab
µ +

α√
1 + 6α2

ǫabνµ A′
ν = ωab

µ +
α√

1 + 6α2
ǫabνµ Aν (8)
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Eq. (8) implies

ω
′ab
µ = ωab

µ +
α

e
ǫabνµ ∂νλ (9)

Equations (7) and (9) guarantee the covariance property

D′
µψ

′ = ΩDµψ. (10)

SO(4) transformations with Ω̂ = exp(iΛabTab) and Λ a 2-Tensor, act on the
following fields

ψ′ = Ω̂ψ (11)

A′
µ = Aµ (12)

ω
′ab
µ +

α√
1 + 6α2

ǫabνµ A′
ν = ωab

µ +
α√

1 + 6α2
ǫabνµ Aν −

1

g
∂µΛ

ab

+Cab
cdefΛ

cd(ωef
µ +

α√
1 + 6α2

ǫefνµ Aν) (13)

Eq. (13) implies

ω
′ab
µ = ωab

µ − 1

g
∂µΛ

ab + Cab
cdefΛ

cd(ωef
µ +

α√
1 + 6α2

ǫefνµ Aν) (14)

Equations (12) and (14) ensure the covariance property

D′
µψ

′ = Ω̂Dµψ. (15)

Dµψ also transforms covariantly under SO(1,3) transformations. The viel-

beins eµa assist in expressing Ω̂ in terms of the generators Tρσ of the SO(1,3)
Lie group

Ω̂ = eiΛ
abTab = e−iΛabTcde

µ
ae

ν
b
ecµe

b
ν = eiΛ

µνTµν . (16)

The commutator [Dµ, Dν ] determines the field strength of the action:

[Dµ, Dν ] = ieFµν + igGab
µνTab (17)

Fµν = ∂µAν − ∂νAµ (18)

Gab
µν = (∂µω

ab
ν +

α√
1 + 6α2

ǫabρν ∂µAρ)− (∂νω
ab
µ +

α√
1 + 6α2

ǫabρµ ∂νAρ)

−gCab
cdef(ω

cd
µ +

α√
1 + 6α2

ǫcdρµ Aρ)(ω
ef
ν +

α√
1 + 6α2

ǫefσν Aσ)

(19)

5



The purely bosonic Lagrangian density requires use of equations (18) and
(19)

Lgauge = L(U(1)) + L(SO(4)) (20)

L(U(1)) =
1

4
FµνF

µν (21)

L(SO(4)) =
1

4
Gab

µνG
ab
µν . (22)

The Lorenz gauge fixings

∂µA
µ = 0 (23)

∂µω
µab = 0 (24)

and property (5) produce the quadratic bosonic Lagrangian density

L(2)
gauge =

1

2
∂µA

ν∂µAν +
1

2
∂µω

νab∂µωνab. (25)

The structure constant defined in [4]

Cabcdef = −hafhcehbd + hadhcehbf − haehcbhdf + hachebhdf , (26)

simplifies the relevant terms of the cubic Lagrangian density

L(3)
gauge = 2g(∂µω

ab
ν − ∂νω

ab
µ )ωµ

ca ω
νc
b

−g 4α2

1 + 6α2
Aµ∂ρAνe

ν
ae

ρ
bω

µab − g
4α2

1 + 6α2
∂νAµAρe

µ
ae

ρ
bω

νab. (27)

The terms in (27) take the form ωω∂ω and ∂AAω. In the low energy limit
the photon momentum, r, and the connecton momentum, k, satisfy

k << r (28)

or equivalently
∂A >> ∂ω. (29)

This condition accounts for the omission of all other terms. For example, for
matter-photon scattering the vertex generated by Aω∂ω would only partici-
pate at 1-loop level, would necessarily appear twice and thus be proportional
to the square of the connecton momentum. Instead, the 1-loop contribution
of the third or fourth term in (27) would appear first at tree and at 1-loop
level and would be proportional to twice the photon momentum.
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2.1 Unitarity

