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ABSTRACT – It is argued that several key ideas upon which thermodynamics was founded 

are likely dubious and may well need to be abandoned altogether. This particularly applies to 

certain concepts based on the ideal gas laws, e.g. isothermal and adiabatic expansion and 

compression. Indeed, this is apparently the reason for the invalidity of the Carnot cycle, a 

cornerstone of thermodynamics that has widely influenced the evolution of scientific thought 

and technological innovation over nearly two centuries. (It has been previously argued that 

the Carnot cycle is self-evidently invalid, as a closed system operating in a cycle cannot yield 

net work.) Likewise, a re-evaluation of the Joule-Thomson effect indicates that the actual 

operations performed relate neither to the model employed nor to the derived theoretical 

construct. In fact, the proof of constant enthalpy during the adiabatic expansion is debatable, 

the calculated volume changes being invalidated by the accompanying transfer of mass. Thus, 

the imputed conversion of kinetic to potential energy is unlikely to be valid (the latter, in fact, 

being associated with higher – rather than lower – pressures). The Joule-Thomson effect is 

likely the result of simple pressure changes (including a possible Bernoulli Effect at the 

nozzle), along with mass changes which affect the energy density, akin to those found at high 

altitudes (‘hill-station effect’).  

----------------------------------------------------------------------------------------------------------------  
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INTRODUCTION 

Thermodynamics apparently originated during the interim between the eras of Newtonian and 

quantum mechanics. Thus, Newtonian ideas of energy ultimately led to the kinetic theory of 

gases, which offered a cogent theoretical basis for the observed gas laws. The consequent 

ideal gas law, considered formally valid, served as an enabling medium for the evolution of 

key ideas relating to energy and work in their various manifestations (Eqn. 1, the symbols 

have the usual meaning, vide infra): 

    PV = nRT                                                                (1) 

The first quarter of the nineteenth century witnessed both the culmination of the classical 

period and the efflorescence of modern ideas. Thus, Dalton’s atomistic view enhanced the 

basis of the kinetic theories, leading up to the founding of statistical mechanics in the latter 

half of the century. However, it was the Carnot cycle (1824) that first attempted to explore 

the relationship between energy and work, apparently leading not only to a theory of heat 

engines, but also to a fundamental view of energy. Thus, the Carnot theorem apparently 

offered the first glimpse of entropy, the related quantitative relation between energy, work 

and temperature believed to this day to represent one of the fundamental standards in science.       

Intriguingly, however, and as argued elsewhere,
1
 the Carnot theorem is self-evidently invalid. 

This is essentially because – even superficially – no net work can be obtained in the closed 

cycle of operations that the Carnot cycle represents. In fact, closer scrutiny reveals more 

fundamental flaws in the Carnot hypothesis that can be traced to key ideas involving the 

operations themselves, as argued further below. 

Another fascinating phenomenon of far-reaching practical significance, and that was also 

discovered during the era of classical thermodynamics, is the Joule-Thomson effect. The now 

familiar lowering of temperature accompanying the irreversible expansion of certain gases is, 
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however, theoretically intriguing. Again, current explanations are apparently based on 

dubious assumptions involving the operations performed on the gases.  

Both the above cases thus raise serious questions about the theoretical underpinning of 

thermodynamics, itself a cornerstone of current scientific theory with critically important 

technological implications.   

DISCUSSION 

Carnot cycle 

Statement of the problem
1
  

The Carnot cycle is constituted of the cyclic sequence of operations: isothermal expansion, 

adiabatic expansion, isothermal compression and adiabatic compression. The operations are 

performed reversibly on a sample of ideal gas contained in a cylinder with a movable piston. 

The cylinder is initially placed in a heat source at temperature T1 during the isothermal 

expansion stage. The cylinder is removed from the heat sink and jacketed to prevent heat 

transfer, for the adiabatic expansion stage. The jacket is removed and the cylinder placed in a 

heat sink at temperature T2 (< T1) for the isothermal compression stage. The cylinder is 

removed from the sink and again jacketed for the adiabatic compression stage, which – 

importantly – raises its temperature back to T1. The cycle is repeated. 

