# Solution to Poisson Boltzmann equation in semi-infinite and cylindrical geometries

Rajib Chakraborty\*

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata (IISER-K), Mohanpur-741 246, West Bengal, India

(Dated: November 6, 2015)

Linearized Poisson-Boltzmann equation (PBE) gives us simple expressions for charge density distribution ( $\rho_e$ ) within fluids or plasma. A recent work of this author shows that the old boundary conditions (BC), which are usually used to solve PBE, have serious defects. The old solutions turned out to be non-unique, and violates charge conservation principle in some cases. There we also derived the correct formula of  $\rho_e$  for a finite, rectangular geometry, using appropriate BCs. Here we consider some other types of geometries and obtain formula of  $\rho_e$ , which may be useful to analyse different experimental conditions.

# I. INTRODUCTION

Linearized PBE has been used since a long time, almost a century [1], to obtain distribution of free electric charges within ionic solutions or plasma. It has applications in various fields ranging from nanofluidicsmicrofluidics [2, 3] to astrophysics [4, 5], covering radioscience [6], surface chemistry [7], colloid science [8], laboratory plasma/ thermo-nuclear fusion devices [9, 10], bio-science [11, 12] etc. However, a recent work of this author [13] shows that the Dirichlet or Neumann type BCs that are usually used to solve the PBE, have serious defects, as they produce non-unique solutions. The Dirichlet condition leads to violation of charge conservation principle. We have been able to remove those defects by using different BCs to obtain  $\rho_e$ . There we analyzed a 1-D problem using a 'finite' and 'rectangular' geometry to demonstrate the essential ideas. Here, we derive the formula of  $\rho_e$  for some other geometries. Firstly, we do an 1-D analysis for a cylindrical geometry; we consider two sub-cases, one with an annular cross-section, and the other with a circular cross-section. Secondly, we do an 1-D analysis for a rectangular, semi-infinite domain, where the fluid is bounded by a single plane and the fluid extends to infinity along the direction normal to that plane. After this, we give an 'alternative' derivation to the distribution formula for a finite rectangular domain that we have derived for the first time in Ref. [14]; a minute correction was done in Ref. [15].

#### **II. CYLINDRICAL GEOMETRY**

See Ref. [16] for some formulae that we used here.

For a cylindrical geometry, the position of a point is specified with  $(R, \theta, z)$ , see Ref. [17]. The meaning of most of the other symbols can be found in Ref. ([14]), any exception will be notified. We analyse a straight domain of length L, with annular and circular cross-sections



FIG. 1. (Color online) Ionic solution within a cylindrical geometry of annular cross-section. Two circular boundaries have a potential difference. A typical plot that shows how charge density varies in the radial direction, is embedded to show the domain of our interest, see Fig. (2)

respectively. We consider only axi-symmetric problems i.e independent of  $\theta$ . When L is much greater compared to the radius, the problems become independent of z as well, except some end-effects. Hence, the problems depend only on the radial coordinate R. We use some suitable scales 'a' and ' $\zeta$ ' (both are positive) for distance and electrostatic potential ( $\psi$ ) respectively. Let's define a few quantities:

$$r \equiv \frac{R}{a}; \ \kappa \equiv \left[\frac{\lambda_D}{a}\right]^{-1}; \ \psi^* \equiv \frac{\psi}{\zeta}; \ \rho_0 \equiv \frac{\epsilon \kappa^2 \zeta}{a^2}; \ \rho_e^* \equiv \frac{\rho_e}{\rho_0} \quad (1)$$

Where,  $\lambda_D$  is the 'Debye length',  $\epsilon$  is the permittivity of the fluid.

## A. Cylindrical geometry of annular cross-section

Here the domain is bounded by two concentric right cylinders, see Fig. (1); the 'inner' and 'outer' radii are  $R_i$  and  $R_o$ , normalized as:  $r_i \equiv R_i/a$ ;  $r_o \equiv R_o/a$ ; the annular ends are also walls.

