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Abstract

The purpose of this paper is two-fold. First, we would like to write down algebraic
expression for the wave function of general excited state of harmonic oscillator which
doesn’t include derivative signs (this is to be contrasted with typical physics textbook
which only gets rid of derivative signs for first few excited states, while leaving deriva-
tives in when it comes to Hermite polynomial for general n). Secondly, we would like to
write similar expression for two dimensional case as well. In the process of tackling two
dimensions, we will highlight the interplay between Cartesian and polar coordinates in
2D in the context of an oscillator. All of the above mentioned results have probably
been derived by others but unfortunately they are not easily available. The purpose
of this paper is to make it easier for both students and general public to look up said
results and their derivations, should the need arise. We also attempt to illustrate differ-
ent angles from which one could look at the problem and this way encourage students
to think more deeply about the material.

1. Introduction

Typical textbook presentation of harmonic oscillator (see, for example [1] and [2]) proceeds
as follows: first creation/annihilation operators, their properties, and energy spectrum are
described, then by use of creation operators the wave functions for first four or five excited
states are given, and finally a general excited state is expressed in terms of Hermite polyno-
mial where the latter is defined in terms of n-th derivative of e=*°/2. However, there is one
thing the textbooks skip. On the one hand, they give algebraic expression for Hermite poly-
nomial without derivative sign for first few states; on the other hand, they give an expression
with derivative sign for general state; but they never give an expression without derivative
sign for general state. There is no good reason for such omission since said expression is
known (see [3]). But even if one does check out [3], one won't see the derivation of such
expression, only the result. One of the purposes of this paper is to provide the derivation
of the above expression. I am not claiming to do anything new: after all, in order for such



an expression to be found in [3], it must have been derived somehow by someone else; and
besides, once the reader sees that expression in [3], they should be able to carry out the
induction on their own. My task is to simply make such derivation more easily available for
both students and public, which could potentially save them a lot of time.

Apart from that, my other purpose is to expand the treatment of harmonic oscillator to
two dimensions. On the first glance, one can argue that it is a "trivial” issue of separation
of variables. What makes it a lot less "trivial”, however, is that a typical state obtained by
separation of variables is not rotationally symmetric. The reason for this is that any given
”Cartesian” state is a linear combination of ”"polar” states of different angular momenta.
Each polar state ”by itself” is rotationally symmetric, but their linear combination is not,
due to the fact that difference in their angular momenta implies difference in phase factor
they pick up with rotation. Such an issue has been acknowledged in [4], and the differential
equation for Harmonic oscillator in polar coordinates was given. However, solving the polar
differential equation given in [4] is quite difficult. In this paper we pick a different approach.
We take the solutions for n-th excited state in x multiplied by ground state in y, and then
replace x with (re® + re=")/2 (since in y direction we have a ground state, we don’t have
to worry about it other than extra factor e~ mwy?/ 2) ; after replacing #* with a binomial
expansion of the above, we can readily extract terms proportional to e*¢ which would thus
"isolate” the state with fixed angular momentum L.

The above way of doing it raises some interesting questions. In particular, one still
has raising/lowering operators described in polar coordinates (see Eq 41- 45, 54- 57, 67 and
73) which would allow us to generate any state with fixed energy and angular momentum
by acting on a vacuum state in polar coordinates with those operators enough times. This
procedure is clearly very different from the one described in the previous paragraph; so will
these two procedures really give the same answer? As a physicist, I know the answer is
yes; but a mathematician would want to verify it (such verification is left to the reader —
see Exercise 1). This is just one of several other examples where we can either save a lot
of work by ”trusting physics” or work a lot harder and carry various mathematical proofs
that different "physics” approaches would in fact give us the same answer. As a matter of
fact, from the physicist’s point of view, this paper could have been reduced to Sections 2-4
and 6-8. On the other hand, Sections 5, 9 and 10, which make paper twice longer than it
could have been, are basically verifications that different results "match” the way they are
"supposed” to. And, in fact, there are even more verifications that should be done — some
of which are listed as exercises in Section 11.