It is believed that heat is absorbed by the system at the source (at T1), and is partly converted 

to work that is performed on the surroundings during the two expansion stages. The 

remainder of the purported heat is consigned to the sink (T2) as a part of the compression 

stages, when work is performed on the system by the surroundings. Ostensibly, the work 

performed upon the system during the compression stages is less than the work obtained from 

the system during the expansion stages.  
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Furthermore, it is believed that the work involved in the two adiabatic stages cancel each 

other out, so the overall net work (w) purportedly obtained from the system depends on the 

two isothermal stages only, given by: 

                                             w = RT1ln(V2/V1) – RT2ln(V3/V4)                                                (2) 

In Eqn. 2, V1 and V2 are the volumes of the gas at the beginning and end of the expansion 

stage, and V3 and V4 the volumes at the beginning and end of the compression stage (R being 

the gas constant). Also, it can be shown that, for the adiabatic stages: 

(V2/V1) = (V3/V4)                                                         (3) 

Therefore, from Eqns. 2 and 3: 

                                                        w = R(T1 – T2) ln(V2/V1)                                                  (4) 

Eqn. 4, apparently, indicates that net work is obtained from the system, as all terms on the 

right hand side are positive (T1 > T2 and V2 > V1).  

As argued previously,
1
 this curious result is manifestly invalid in a sealed system which is 

returned to its initial state. Thus, even if it be assumed (although erroneously, vide infra) that 

work is obtained from the system during the expansion stage, an equal amount of work needs 

to be performed on it to return it to the original state at T1. Clearly, no net work can be 

obtained from the system by the surroundings (i.e. w = 0), which is self-evident and does not 

need further proof. It only now remains to examine the above protocols and identify the flaws 

in the arguments. These, in fact, reveal even more fundamental problems with the Carnot 

cycle.  

Solutions  

A singular flaw with the Carnot cycle is the assumption that heat is absorbed by the system 

from the source at T1. This is impossible because the system is in thermal equilibrium with 
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the source. Thus, in principle, no work can be obtained from a system at thermal equilibrium 

with its surroundings.  

The gas in the cylinder constituting the system may indeed be expanded isothermally but only 

if the external pressure is reduced. However, this does not qualify as work performed by the 

system, as it is then merely reacting to a change in the surroundings. These arguments can be 

supported by the following mathematical approach.  

In fact, the definition of work purportedly obtained in the isothermal stages is itself incorrect 

(Eqn. 2), as can be seen from the corresponding enthalpy changes. Thus, the changes in 

enthalpy (H), internal energy (E), pressure (P) and volume (V) are related as:  

dH = dE + d(PV) = dE + PdV + VdP                                       (5) 

(Note that H = E + PV; also, H is conventionally defined at constant P, but this is 

inapplicable here as P varies.)   

Furthermore, at constant temperature (isothermal conditions) dE = 0, so: 

                                                          dH = d(PV) = PdV + VdP                                              (6) 

The work obtained (dw)  indicates a corresponding change in the enthalpy (dH): 

                                                     dw = dH = d(PV) = PdV + VdP                                          (7) 

Eqn. 7 can be recast into Eqn. 8 with the help of Eqn. 1 (n refers to number of moles): 

                               dw = dH = d(PV) = PdV + VdP = nRT1[(dV/V) + (dP/P)]                        (8) 

Integrating Eqn. 8 leads to Eqn. 9 (P1 and P2 are the pressures corresponding to the volumes 

V1 and V2 respectively): 

                     w = ∆H = nRT1[ln(V2/V1) + ln(P2/P1)] = nRT1[ln(P2V2/P1V1)]                      (9) 

Interestingly, by the ideal gas law (Eqn. 1): 
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                                                     P1V1 = P2V2 = nRT1                                                         (10) 

Therefore, Eqn. 9 reduces to: 

    w = ∆H = nRT1[ln(P2V2/P1V1)] = 0                                            (11) 

Thus, the isothermal expansion stage yields no net work, i.e. the stage itself is implausible! 