We first analyze the well known free Dirac spinor in a unitary theory. The
propagator relates to the Green function only after implementing an analytic
continuation which requires the infinitesimal shift of the on-shell poles away
from the real axis. Although the literature implements this mathematical
artifact after the quantization of the Hamiltonian, it nevertheless amounts
to having a Hamiltonian with complex energy levels. Automatically, the
action looses hermiticity and, more importantly, also unitarity. With her-
miticity lost the probability density decreases towards zero as time evolves
which guarantees the absence of unitarity. However, the loss of unitarity
due to the pole’s infinitesimal shift away from the real axis does not pose a
serious problem because any significant decrease in probability density takes
place long after the experiment’s conclusion, or even better, several orders of
magnitude greater than the universe’s age.

QED has a real coupling, the electron charge. However, even when the
charge becomes purely imaginary, the theory still avoids loss of unitarity.
This follows because the self energy of both the electron and the photon
from any order of perturbation theory always remains real since only a single
vertex, e− → e− + γ, exists. Conservation of momentum requires these
vertices appear in pairs and therefore it does not matter if the vertex itself
remains purely imaginary or real because their product will always yield a
real contribution to the self energy, albeit with different signs.

With Yang-Mills coupled to fermions, the situation changes. We assume
for the sake of argument that the coupling in the covariant derivative is
independent of the coupling in the pure bosonic sector. The loss of gauge
invariance, which only affects this argument and not the remainder of the
paper, allows rewriting the coupling constant for the covariant derivative
without affecting the gauge self interaction. We consider the contribution to
the fermion self energy from the diagram with the 3-point bosonic vertex and
3 vertices obtained from the covariant derivative. When the coupling from
the covariant derivative rotates from real to imaginary, then the contribution
becomes imaginary. Then

Σ ∼ O(g4) (30)

In strongly coupled QCD, g ∼ 1, the probability density vanishes well before
any particle reaches a detector. Thus, the rotation of the coupling in the
covariant derivative removes unitarity.
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On the other hand the gravitational coupling g satisfies

g ∼ O(10−5) (31)

which implies an infinitesimal shift of the pole away from the real axis. In
fact, in the gravitational case, the O(g4) contribution dents the probability
density well after 1034 years or many orders of magnitude the estimated age
of the universe. Therefore such a rotation of the coupling in the covariant
derivative effectively preserves unitarity in the same amount as the usual
infinitesimal shift away from the real axis required to connect the propaga-
tor with the Green’s function. In fact, quantum gravity as described here
assigns physical meaning to the mathematical artifact needed to relate the
propagator with the Green function.

2.2 Hermiticity and Antihermiticity

As explained in the last subsection, the gravitational constant smallness en-
sures that the gravitational theory does not require hermiticity. However, for
the sake of minimalism, the theory we consider uses only hermitic and anti-
hermitic terms. Thus, the kinetic terms for the fermions involve the following
two candidates. The first candidate

Lfermion = iψ̄γµDµψ (32)

does not have hermitic nor antihermitic properties because [γµ, Tab] 6= 0.
Rather, the following hermitic combinations exist

Lf1 =
i

2
ψ̄{γµ, Dµ}ψ = iψ̄(/∂ +

ie√
1 + 6α2

/A +
3igα√
1 + 6α2

Aµγ5γµ)ψ,(33)

Lf2 = iψ̄[γµ, Dµ]ψ = gψ̄ω̄µa
µγaψ, (34)

after using the relation

γµγνγλ = ηµνγλ + ηνλγµ − ηµλγν − iǫσµνλγσγ
5. (35)

Note that Lf2 does not depend on ∂µ. This means that gauge invariance
constrains Lf1 but not Lf2. Thus the rescalling of Lf1 by a constant redefines
the coupling. However, the redefinition guarantees gauge invariance only
after a subsequent redefinition of the spinor ψ. On the other hand, a recalling
by a constant, even an imaginary one, of Lf2 does not affect gauge invariance.
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This should be contrasted with SU(2) of SU(3) couplings where the Dirac
matrices commute with those elements and therefore Lf2 necessarily vanishes.