Since different approaches differ in difficulty, I have picked the easiest possible approach
in obtaining ”original” answer; but then I was ”forced” to face more difficulties in ”verifica-
tion” parts where I had to bring in ”alternative” ways of getting the answer (which would
be more difficult than the hand-picked way I started with). What this means is that, on
the one hand, the student can ”"get” what is going on based on the ”easy” chapters and
then ”challenge themselves” on the difficult ones. This combination might allow a student
to tackle ”challenges” themselves without outside help, thus gain deeper understanding of
material. In particular, the student will get a lot of opportunities to think about interplay
between polar and Cartesian coordinates as well as the properties of angular momentum.



2. Harmonic oscillator in 1D: The basics

The Hamiltonian of harmonic oscillator is given by
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We will define raising and lowering operator as

at = mwx_ 1 i a= mw$+ ! i (2)
B 2 V2mwdr '\ 2 V2mw dx

which produces commutation relations

[a,a'] =1 (3)

and allows us to rewrite Hamiltonian as
i 1
H=wla'a+ 3 (4)

Thus, the eigenstates of H are the same as the ones of a'a, with eigenvalues ”shifted” by
w/2, which corresponds to ”vacuum energy”. The ground state [i) would satisfy

w
Hlto) = o) 5)

if it satisfies aalyy) = 0, or, equivalently,
althg) =0 (6)

By using Eq 2 for a, the solution of the latter takes the form

_ mwz

o(z) = Noe™ 2 (7)

In order to determine the value of Ny, we note that

2

1= / (Noem‘”Q/Q) dx = Ng/emmzdx (8)
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Ny = (/e_mwx dx) (9)

In order to evaluate the above integral, we note that

o, 2 o0 2
(/ e 2 d37> = /e_c(x2+y2)/2d$dy :/ e~ 20mpdy = = (10)

Thus,




Here, r = (/22 + y? is the distance from origin in (z,y)-plane, and 277 comes from the
radius of the circle. The above calculation implies that

/_Z % dr = @ (11)
o) ()

and, therefore,

leading to
mw 1/4 2
li) = (") e (13)
T
The fact that ayyy = 0 implies that a'aiyy = 0. Now, let us define |,,) according to
N,
|thn) = ( DRy (14)
where N, is selected in such a way that
(Ynlthn) =1 (15)
Let us prove by induction that
(a'a)[hn) = nlvn) (16)

First of all, the above is true for n = 0. Now, suppose it holds for some other n. Eq 14
implies that

Ny,
) = ol ) (1"
Therefore,
N, N,
(a0) i) = L (ala) ) = Ll (ol + fo, ol ) = (18)
N, Ny,
= —al(n+ D) = (n+ Dal =) = (n+ Dln + 1) (19)
Thus, by induction, Eq 16 holds. Substitution of Eq 16 into Eq 4 further implies that
1
Now, if we apply Eq 16 to Eq 17, we obtain
N, Ny,
1= i) = (22 ) i) = ( N“) (il ] + ala) ) =

_ (N) (Wal(1+ aa)|i) =

N, ) n+1) (21)



Therefore,
N, n+l 1

N, n+1

which, by induction, implies that

By substituting Eq 13 and Eq 2 , we obtain

wo=m(2) (e pmit) = @

Now, let us introduce an operator & as distinct entity from variable x, defined in the following
way:

. d . .d d
xl—x,@x—l—kx%,%x—l (25)

For reasons that will be clear shortly, we will rewrite Eq 24 in the following way,

]_ mw 1/4 mwi? mwi2 mw ]_ d mwi? "
W(1) = —=(—) e " | P — e ™| 1 2
o= 5(5) ()

Now, we notice that

d 2 2 2 df
< —cx/2 — _ —cx®/2 —cx? /2 27
e (1)) = —cwe () + e (27)
which can be rewritten in terms of an operator equation,
d ~2 ~2 ~2 d
o med?/2 s —cd?)2 —cg?/2 28
7o cre +e o (28)
and, therefore,
ecj:Q/Qie_Cig/Q = —c + 4 (29)
dx dx
At the same time, it is easy to see that
60562/2(1?6765:2/2 — 3 (30)