Clearly, neglect of the VdP term in Eqn. 7 in the original treatment leads to the illusion of net 

positive work (Eqn. 4)! [The same result can be obtained by integrating d(PV) in Eqn. 8.] In 

other words, under isothermal conditions, not only is the internal energy unchanged (∆E = 0), 

but also no expansion work is possible.  

It is particularly noteworthy that the above isothermal expansion is only possible if the 

pressure of the surroundings is reduced (in the above case from P1 to P2). Importantly, there 

is no uptake of energy from the heat source: again, the uptake is impossible as both the source 

and the system are initially at the same temperature T1!  

Identical arguments apply to the purported isothermal compression stage, when the volume 

changes from V3 to V4. This can only occur if the pressure of the surroundings changes 

correspondingly from P3 to P4 (P3 < P4). Thus, P3V3 = P4V4 = nRT2, which again implies that 

the systemic enthalpy is unchanged (Eqn. 11). Again, the system is merely responding to a 

change in the surroundings, with no heat given off to the sink as the system is also at the 

same temperature T2.   

Clearly, the operations constituting the Carnot cycle can only be executed by independently 

changing the state of the surroundings, particularly its pressure. This requires that the 

surroundings perform work in both the isothermal stages. Thus, far from obtaining net work 

from the system in the Carnot cycle, an input of energy would be required to keep it going! 

In fact, closely similar arguments apply to the two adiabatic stages of the Carnot cycle. 

Again, neither expansion nor compression is possible if the external pressure remains 
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constant. However, and rather amusingly, as no energy exchange occurs with the 

surroundings during these operations anyway (vide supra), the jacketing of the system is 

unnecessary! Thus again, P2V2 = P3V3 and P4V4 = P1V1, which also implies that the 

temperature would remain constant during these purported operations (Eqn. 1).  

Therefore, since the Carnot cycle is fundamentally invalid, the question of obtaining work 

from its operation does not arise at all. Its key flaw is the assumption that expansion work 

(whether positive or negative) can be obtained at constant temperature (isothermal stages) or 

without input of energy (adiabatic stages), both of which are ruled out for an ideal gas by 

Eqn. 1.  

In fact, positive expansion work is only possible if there is an increase in the temperature of 

the system due to uptake of energy. This would require the temperature of the heat source to 

be raised, with a consequent expansion of the gas in the system but at a higher temperature. 

However, these conditions represent a radical departure from the Carnot cycle, and in any 

case are not conducive to a cyclical process.  

Thus, purely mechanical work via expansion or compression of an ideal gas is ruled out, 

essentially because both the size and the mutual interactions of the constituent atoms are 

neglected.  

Consequences  

The collapse of the Carnot theorem apparently strikes at the conceptual roots of 

thermodynamics, as the heat (dqrev) purportedly transferred between the system and the 

surroundings in the two reversible isothermal stages was believed to give rise to a 

corresponding entropy change (dS): 

   dS = dqrev/T                                                            (12) 
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In fact, Eqn. 12 represents the first stirrings of the idea of entropy itself, which was later 

related to molecular disorder or randomness. These ideas were incorporated into the Gibbs 

free energy (G) concept, leading to the definition of a spontaneous change as one that occurs 

with a lowering of G: 

   ∆G = ∆H – T∆S                                                      (13) 

It is believed that ∆H represents the heat given off by the system to the surroundings, so that 

∆G represents this plus the part of the heat change retained by the system to increase its own 

randomness (-qsys, corresponding to ∆S > 0). The enthalpy change (-∆H relative to the 

surroundings) then relates to the change in the entropy of the surroundings (∆Ssurr, qsurr being 

the heat received by the surroundings): 

       -∆H = qsurr = T∆Ssurr                                                       (14) 

Thus, ∆G is believed to represent the overall entropy change (system + surroundings), -∆G 

being then associated with an increase in the overall entropy. Eqn. 13 may thus be recast: 

∆G = -(qsurr + qsys)                                                      (15) 

Eqn. 15 implies that the Gibbs free energy change is equal to the overall heat change 

accompanying the process in question. (Note: -qsurr and -qsys imply evolution of heat during 

the transformation in question.)    