The following Lagrangian density has gauge invariance

Lf = iψ̄(/∂ +
ie√

1 + 6α2
/A +

3igα√
1 + 6α2

Aµγ5γµ + g′ψ̄ω̄µa
µγa −m)ψ. (36)

Here the real coupling constants e, g and g′ adjust the theory to observation.
In particular e represents the electric charge and gauge invariance constrains
g and coincides with the coupling constant found in the purely bosonic sector
(27). Instead, gauge invariance does not constrain g′ which can take any
value, real or purely imaginary. As shown below, antihermiticity ensures
that the term proportional to g′ contribute real rather than imaginary post
Newtonian corrections. As discussed above, this does not pose a problem to
unitarity because the first imaginary contribution to the self energy, of O(g4),
does not significantly dent the probability density until 1034 years from the
start of the experiment.

3 Propagators and Vertices

The Lagrangian densities (25) and (36) yield the following propagators

k

ab
µ

cd
ν

− igµνηabηcd

k2+iǫ

p
α β

iδαβ

/p−m+iǫ

r
µ ν

− igµν

r2+iǫ

For the avoidance of doubt, in the limit considered here

m >> ∂A >> ∂ω (37)

or equivalently m >> r >> k. The Lagrangian densities (27) and (36)
generate the following vertices:
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α

β

ab
µ

−g′ eµaeνbγν

α

β

µ
− i√

1+6α2
(eγµ + 3gαγ5γµ)

p

q r

ab
µ

cd
ν

ed
ρ

g(hafhcehbd + hadhcehbf − haehcbhdf + hachebhdf )·
·((p− q)ρgµν + (q − r)µgνρ + (r − p)νgµρ)

r

r′

q

α

β

ab
µ

g 4α2

1+6α2(gµαe
a
βr

′b + gµβe
a
αr

b + eaαe
b
βrµ +

eaβe
b
αr

′
µ)

The matter-matter T-matrix elements at tree level come from the following
diagrams
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p p′

p+ q q p′ − q

p p′

p+ q q p′ − q

The contribution from the photon exchange due to the electric charge

TQED = 4im2 e
2/(1 + 6α2)

−q2 (38)

coincides with the Born amplitudes obtained from Schroedinger’s equation
with a Coulomb potential with an electric charge of e√

1+6α2
. See for example

[6] for a detailed analysis of this methodology. Thus the classical low energy
limit coincides with classical electrodynamics.

The remaining tree-level interactions contribute as follows

TN = −4im2 g
′2

−q2 +4im2eg
3α√

1 + 6α2

pµJ ′
Aµ + p

′µJAµ

−q2 +4im2g2
9α2

1 + 6α2

Jµ
AJ

′
Aµ

−q2
(39)

with JAµ = ψ̄γµγ5ψ and J ′
Aµ = ψ̄′γµγ5ψ

′. In the low energy quantum limit
the axial charge, JAµ vanishes. Then the property

pµJ ′
Aµ + p

′µJAµ ∼ O(m) << O(m2). (40)

suppresses in that limit the second term in (39). A further limiting to the
classical limit requires in-states and out-states to have no axial current or
equivalently that < JAµ >=< J ′

Aµ >= 0. Thus in the classical limit of
the non-relativistic quantum limit, the second and third term in (39) vanish
exactly.

Thus, in the classical limit of the non-relativistic quantum limit, the
surviving Born term produces the Newtonian potential

V = −Gm
2

r
(41)
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when
g′ =

√
Gm. (42)

The post-Newtonian correction comes from considering the following 1-
loop diagrams

p

p′

p− k

k

p+ q

−(k + q)
q

p′ − q

cd
ν

ef
ρ

ab
µ

p

p′

p′ − k

k

p′ − q

−(k − q)

−q

p+ q

cd
ν

ef
ρ

ab
µ

All other 1-loop diagrams contribute to either analytic terms, or quantum
corrections of order O(ln(−q2)) and do not contribute to the low energy limit
considered here[5]. In addition, diagrams involving photons and connectons
simultaneously do not contribute because the transformation ω