<sup>\*</sup> mecrajib@gmail.com

Present address: 89/3 Tanupukur Road, Dhakuria, Calcutta 700031, West Bengal, India



FIG. 2. (Color online) Charge density distribution within a fluid, bounded by two concentric cylinders.  $\kappa = 10.0$ ;  $q_0 = 0.1$ . (a) v = 0; excess charges accumulate near boundaries. (b) v = 0.6; an applied voltage redistributes charges. (c) v = 1.5; strong voltage segregates negative charges even if  $q_0 > 0$ . Compare this figure with that in Ref. [13]

We start with a formula that we derived in Ref. [14] (within its Supplementary Material).

$$\therefore \rho_e^* = -\psi^* \tag{2}$$

We will define some useful quantities, which will be useful later. The net charge present in the total domain i.e  $Q_{TOT}$  is given by  $\iiint \rho_e dV$ , where  $dV = R dR d\theta dz$ . If  $\rho_e$  depends only upon R, we have,

$$Q_{TOT} = \int_{0}^{L} \mathrm{d}z \int_{0}^{2\pi} \mathrm{d}\theta \int_{R_{i}}^{R_{o}} \rho_{e} R \,\mathrm{d}R = 2\pi L \int_{R_{i}}^{R_{o}} \rho_{e} R \,\mathrm{d}R \quad (3)$$

We define a quantity  $Q_{1c}$ , then using Eq. (1) we write its non-dimensional form  $q_{1c}$ ; the subscript '1c' means an 1-D problem in cylindrical geometry.

$$Q_{1c} \equiv \frac{Q_{TOT}}{2\pi L} = \int_{R_i}^{R_o} \rho_e R \, \mathrm{d}R = \rho_0 a^2 \int_{r_i}^{r_o} \rho_e^* r \, \mathrm{d}r \quad (4)$$

$$q_{1c} \equiv \frac{Q_{1c}}{(\rho_0 a^2)} = \int_{r_i}^{r_o} \rho_e^* r \,\mathrm{d}r$$
 (5)

 $Q_{1c}$  is the net charge present in the fluid within an angular sector of unit radian, per unit axial length.  $Q_{1c}$  has dimension 'charge per length' e.g.  $Coulomb \cdot meter^{-1}$ , unlike in the 1-D problem for a rectangular domain, where it had dimension  $Coulomb \cdot meter^{-2}$  (see Ref. [15]).

Now,  $\psi$  and  $\rho_e$  are also related by Poisson's equation in electrostatics (PES), which is given by,

$$\nabla^2 \psi = -\frac{\rho_e}{\epsilon} \tag{6}$$

For a cylindrical geometry,  $\nabla^2$  is given by,

$$\nabla^2 \equiv \frac{1}{R} \frac{\partial}{\partial R} \left( R \frac{\partial}{\partial R} \right) + \frac{1}{R^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2} \tag{7}$$

In the special case, where  $\psi$  varies only in the radial' direction, the PES reduces to,

$$\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}R}\left(R\frac{\mathrm{d}\psi}{\mathrm{d}R}\right) = -\frac{\rho_e}{\epsilon} \tag{8}$$

using Eq. (1) we first make PES non-dimensional:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}\psi^*}{\mathrm{d}r}\right)\left(\frac{\zeta}{a^2}\right) = -\frac{\rho_0}{\epsilon}\rho_e^* = -\left(\frac{\epsilon\kappa^2\zeta}{a^2\epsilon}\right)\rho_e^*$$
$$\Rightarrow \frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}\psi^*}{\mathrm{d}r}\right) = -\kappa^2\rho_e^* \tag{9}$$

Using Eq. (2) in Eq. (9) we get non-dimensional PBE in 1-D cylindrical (radial) coordinates:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}\psi^*}{\mathrm{d}r}\right) = \kappa^2\psi^* \tag{10}$$

Its general solution (see Ref. [16]), with arbitrary constants A and B, is given by,

$$\psi^* = AI_0(\kappa r) + BK_0(\kappa r) \tag{11}$$

Where,  $I_0$  and  $K_0$  are modified Bessel functions of order 0. We need two conditions to fix A and B. We get one condition by integrating PES i.e. Eq. (9) and using Eq. (5),

$$\int_{r_i}^{r_o} \left[ \frac{1}{r} \frac{\mathrm{d}}{\mathrm{d}r} \left( r \frac{\mathrm{d}\psi^*}{\mathrm{d}r} \right) \right] r \,\mathrm{d}r = -\kappa^2 \int_{r_i}^{r_o} \rho_e^* r \,\mathrm{d}r$$
$$\Rightarrow \left( r \frac{\mathrm{d}\psi^*}{\mathrm{d}r} \right) \Big|_{r=r_o} - \left( r \frac{\mathrm{d}\psi^*}{\mathrm{d}r} \right) \Big|_{r=r_i} = -q_{1c} \kappa^2 \qquad (12)$$