Equations 29 and 30 imply that

2 2mw dx 2mw dx
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Therefore, Eq 26 can be rewritten as

1/4 B n
p(x) = L <%) e_mzz( 2mw T — ! i) 1 (32)




3. Harmonic oscillator in 2D: The basics

Let us now discuss operators that take us from one state to the other. In two dimensions,

we have raizing and lowering operators corresponding to both axis:

QW \/_dx \/> \/—dx

2w \/— dy \/> J— dy

Thus, simple argument based on separation of variables tells us that

wmnz (:1:‘, Z/) = Pn, (xﬁ/}nz <y>

Since both & and d/dx simultaneously commute with both ¢ and d/dy, we obtain

mw _ mw@E?+s?)
n1n ) = T 2 X
Urniny (2,9) T
1 o\" 1 0\™
x( 2mw T — —) (\/Qmw;g— —) 1
2mw 0x 2mw Oy

and the energy of the above state is

1 1
Enlnzzw(n1+§ +w(n2—|—§>:w(n1+n2+1)

It is, however, more natural to use the linear combinations of these operators given by

al + m'{/ al — m;

=g T T a0
2 V2

Ay + 10, gz — 10y

Gy = —F—, Q__ = —
! V2 V2
and, therefore
aj“f‘ =a— ) a1-|—— = a/7+ ; aT_+ == a+, y aT__ = a++

One can also show that they satisfy the following commutation relations:

la—i,as-]=la——,a14]=1

[(Z+_, a—-‘r] = [a-l--i-a Cl,__] = -1
lasi,a i) =lay,a4q] =[a4—a_] =la——,a;_]=0
layq, 4] =las—,arq]=la—y,a ] =la—— a4 ]=0
[a11,ai] =lar,ar]=lay,ay]=]a—,a_]=0

(37)

(41)
(42)
(43)
(44)
(45)

Some of what we included is trivial (such as last line which basically says operators commute
with themselves or second line which follows from first line). The reason we included ”trivial”
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results is so that we have total of 16 commutation relations thus making sure we haven’t
missed anything. Finally, one can also show that

a_y+a__ ila_—_ —a_y)
Uy = ———  Qy= —— = 46
V2 Y V2 (46)
ol — Ayt +aq- Cal = i(as— —ay) (47)

V2 ! V2

In order to express them in terms of derivatives in polar coordinates, we recall that

r=rcosf, y=rsind (48)
0 sinf 0 cos
_ _—_>7 T _ 49
ox r Oy r (49)
and, therefore,
N 1 ﬁ: mw 1 2 p 1 sin9£ 50
a 2 v 2mw ox 2 " 2mw or coso+ V2w T 00 ( )
mw 1 mw 1 0 1 sinf 0

. = — = — 0 — ——— 1
a ) x+ 500 < 5 r—+ ST 8r> cos s— " 90 (51)
o mw 1 2_( mwr_ 1 2) cosd 1 sin@ﬁ (52)

v 2 ¥ V2mw 0y 2 V/2mw Or 2mw r 00
Ay = Ul + ! g = < mw'r—i- ! 2) cos@+—1 sin@ﬁ (53)

Y 2 Y V2mw 0y 2 2mw Or V2mw r 00

Thus,

(v - =2 - L2} 54)

¢m—war+r\/m_w%> (55)
<rm 1o, ¢ ﬁ) (56)

a__ = am\;izay = 62 (n/mw%— L P9 > (57)

We can now take linear combinations of the above expressions to obtain the following results:

it — Qb T Ay (58)

re 0 — W (59)
€i9§ = Vmw(a_y —ayy) (60)



L~ e ) (61)