Seen in this way, the collapse of the Carnot theorem and the derived entropy concept is less 

cataclysmal than it appears, as the purported entropy changes are derived from heat changes. 

This is the likely reason for the general success of the Gibbs free energy formulation despite 

the collapse of the Carnot theorem.   
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Joule-Thomson effect 

Statement of the problem
2
  

The Joule-Thomson effect (JTE) refers to the observed cooling of many real gases when they 

undergo a rapid and irreversible expansion, a process usually performed via a nozzle or a 

porous plug, under adiabatic conditions. The phenomenon has found widespread 

technological application since its discovery in the mid-nineteenth century, particularly in the 

liquefaction of gases (the Linde process) and in the ubiquitous household refrigerator. 

Interestingly, however, its scientific basis remains intriguing (some gases even undergoing 

warming upon expansion). Thus, although the current theory views the JTE as a 

manifestation of the non-ideal behaviour of a gas, this appears only partly true as argued 

below. 

The JTE, in fact, was presaged by the Joule expansion. In this, an ideal gas is allowed to 

expand into a vacuum, no change in temperature being observed. This is readily explained by 

recourse to Eqns. 1 and 10 above, relating to isothermal changes in P and V of an ideal gas. In 

light of this, the initial discovery of the JTE was apparently intriguing, essentially because the 

expanding gas was clearly not performing work. Thus, the enthalpy was apparently constant, 

indicating an isothermal process. (As no work is thus performed in the process, explanations 

for the apparent ‘spontaneous cooling’ need to avoid conflicts with both the first and second 

laws of thermodynamics.) 

The proposed explanation for the observed cooling by the JTE, in fact, invokes the idea that 

the expansion process is accompanied by a conversion of kinetic energy to potential energy. 

However, this appears unlikely as an increase in potential energy is to be associated with an 

increase, rather than a decrease, in pressure. (Indeed, then work would be done on the 

system!) Also, it is unclear as to how non-ideal behaviour fits into this explanation, as weak 
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intermolecular interactions would be enhanced by an increase of pressure and thus be 

associated with an increase in potential energy.  

In fact, the formation of a ‘van der Waals complex’ (Bn) by the association of n gas molecules 

(A) would be endergonic, thus being favoured by an increase of both temperature and 

pressure: 

                                                                     nA → Bn                                                          (16) 

Conversely, the decomposition of the complex Bn would be favoured at lower pressures, 

being accompanied by a release of energy, thus leading to an increase in temperature. 

Clearly, the formation of Bn involves an increase of potential energy, which would be 

released as kinetic energy upon its decomposition. (The idea that the associated complexes 

are ‘ripped apart’ during the expansion is unwarranted, as this requires that work be 

performed on the system, which is untenable in a free expansion!) 

Thus, the observed cooling of many gases upon irreversible expansion must have a basis 

other than the accepted isenthalpic explanation. In fact, a serious problem with the current 

explanation is that the model employed differs rather drastically from the actual experiment. 

Thus, the experimental set-up employs – essentially – a source of compressed gas, which is 

let out through a nozzle or plug, to diffuse freely to the outside. A temperature measuring 

device, of course, is included, but it appears the gas essentially exits the set up at relatively 

high velocity.  