We assume the potential difference (scaled with  $\zeta$ ) between outer and inner curved boundaries i.e. 'v' to be known,

$$\psi^*(r_o) - \psi^*(r_i) = v \tag{13}$$

We solve PBE i.e. Eq. (10) using two conditions given by Eq. (12) and Eq. (13). We use the following formulae, see Ref. [18, 19]:

$$\frac{\mathrm{d}I_0(\xi)}{\mathrm{d}\xi} = I_1(\xi) \; ; \; \frac{\mathrm{d}K_0(\xi)}{\mathrm{d}\xi} = -K_1(\xi) \tag{14}$$

From Eq. (11) we get,

$$\frac{\mathrm{d}\psi^*}{\mathrm{d}r} = A \frac{\mathrm{d}I_0(\kappa r)}{\mathrm{d}r} + B \frac{\mathrm{d}K_0(\kappa r)}{\mathrm{d}r} = \kappa \left[AI_1(\kappa r) - BK_1(\kappa r)\right]$$
(15)

From Eq. (12) and Eq. (15) we get,

Where,

$$C_{11} \equiv [r_o I_1(\kappa r_o) - r_i I_1(\kappa r_i)] \tag{19}$$

$$C_{12} \equiv (-1) \times [r_o K_1(\kappa r_o) - r_i K_1(\kappa r_i)]$$
(20)

$$C_{21} \equiv [I_0(\kappa r_o) - I_0(\kappa r_i)] \tag{21}$$

$$C_{22} \equiv \left[ K_0(\kappa r_o) - K_0(\kappa r_i) \right] \tag{22}$$

$$d_1 \equiv -q_{1c}\kappa \tag{23}$$

$$d_2 \equiv v \tag{24}$$

The determinant  $\Delta$  of the above  $2\times 2$  matrix is given by,

$$\Delta \equiv C_{11} \cdot C_{22} - C_{12} \cdot C_{21} \tag{25}$$

Finally we write A and B in terms of known quantities,

$$A = (d_1 \cdot C_{22} - d_2 \cdot C_{12}) / \Delta \tag{26}$$

$$B = (-d_1 \cdot C_{21} + d_2 \cdot C_{11})/\Delta \tag{27}$$

We plug in the expressions of A and B given by Eq. (26) and Eq. (27) in Eq. (11) and rearrange terms; then we use Eq. (23), Eq. (24); finally we use Eq. (2) i.e.  $\rho_e^* = -\psi^*$ ,

$$\psi^* = \frac{(d_1 \cdot C_{22} - d_2 \cdot C_{12})}{\Delta} I_0(\kappa r) + \frac{(-d_1 \cdot C_{21} + d_2 \cdot C_{11})}{\Delta} K_0(\kappa r)$$
  
=  $\frac{1}{\Delta} \left[ d_1 \left\{ C_{22} I_0(\kappa r) - C_{21} K_0(\kappa r) \right\} - d_2 \left\{ C_{12} I_0(\kappa r) - C_{11} K_0(\kappa r) \right\} \right]$   
=  $\frac{(-1)}{\Delta} \left[ q_{1c} \kappa \left\{ C_{22} I_0(\kappa r) - C_{21} K_0(\kappa r) \right\} + v \left\{ C_{12} I_0(\kappa r) - C_{11} K_0(\kappa r) \right\} \right]$  (28)

$$\therefore \rho_e^* = \frac{1}{\Delta} \left[ q_{1c} \kappa \left\{ C_{22} I_0(\kappa r) - C_{21} K_0(\kappa r) \right\} + v \left\{ C_{12} I_0(\kappa r) - C_{11} K_0(\kappa r) \right\} \right]$$
(29)

Using Eq. (29) we plot  $\rho_e^*$  vs r in Fig. (2) for the range  $[1 \leq r \leq 2]$  i.e. we took  $a = R_i$  and  $R_o = 2R_i$ , so that  $r_i = 1$ , and  $r_o = 2$ . The explanation of the plots goes along the same line as the rectangular geometry (Ref. [13]); if there is a net amount of charge in the domain, the charges accumulate near the two boundaries. An applied voltage redistributes the charges; positive and negative charges move towards the walls of lower and higher potentials respectively. A strong voltage can segregate two types of charges.