The angular momentum is given by

L = TPy — YPx (62>

which, in polar coordinates becomes

0
L=—i— 63
156 (63)
By substituting
a; + al —i(a, — al)
x = L Py = —— 64
2mw b vV 2mw (64)
a, + af —i(a, — a)
y=———=, py= ——" (65)
2mw 2mw
into Eq 62 we obtain
L = —i(ala, — CLL%) (66)
and by using Eq 46 and Eq 47, the above evaluates to
L — a++a__ - a+_a_+ (67)
2
which, in combination with Eq 63 implies that
0 _ilayra— —ar_a_y)
— — 68
00 2 (68)

Now, we can obtain the action of the operators given in Eq 56, 54, 57 and 55 in two different
ways. On the one hand, we can look at the right hand sides, and compare them to Eq 63.
This tells us that operators in Eq 56 and Eq 54 raise angular momentum by a unit, while
the operators in Eq 57 and 55 lower it by a unit. On the other hand, we can look at the
left hand sides of Eq refl28a, 54, 57 and 55 and, in each case, take their commutator with
angular momentum, as described in Eq 67:

[L,ayi] =ass, [Lyay]=—ay—, [Liay]=a—y, [La-]=—a__ (69)

From this we know that operators that add to angular momentum are a,, and a_,, while
operators that subtract from angular momentum are a,_ and a__. On the other hand, by
looking at Eq 38 and 39, it is evident that the operators that add to energy are a,, and
a_ while the operators that subtract from energy are a_, and a__. The way to remember
what we just found out is that the ”first sign” indicates the addition/subtraction of "unit”
to/from energy, while the ”second sign” indicates the addition/subtraction of "unit” to/from
angular momentum. This is the reason behind our choice of notation. In terms of action on
states, our results imply

a—-l-w}nL) = AnLW)n—l,L-H) 3 a’——|¢nL> = BnL"’vZ)n—l,L—l) (70)
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gy [nr) = Cop|¥ns1,041) 5 as—[nr) = Dyp|tng1o-1) (71)

where the coefficients A,,1, B,r, C,r and D, will be computed later. We will also define
number operator as follows:

iy = ala, , Ry =dla, , i =h, + 0, (72)
The operator n can be re-expressed in polar coordinates as
n= [/ ¢ —. + [0/ ¢ — (73)

Now, from the fact that n = n, + n, where n, > 0 and n, > 0, it is obvious that n = 0
if and only if n, = n, = 0. Therefore, n = 0 state is unique; namely, ¥ (z,y) = Yo(z)¢o(y)
where 1)y is 1-dimensional ground state. From symmetry, we know that ¢y ()1 (y) happens
to have L = 0. In other words, we have 1y but we do not have g, for L # 0.

Now, suppose we were to have ¢;7. If we were to simultaneously get zero by acting on it
with (a, +ia,)/v/2 and (a, — a,)/+v/2, then the linear combination of these two zeros would
tell us that a, and a, would each send it to zero, thus making it a vacuum state. Since we
know that 1y, is not a vacuum, we have shown by contradiction that either (a, +ia,)/v/2 or
(ay — ia,)/+/2 would send it to something non-zero. But we know that both of them would
send it to n = 0 state, and the only n = 0 state that is non-zero is the one that happens
to have L = 0. Thus, the only two ways for us to accomplish it is to either have 71, which
would be sent to g via (a, — ia,)/v/2, or to have ¢ 1, which would be sent to /g via

(ay +iay,)/V/2.

Now suppose we have vy, By the same argument as before, either (a, + ia,)/v/2 or
(a, —ia,)/+/2 should send it to some non-zero entity. But each of these two operators would
send it to n = 1 state and, as we have just shown, the only n = 1 states are v; and ¥; _;.
If we are to arrive there from oy, then either L + 1 € {1,—1} (in which case we arrive
there through (a, + ia,)/v/2) or L — 1 € {1,—1} (in which case we arrive there through
(ay —ia,)/+/2). The statement "either L + 1 € {1,—~1} or L — 1 € {1,—1}" is equivalent
to the statement "either L € {0,—2} or L € {2,0}” which, in turn, is equivalent to the
statement L € {—2,0,2}.