However, the model employed to explain the JTE involves a two-compartment cylinder 

interconnected by a nozzle or plug (a sealed system). One of the compartments possesses a 

piston which can compress the gas inside and thus force it through the nozzle or plug into the 

other compartment (of equal volume as the first). As the gas does no work upon expansion, 

and the process is adiabatic, it is also isenthalpic (∆H = 0).  
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Also, this is apparently bolstered by a mathematical treatment involving, however, rather 

dubious pressure-volume changes. Thus, it is argued that the volume decreases from an initial 

value Vi to 0 at the higher pressure (Pi), but increases from an initial value of 0 to a final 

value Vf at the lower pressure (Pf). Thus, the corresponding volume changes are Vi and Vf: 

                                       ∆H = ∆E + (Pi∆Vi + Pf∆Vf) = ∆E + (PiVi – PfVf) = 0                     (17) 

A problem with the above approach is that the ∆V terms involve not just volume changes but 

also concurrent mass transfer across the nozzle. Thus, the approach is invalid and cannot lead 

to the work performed during the process.  

In fact, the mass transfer implies that Vi = Vf and Pi = Pf, ignoring any friction at the nozzle, 

noting that cooling is implausible in the described set-up! The isenthalpic criterion – 

ostensibly – leads to the idea that the kinetic energy is converted to potential energy during 

the process. However, as argued above, the approach is apparently bedevilled by 

inconsistencies at every stage.  

Solutions 

As mentioned above, in the actual experiment involving the JTE, the gas exits the nozzle or 

porous barrier into a region of greatly reduced pressure. Now, in a fixed volume of space (say 

around the temperature sensor), this implies a corresponding reduction in temperature by 

Eqn. 1: intriguingly, even in the case of an ideal gas!  

In fact, in the case of a nozzle, the gas would exit into the low pressure region at relatively 

high velocity. This indicates the possibility of a further reduction in pressure by the well-

known Bernoulli Effect
2
 in the vicinity of the nozzle. This would also contribute to a 

lowering of the temperature (Eqn. 1).   

Furthermore, the temperature sensor (be it a traditional thermometer or a thermocouple based 

device), essentially responds to the energy density around it. In an open system wherein the 
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gas flows freely out into the open, the energy density would be relatively low on the low 

pressure side, hence the observed cooling. Thus, there is no conflict with first law of 

thermodynamics as the total energy of the overall sample of gas would be conserved. 

In the case of cooling devices (e.g. refrigerators) a fixed amount of a compressed refrigerant 

is allowed to expand into a low pressure region of fixed volume. Apparently, these conditions 

are rather different from those employed in the classical JTE (described above). However, the 

refrigerant is recycled via a compressor, and thus removed continually from the low pressure 

chamber. This ensures that the expansion chamber is almost continuously maintained at very 

low pressure, with a corresponding lowering of temperature.  

In fact, it is well known that low temperatures may be obtained by evaporation of liquids 

under reduced pressure. Thus, low material density is associated with low energy density, and 

hence lower temperatures. This is apparently the basis of the lower temperatures observed at 

higher altitudes (‘hill-station effect’). It would appear that this phenomenon plays a role in 

the operation of cooling devices such as refrigerators, via the continual evaporation of the 

refrigerant and its subsequent recompression, as described above. 

Therefore, the operation of refrigerators appear to involve a combination of effects, perhaps 

including ‘Bernoulli cooling’ at the throttle and the ‘hill-station effect’ as discussed above. 

(The former leads to the condensation of the refrigerant at the throttle, and the latter the 

transfer of heat via mass transfer.) These alternative explanations are necessitated by the fact 

that the conventional explanation based on isenthalpic conversion of kinetic to potential 

energy appears unviable, as discussed at length above.  

The Joule-Thomson inversion temperature. An intriguing aspect of the JTE is that, above a 

certain temperature termed the ‘inversion temperature’, the above described expansion leads 

to a warming, rather than a cooling of the gas. The inversion temperature is characteristic of 
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each gas, with most gases undergoing cooling at normal temperatures. (The exceptions are 

hydrogen, helium and neon, which thus have abnormally low inversion temperatures.)  