## B. Cylindrical geometry of circular cross-section

Here we derive the formula of  $\rho_e$  for a right cylindrical domain of 'circular' cross-section, unlike the 'annular' one. The general solution to the PBE is given by Eq. (11). The function  $K_0(\kappa r)$  blows up as  $r \to 0$ . Hence, in order to prevent  $\psi^*$  from blowing up as  $r \to 0$ , we must set B = 0. We get,

$$\psi^* = AI_0(\kappa r) \tag{30}$$

For the special case  $r_i = 0$ , we write  ${}^0q_{1c}$  instead of  $q_{1c}$ . Using Eq. (2) in Eq. (5), with  $r_i = 0$ , we get,

$$\int_{0}^{r_{o}} \psi^{*} r \,\mathrm{d}r = -{}^{0}q_{1c} \tag{31}$$

$$r_o\kappa \left[AI_1(\kappa r_o) - BK_1(\kappa r_o)\right] - r_i\kappa \left[AI_1(\kappa r_i) - BK_1(\kappa r_i)\right] = -q_{1c}\kappa^2$$
  

$$\Rightarrow \left[r_oI_1(\kappa r_o) - r_iI_1(\kappa r_i)\right]A - \left[r_oK_1(\kappa r_o) - r_iK_1(\kappa r_i)\right]B = -q_{1c}\kappa$$
(16)

From Eq. (11) and Eq. (13) we get,

$$[AI_0(\kappa r_o) + BK_0(\kappa r_o)] - [AI_0(\kappa r_i) + BK_0(\kappa r_i)] = v$$
  

$$\Rightarrow [I_0(\kappa r_o) - I_0(\kappa r_i)] A + [K_0(\kappa r_o) - K_0(\kappa r_i)] B = v$$
(17)

We write Eq. (16) and Eq. (17) together in a compact, matrix form:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$$
(18)

Using Eq. (30) we get,

$$\int_{0}^{r_{o}} \psi^{*} r \, \mathrm{d}r = A \int_{0}^{r_{o}} I_{0}(\kappa r) \mathrm{d}r$$
$$= A \left. \frac{r I_{1}(\kappa r)}{\kappa} \right|_{0}^{r_{o}}$$
$$= A \frac{r_{o} I_{1}(\kappa r_{o})}{\kappa} = -^{0} q_{1c}$$
$$\Rightarrow A = -\frac{^{0} q_{1c} \kappa}{r_{0} I_{1}(\kappa r_{o})}$$
(32)

$$\Rightarrow \psi^* = -\frac{{}^0q_{1c}\kappa}{r_0I_1(\kappa r_o)}I_0(\kappa r)$$
(33)

Using Eq. (2) we finally have the formula for  $\rho_e^*$ ,

$$\rho_e^* = \frac{{}^0q_{1c}\kappa}{r_0I_1(\kappa r_o)}I_0(\kappa r)$$
(34)

#### SEMI INFINITE RECTANGULAR III. GEOMETRY

Let's consider a plane, which, in its one side, bounds an infinite ocean of ionic solution. Here  $\rho_e$  varies only in the direction normal to the plane (x-direction); we set the origin on the plane so that x varies from 0 to  $\infty$ . The general solution is the same as given in Ref. [13] (see the supplementary materials in that reference), however, the arbitrary constants of integration are fixed with different conditions. The non-dimensional PBE is  $d^2\psi^*/d\eta^2 = \kappa^2\psi^*$ ; its general solution is given by:

$$\psi^* = A \exp(\kappa \eta) + B \exp(-\kappa \eta) \tag{35}$$

We must set 'A' to zero to prevent the solution to blow up when  $\eta \to \infty$ . Hence, using Eq. (2) we get

$$\rho_e^* = -B \exp(-\kappa\eta)$$
(36)  

$$\Rightarrow \int_0^\infty \rho_e^* d\eta = -B \int_0^\infty \exp(-\kappa\eta) d\eta$$
  

$$= -B \left( \frac{\exp(-\kappa\eta)}{-\kappa} \Big|_0^\infty \right)$$
  

$$= -B \left( \frac{0-1}{-\kappa} \right) = -\frac{B}{\kappa}$$
(37)