′ab
µ = ωab

µ −
α√

1+6α2
ǫabνµ Aν leaves the contribution of the above diagram unchanged while

all terms but the first two in (27) remain present in the action. These two
diagrams contribute

TPN = −4im2 27c1G
2m3

16
√
−q2 (43)

provided g = −c1
√
Gm with c1 a numerical constant. This result as those

below require the following steps. First, we focus only on the “electric” form
factor which means that

ψ̄γµγνψ = mgµν . (44)
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Equivalently, terms proportional to [γµ, γν ] and that only contribute to the
“magnetic” form factor produce diagrams not considered here. Second, the
on-shell external momenta imply the following relations:

p · q = −1

2
q2 (45)

p′ · q =
1

2
q2. (46)

Third, we suppress terms of O(q4) using the low energy limit property q <<
p. Fourth, we use the approximation ψ̄γµψ = 2pµ and ψ̄′γµψ

′ = 2p′µ. Finally,
we use the appendix in [5] with the expressions for the several Feynman
integrals. The contribution (43) matches the Born term of the potential

V = −a2G
2m3

r2c2
(47)

given the right choice of the constant a which depends on c1 and on the precise
definition of the potential calculated in the Post-Newtonian expansion[4, 5].

Thus in the non-relativistic quantum limit q << p the contributions TN
and TNP match those of the potential

V = −Gm
2

r
(1 + a

2Gm

rc2
), (48)

the post Newtonian potential derived from general relativity in the non-
relativistic limit [4][5] and much in the exact same way that QED produces
T-matrix elements that match the Schroedinger equation with a Coulomb
potential.

4 The photon

The diagram

r p

r + q

q

p− q

ρ

σ
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produces the T-matrix contribution for the photon-matter scattering process.
The T-matrix contribution from this diagram simplifies to

TN,PN = 2im2c1G
mEphoton

−q2 , (49)

where the photon energy Ephoton satisfies

Ephoton << m, (50)

after using the photon on-shell condition

r · q =
q2

2
(51)

r′ · q = −q
2

2
(52)

along with the properties derived and used in the previous section. The con-
stant c1 absorbs all the constants and constant parameters. The differential
cross section derived from this T-matrix in terms of the Mandelstam variable
s reads

(

dσ

dΩ

)

C.M.

=
1

64π2s

|p(c.m.)
f |

|p(c.m.)
i |

|TN,PN |2 (53)

In the small angle approximation with |p(c.m.)
f | ≃ |p(c.m.)

i | and q = rsin(θ/2),
equation (53) simplifies to

(

dσ

dΩ

)

C.M.

=
1

64π2
(2c1G

m2Ephoton

r2sin2(θ/2)
)2 (54)

since s ≃ m2. In the low energy limit, equation (54) describes the Rutherford
scattering of a massm projectile off of a mass Ephoton target. The exchange of
these particles’ properties describes the scattering of mass Ephoton projectile
off of a mass m target. The exchange m ↔ Ephoton modifies the differential
cross section which now takes the form

(

dσ

dΩ

)

m↔Ephoton

=
1

64π2
(2c1G

m

c2
)2

1

sin4(θ/2)
. (55)

The relation between the impact parameter, b, and the differential cross
section,

dσ

dΩ
=

b

sin θ

∣

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

∣

, (56)
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yields after a suitable choice of the constant c1

θ =
4Gm

c2b
. (57)

Equation (57) reproduces the relation between the impact parameter and the
deflection angle expected for the gravitational lensing of a photon by a point
particle of mass m. See [11] for an overview of that calculation.