In light of the above discussion, it would appear that above the inversion temperature, 

adiabatic expansion leads to a release of potential energy as kinetic energy. This is entirely 

plausible as higher pressures and temperatures are associated with an increase in potential 

energy (vide supra). Thus, by Eqn. 16, there is an increase in the association of gas molecules 

at higher temperatures and pressures, leading to an increase of potential energy. 

Therefore, above the inversion temperature the cooling effects of the expansion are 

apparently overwhelmed by the warming effects. Presumably, different gases would store 

potential energy via different mechanisms. In fact, the low inversion temperature of hydrogen 

may be due to the equilibrium between the ortho and para hydrogen spin isomers, the 

equilibrium favouring the higher energy ortho form at high pressure even at relatively 

moderate temperatures.  

Interestingly, the other two gases with low inversion temperatures (He and Ne) are of low 

atomic weight and electronegativity, and inert. These would apparently favour association of 

the atoms because of the absence of repulsive effects. Thus, these are high potential energy 

systems even at normal temperatures.   

Conclusions 

The JTE has been studied and well-established by ingenious experimental approaches, and is 

the basis of important technological processes related to cooling and refrigeration. However, 

its scientific basis appears almost mysteriously unclear, with current explanations based on 

the non-ideal behaviour of gases being unsatisfactory. In particular, the conversion of kinetic 

to potential energy at lower pressures seems unlikely. (The inversion temperature, on the 
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other hand, likely indicates an increase in the potential energy at higher temperatures and 

pressures.)  

It appears that the classical JTE derives from a lower pressure – hence a lower energy density 

– in the immediate region beyond the throttle. The operation of cooling devices (refrigerators, 

etc.), however, may be complex and only obliquely related to the JTE. In particular, the 

Bernoulli Effect may well operate at the throttle, leading to a lower temperature due to lower 

pressures. Also, the re-evaporation of the condensed refrigerant may well be the major 

contributor to the cooling effect, as it allows heat to be removed via mass transfer.  

CONCLUSIONS 

Classical thermodynamics deals with the interaction of matter with heat energy (as opposed 

to radiant energy, the purview of quantum theory). The three laws of thermodynamics that 

grew out of this endeavour are now considered sacrosanct in an almost theological sense, 

constituting a scientific standard to which all rational experience must conform. Practically, 

thermodynamics – with the relation between work and energy as its central preoccupation – 

also provided the framework for understanding the functioning of all manner of engines, 

whether steam or internal combustion.   

Theoretically, however, thermodynamics founders, major flaws apparently lurking in its 

conceptual labyrinths. The choice of the mythical ideal gas – a useful relic of the early gas 

laws – as the preferred material medium towards understanding the flow of heat, has led to a 

framework apparently far removed from normal experience. In particular, the fact that an 

ideal gas is in principle infinitely compressible at constant temperature turns the idea of 

expansion work into a conundrum! Also, practical engines are open systems, and the closed 

piston-cylinder models employed classically are over-idealized and grossly inaccurate.  
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The most intriguing challenge, however, relates to the concept of entropy, which now appears 

inescapably dubious. A cornerstone of classical thermodynamics, the entropy idea also 

represented a philosophic denouement of nineteenth century science. Yet, closer scrutiny of 

the operations of the Carnot cycle confirms earlier suspicions about the nature of entropy, 

thus equally demanding that we re-examine its molecular-statistical offshoot, the notion of 

randomness.   

It is noteworthy that thermodynamics, always eminently practical, dealt with the palpable 

universe. However, thermodynamics apparently rests on a foundation of Newtonian 

intangible, such as energy, work, heat, etc. All the same, its outcomes are perceivable to the 

human senses, in contrast to the inferential reality of the quantum-molecular world. It is 

indeed intriguing that the foundations of thermodynamics now appear no less mystifying, 

perhaps even dubious, a conclusion that strikes at the heart of the scientific method itself.    
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