Let's define the following quantities (the subscript '1r' means 1-D and rectangular; left-superscript ' $\infty$ ' means infinite domain):

$${}^{\infty}Q_{1r} \equiv \int_{0}^{\infty} \rho_e \,\mathrm{d}x \tag{38}$$

$${}^{\infty}q_{1r} \equiv \int_{0}^{\infty} \rho_{e}^{*} \,\mathrm{d}\eta = \frac{1}{\rho_{0}a} \int_{0}^{\infty} \rho_{e} \,\mathrm{d}x = \frac{\infty Q_{1r}}{(\rho_{0}a)} \quad (39)$$

Finally we write the formula of  $\psi^*$  and  $\rho_e^*$ :

$$\psi^* = -(^{\infty}q_{1r}\kappa)\exp(-\kappa\eta) \tag{41}$$

$$\rho_e^* = ({}^{\infty}q_{1r}\kappa)\exp(-\kappa\eta)$$
(42)

$$\rho_e = \left(\frac{^{\infty}Q_{1r}\kappa}{a}\right)\exp(-\kappa x/a) \tag{43}$$

Let's write the formula for the potential at boundary:

$$\psi_0^* \equiv \psi^*|_{\eta=0} = -^\infty q_{1r}\kappa \tag{44}$$

#### IV. FINITE RECTANGULAR GEOMETRY: AN ALTERNATIVE DERIVATION

For a finite, rectangular geometry we derived the formula of  $\rho_e$  in Ref. [13, 14], where  $\rho_e$  varies between two boundaries at  $x = \pm a$  i.e.  $\eta = \pm 1$ ; a minute correction of the formula can be found in Ref. [15]. Here we derive the same formula in a different way. We use a different symbol  $Q_{1r}$  instead of  $Q_0$ . For the scaled potential difference  $(V/\zeta)$  between boundaries we use the symbol v instead of  $\delta$ .

$$Q_{1r} \equiv \int_{-a}^{+a} \rho_e dx \tag{45}$$

From Eq. (38) and Eq. (45) we see that  ${}^{\infty}Q_{1r}$  and  $Q_{1r}$  differs only in the limits of integration. Integrating Eq. (2)we get,

$$\int_{-1}^{+1} \psi^* d\eta = -\int_{-1}^{+1} \rho_e^* d\eta = -\int_{-a}^{+a} \frac{\rho_e}{\rho_0} d\left(\frac{x}{a}\right)$$
$$= -\frac{1}{(\rho_0 a)} \int_{-a}^{+a} \rho_e dx = -\frac{Q_{1r}}{(\rho_0 a)}$$
$$\Rightarrow \int_{-1}^{+1} \psi^* d\eta = -q_{1r}$$
(46)

Where, 
$$q_{1r} \equiv \frac{Q_{1r}}{(\rho_0 a)}$$
 (47)

We use Eq. (46) as one condition to solve PBE; the other condition is given by,

$$\psi^*(+1) - \psi^*(-1) = v \tag{48}$$

(49)

Integrating the general solution to the PBE i.e. Eq. (35)and then using Eq. (46) we get,

Please note the difference between Eq. (5) and Eq. (39);  $\int_{-1}^{+1} \psi^* d\eta = A \left[ \frac{\exp(+\kappa) - \exp(-\kappa)}{\kappa} \right] + B \left[ \frac{\exp(-\kappa) - \exp(\kappa)}{-\kappa} \right]$ cases. We get,  $= [A+B] \frac{2\sinh(\kappa)}{\kappa} = -q_{1r}$ 

$$B = -(^{\infty}q_{1r}\kappa) \tag{40}$$

Using Eq. (35) and Eq. (48) we get,

$$[A \exp(\kappa) + B \exp(-\kappa)] - [A \exp(-\kappa) + B \exp(\kappa)] = v$$
  

$$\Rightarrow A [\exp(\kappa) - \exp(-\kappa)] - B [\exp(\kappa) - \exp(-\kappa)] = v$$
  

$$\Rightarrow [A - B] 2 \sinh(\kappa) = v$$
(50)