We can now try to generalize it: for any given n, the allowed values of L are {—n, —n +
2,---,n —2,n}. In other words, they satisfy two conditions: first of all, —n < L < n
and, secondly, n — L is even. Now, suppose it is true for a given n, and let us look at
n + 1. As before, ¥, should be sent to non-zero entity by either (a, + ia,)/+/2 or
by (a, — ia,)/v/2. In the former case, L +1 € {-n,—n +2,---,n — 2,n} and in the
latter case L — 1 € {—n,—n+2,--- ;n — 2,n}. This means that, in the former case, L €
{-n—1,—n+1, -+ ;,n—3,n—1} and in the latter case Lin{—n+1,—n+3,--- ;n—1,n+1}.
Thus, if we combine both cases, we obtain L € {—-n—1,—n+1,--- ;n—1,n+ 1}. Thus,
the induction step works.

Let us now calculate A,,;, B,r, Cnr and D, 1.

AELL = <¢nL|a+—a—+|¢nL> , Bur = |¢nL|a++a——|¢nL> (74)



Chp = |nrla——ayy|nr) , Doy = ($nrla_tay |ihnr) (75)
By looking at Eq 66 it is easy to see that

i — L
ay a4 = 5 (76)
i+ L
Ay a4 = 5 (77)
By using Eq 41 and 42, we obtain
i+ L
a__ayy =1+ n—{2— (78)
i— L
Gty =1+ ! 5 (79)
Therefore,
n—1L n+ L n+ L n—L
AELL:T’BELL: 9 ,OiL:]-‘i‘ 9 7‘D3LL:]‘+ (80)

Let us now check consistency between equation 70 and 71. We can relabel n and L in such
a way that any given equation only has n, L, n—1 and L — 1 and does not have either n+ 1
or L+ 1:

a—i|n—1) = Anp-1|¥n-1L) , a——|tnr) = Bup|¥n-1,0-1) (81)
Ayt |n-1.0-1) = Co1,n-1|¥nL) » @4 |tn_1.0) = Dn_1,0|tn1-1) (82)
Therefore,
1 1
)=t = ————aa |, 83
WJ L> Cnflnyl a++|¢ 1,L 1> BnLCnfLLflaJr—i_a WJ L> ( )
1 a,; —ia, 1
ne1.L—1) = W) = ————————a__ n—1.L— 84
[Yn—1,-1) B V3 nL) BorCoird” i |n-1,0-1) (84)
1
n— = - n,L—1/ — — —|¥n— 85
[Un-1,L) 1. Y1) A D [Un-1,L) (85)
1
n,L—1) — — | ¥n— = —d— n,L— 86
[Un,L-1) Do [¥n-1.L) A D +|¥n,L-1) (86)
By using Eq 76, 77, 78 and 79, we obtain
1 n+L
[¥ne) BiCho1n-1 2 [¥ne) (87)
1 A+ L
ne1l—1) = ———| 1 n—1.L— 88
[Yn—1,-1) BnLOnl,Ll( + )W 1,0-1) (88)
1 f—L
n— =— |1 n— 89
[Un-1.L) AM_an_LL( + )W 1,L) (89)
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1 n—
Apr-1Dyporp 2

Now, we have to be careful when converting operators into scalars. For example,

7AﬂL|¢n—1,L> - (TL - 1)|¢n—1,L> 7£ n|¢n—1,L> (91)

It is crucial to keep track of where we have a hat and where we don’t. Keeping this in mind,
the above four equations become

ozt = L ) (90)