For the sake of completeness the diagram below gives the correction to
O(G2).

r p

r + q

q k

−(k + q)

p− k

p− q

ρ

σ

2im2 51α2

32(1+6α2)
G2m

2Ephoton√
−q2

5 Different kinds of matter

Thus far we considered a single particle, like the electron, and successfully
reproduced the necessary post-Newtonian corrections to fit theory to experi-
ment. Expanding the particle spectrum leads to a lack of solution because the
number of equations generated by matching T-matrix elements to Born am-
plitudes is greater than the number of couplings available to the system. An
increase in the number of connectons to ω(i), i = 1, ..., N allows an increase in
the spectrum to j = 1, .., J particles to include all the quarks and neutrinos.
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The action also requires a matricial form of the covariant derivative, D̂µ

D̂µ =

























D(1)
µ 0 . . . . . . . . . 0
0 D(2)

µ . . . . . . . . . 0
...

...
. . .

...
...

...
0 . . . . . . D(i)

µ . . . 0
...

...
...

...
. . .

...
0 . . . . . . . . . . . . D(N)

µ

























.

Where

D(i)
µ = ∂µ +

iẽ√
1 + 6α2

Aµ + igi (ω
(i)ab
µ +

α√
1 + 6α2

ǫabνµ Aν)Tab. (58)

D̂µ acts on a vector-spinor ψ̂(j) which now takes a vector form

ψ̂(j) =

























ψ(j)

ψ(j)

...
ψ(j)

...
ψ(j)

























with ψ(j) the usual spinor associated to a single particle j. For the avoidance
of doubt, all N components ψ(j) of the vector-spinor ψ̂(j) are equivalent.

As before, D̂µψ̂ transforms covariantly under U(1) and SO(4) transforma-
tions both denoted by a generic transformation Ω̄ acting on the ith component
of ψ̂(j).

ψ̂(j) →

























ψ(j)

ψ(j)

...
Ω̄ψ(j)

...
ψ(j)

























Transformations of A and ω under U(1) read

A′
µ = Aµ −

√
1 + 6α2

ẽ
∂µλ (59)

ω(i)′ab
µ +

α√
1 + 6α2

ǫabνµ A′
ν = ω(i)ab

µ +
α√

1 + 6α2
ǫabνµ Aν (60)
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Equation (60) implies

ω(i)′ab
µ = ω(i)ab

µ +
α

ẽ
ǫabνµ ∂νλ (61)

Equations (59) and (61) ensure that Dµψ transforms covariantly under U(1)
transformations.

Transformations under SO(4) read

A′
µ = Aµ (62)

ω
′(i)ab
µ +

α√
1 + 6α2

ǫabνµ A′
ν = ω(i)ab

µ +
α√

1 + 6α2
ǫabνµ Aν −

1

gi
∂µΛ

ab

+Cab
cdefΛ

cd(ω(i)ef
µ +

α√
1 + 6α2

ǫefνµ Aν)(63)

Equation (63) implies

ω
′(i)ab
µ = ω(i)ab

µ − 1

gi
∂µΛ

ab + Cab
cdefΛ

cd(ω(i)ef
µ +

α√
1 + 6α2

ǫefνµ Aν) (64)

Equations (62) and (64) ensure thatDµψ transforms covariantly under SO(4)
transformations.

Thus both U(1) and SO(4) transformations acting on the ith vector com-
ponent of ψ̂(j) with Ω̄ an arbitrary U(1) or SO(4) transformation imply

D̂′
µψ̂

′ →

























1 0 . . . . . . . . . 0
0 1 . . . . . . . . . 0
...

...
. . .

...
...

...
0 . . . . . . Ω̄ . . . 0
...

...
...

...
. . .

...
0 . . . . . . . . . . . . 1

























D̂µψ̂

Where the element Ω̄ enters in the ith row and ith column. As expected, this
convoluted way of writing a U(1)×SO(4)N theory reproduces (25), (27) and
(36) after equating ω(i)’s to a unique field ω.