From Eq. (49) and Eq. (50) we get,

$$A + B = -\frac{q_{1r}\kappa}{2\sinh(\kappa)} \tag{51}$$

$$A - B = \frac{v}{2\sinh(\kappa)} \tag{52}$$

From the above two equations we solve for A and B,

$$A = \frac{[v - q_{1r}\kappa]}{4\sinh(\kappa)}; \quad B = -\frac{[v + q_{1r}\kappa]}{4\sinh(\kappa)}$$
(53)

Plugging in these expressions for A and B in Eq. (35), and rearranging terms we get the required expression for  $\psi^*$ ; then, using Eq. (2) we get the formula of  $\rho^*$ ; then we return to the dimensional variables:

$$\psi^* = \frac{1}{2\sinh(\kappa)} \left[ v \cdot \sinh(\kappa\eta) - (q_{1r}\kappa) \cdot \cosh(\kappa\eta) \right] \quad (54)$$

- P. Debye and E. Huckel, Physikalische Zeitschrift 24, 185 (1923).
- [2] R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008).
- [3] S. Ghosal, Annu. Rev. Fluid Mech. 38, 309 (2006).
- [4] M. Horanyi, Annu. Rev. Astron. Astrophys. 34, 383418 (1996).
- [5] Y. Liu, S. Q. Liu, and K. Xu, Phys. of Plasmas 19, 073702 (2012).
- [6] T. W. Chevalier, U. S. Inan, and T. F. Bell, Radio Sci. 45, RS1010 (2010).
- [7] D. Lis, E. H. G. Backus, J. Hunger, S. H. Parekh, and M. Bonn, Science **344**, 1138 (2014).
- [8] J. Lyklema, Fundamentals of Interface and Colloid Science,, Vol. 2 (Academic, London, 1991).
- [9] J. P. H. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas (Cambridge University Press, 2004).
- [10] L. Patacchini and I. H. Hutchinson, Plasma Phys. Control. Fusion 53, 025005 (2011).
- [11] A. N. Rao and D. W. Grainger, Biomater. Sci. 2, 436 (2014).

$$\rho_e^* = \frac{1}{2\sinh(\kappa)} \left[ (q_{1r}\kappa) \cdot \cosh(\kappa\eta) - v \cdot \sinh(\kappa\eta) \right]$$
(55)

$$\rho_e = \frac{\rho_0}{2\sinh(\kappa)} \left[ \kappa \left(\frac{Q_{1r}}{\rho_0 a}\right) \cosh\left(\frac{\kappa x}{a}\right) - \left(\frac{V}{\zeta}\right) \sinh\left(\frac{\kappa x}{a}\right) \right]$$
(56)

#### V. ACKNOWLEDGEMENT

This paper is a continuation of the work that I started at IISER-Kolkata; thanks for their hospitality. Thanks to Abhijit Sarkar, Sujata Sarkar and my parents for their financial supports. Thanks to Indian Association for the Cultivation of Science; I used their library facilities.

- [12] F. Fogolari, A. Brigo, and H. Molinari, J. Mol. Recognit. 15, 377 (2002).
- [13] R. Chakraborty, "Debye length cannot be interpreted as screening or shielding length," http://www.vixra.org/abs/1502.0051 (2015).
- [14] R. Chakraborty, "Physical solution of poisson-boltzmann equation," http://www.vixra.org/abs/1408.0093 (2014).
- [15] R. Chakraborty, "Debye length cannot be interpreted as screening or shielding length," (2015), J. Phys. : Cond. Mat. (unpublished).
- [16] K. Bohinc, A. Iglič, and T. Slivnik, Electrothniški vestnik, Electrotechnical Rev., Ljubljana, Slovenija 75, 82 (2008).
- [17] G. B. Arfken and H. J. Weber, *Mathematical Methods for Physicists*, 4th ed. (Academic Press, Inc., San Diego, USA, 1995).
- [18] "BesselI," http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/20/01/02/0004/ (2001), (Documentation of Wolfram Research).
- [19] "BesselK," http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/20/01/02/0004/ (2001), (Documentation of Wolfram Research).