This construction permits the derivation of the Lagrangian of the theory
in the usual manner. After redefining A→ A/

√
N , The bosonic Lagrangian

given by the trace of the commutator [D̂µ, D̂ν] produces the quadratic com-
ponent

L(2)
gauge =

1

2
∂µA

ν∂µAν +
1

2

∑

i

∂µω
(i)νab∂µω

(i)
νab. (65)
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The relevant terms of the cubic Lagrangian density involve again and for
the same reasons as before term of the form ωω∂ω and ∂AAω which take the
form

L(3)
gauge =

∑

2gi(∂µω
(i)ab
ν − ∂νω

(i)ab
µ )ωµ

(i)ca ω
(i)νc
b

−gi
4α2

N(1 + 6α2)
(Aµ∂ρAνe

ν
ae

ρ
bω

(i)µab∂νAµAρe
µ
ae

ρ
bω

(i)νab). (66)

The terms

Lf1 =
i

2

∑

j

¯̂
ψ(j){γ̂µ, D̂µ}ψ̂(j) (67)

Lf2 = i
∑

j

aj
¯̂
ψ(j)[γ̂µ, D̂µ]ψ̂

(j) (68)

formulate the fermionic Lagrangian, where γ̂µ = 1N×Nγµ and where the
arbitrary constants aj do not break gauge invariance. Thus

Lf = i
∑

ij

ψ̄(j)(/∂ +
iẽ

√

N(1 + 6α2)
/A+

3igiα
√

N(1 + 6α2)
Aµγ5γµ + g′ijω̄

µa
µγa)ψ

(j),

(69)
where the coupling constants g′ij = giaj .

For matter-matter scattering between particle j and particle k this theory
yields the following tree level and 1-loop T-matrix contributions

T jk
N = −4imjmk

N
∑

i

4g′ijg
′
ik

−q2 (70)

T jk
PN = − 12i

64
√
−q2

N
∑

i

g′ijg
′
ikgi(g

′
ij(mj + 17mk) + g′ik(17mj +mk)). (71)

where terms of O(JAµ(j)J
µ
A(k)) vanish in the classical limit after summation

over all spin configurations and we avoided dealing with the well known
electric charge contributions in order to simplify the discussion.

These terms must match the Born terms from the Schroedinger equation

T
(Born)jk
N = −iGmjmk

−q2 (72)

T
(Born)jk
PN = −iG2mjmk(mj +mk)√

−q2 . (73)
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Matching

1

2mj

T
(Born)jk
N = 2mkT

jk
N (74)

1

2mj

T
(Born)jk
PN = 2mkT

jk
PN (75)

generate a set of equations whose solutions exist for any given J given a
sufficiently large N.

The tree-level contributions to the T-matrix elements for scattering be-
tween particle j and a photon of energy Er read

T jE
N,PN = 2i

N
∑

i

g′ijgi
mjEr

−q2 (76)

The contribution (76) must match the Born amplitudes for particles with
mass Ephoton

T
(Born)jE
N = −iGmjEr

−q2 . (77)

Thus
1

2mj

T jE
N = −i2mjG

mjEr

−q2 (78)

where the right hand of (78) incorporates the exchange of target by projectile.
Equation (78) generates a set of equations whose solutions exist for any given
J given a sufficiently large N. Together (74), (75) and (78) generate a system
of equations that can be solved for sufficiently large N.

6 Conclusions

We used (2) to reproduce Newtonian and post Newtonian interaction for both
matter fields and photon field in the non relativistic limit. As opposed to
other attempts at describing quantum gravity, here we opted to go from the
fundamental theory to the non-relativistic Schroedinger equation and then
from there to the non-relativistic classical limit. This limit coincides with
the low energy limit of the Hilbert-Einstein equation.

The fundamental theory, a straight forward Yang-Mills, couples to matter
in the same manner as SU(3) and SU(2) theories describe the other funda-
mental forces. Well known dimensional analysis of this theory guarantees
renormalization.
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The theory can accommodate for the full particle spectrum currently
known and yields in the low energy limit the expected relativistic forces
provided a sufficiently large number of connectons exist and whose couplings
solve (74), (75) and (78).

The theory here proposed not only reproduces the observed experimental
results of general relativity, but it is also renormalizable and more impor-
tantly it can be coupled to the standard model in a trivial way. Therefore
SO(4)× SU(3)× SU(2)× U(1) best describes all interactions in nature.
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