1 n+L
L) = n 92
[¥nz) BnCpo1p-1 2 [¥ne) (92)
1 (n—1)+(L—-1)
n— — - 1 n— — 93
orri) = g —— 1+ erie1) (99
(n—1)—L
— = 1 — 94
foomnt) = g (1 g aen) (99
1 n—(L—1)
n,L—1) — n,L— 95
|tn,2-1) A D1t 5 |¥n,-1) (95)
which evaluate to . Ll
n
L) = " 96
a) = G g ) (96)
1 n+ L
n—1,L—-1) — n—1,L— 97
[¥n-1,L-1) BorCoris 2 |¥n-1,0-1) (97)
1 n—L+1
n— = n— 98
|thn-1,) A D 2 |thn-1,) (98)
1 n—L+1
n,L—1) — n,L— 99
|thn,-1) A, D 2 |tn,-1) (99)
Thus, the consistency requires that
n+ L n—L+1
BnrCp1p-1 = 5 Apr-1Dnap = 5 (100)

Now, if we compare it to the definitions of A, B, C' and D given in Eq 80, we will find that
the above conditions indeed hold:

L —1 L—1 L
BuyCospr = \/n+ \/1 N (n—1)+( ) _n+ (101)
2 2 2
n—(L—1 n—1)—1L n—L+1
Ap 1Dy, = \/—<2 >\/1 + ( 2) = 5 (102)
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4. a" and (a")" in 1D: Hand waving calculation

So far we have shown how to make a "single step” by using various operators that take us
from one step to the other. One can easily repeat said ”single step” a few times and thus
make two steps, three steps, and so forth. But generalizing it to n steps is not as simple.
The goal of this section is to carry out combinatoric arguments that would allow us to do
that. In particular, we would like to compute the expression of the form (kz + 10,)", where

k=V2mw, | =— (103)
2mw

Let us start with an example of n = 4. In order to see what happens combinatorically, let us
try "more general” expression, (kx,, + 10,,) - - (kxa, + 10,,) and then substitute a ”special
case” of a1 = as = a3 = a4, = 1. We will use the commutation relation

[Oa; Ta,] = 05! (104)

in order to "push” all of x-s to the left and all of 9-s to the right. After some straightforward,
yet tedious, calculation, one finds that

(kayTay + lay Oay ) (KayTay + la28a2)(ka3$a3 + laaaa;a)(kmmm +14,0ay) =

= kaykaykaykasTay TayTagTay + lay KaskasKayTaz TagTayOay + KaylayKaskayTay TayTayOay+
Fkay kaylaska,Tay TayTayOus + Kaykaykaslay, Tay TayTas0ay + KaykaslaglayTay TayOasOay+
tkaylayKaglasay TagO0ay Oay + KaylaslagkasTay Tay0ay Oay + lay KayKaglasas TayOay Oay +
oy kaylaskay TayTay Oy Oug + laylayKaskay TasTay Oy Ony + KaylaglaslasTay OayOas Oay+
FlakaylaslayCay0ay 0as0uy + laylagkaslasTasOay OuyOay + laylaglaskay TayOay Ony Ous+
HlaylaslaslayOay 0y OasOay + Ogilay KaskaskayTasTay + Ogalay KaykaslayTazOay+
H0grlay KaylaskayTayOas + Ogalay Kaglaslay Oy Oay + Ogalay KaykasKayTayTa,+ (105)
F0arlay kaykaslay Tay Oay + 0gilaylaykaskayTay Oy + 0gilay laskaslay Oay Oay +
0t lay KaykasKayTayTas + 0gilar KaylaskayTayOas + 0 lay laykaskay Tay Oy +
gt laylaylaskayOas Oas + 0gi kaylaskaska, Tay Tay + 0gKaylaykaslayTay Ouy+
Hogilaylaskaska;TayOay + Ogilaylaskaslay Oay Oy + 02 Kaylaykaskay Tay Tas+
02 kaylaylaskasTay Oas + 02 lay laykasKay TazOay + Oglay laylas Kay Oay Oy +
g kay kaylaskayTay Tay + 055 KaylaylaskayTay Oay + 02 lay KaylasKay Tay Oay +
H0aslarlaslaskas Oay Ouy + Ogs Ogilas Kaglaskay + g3 0 lay lagKagKay + g3 02 lay lay KagKay

If we now set
A =Gy =as3 =a4 =1 (106)

the above evaluates to

(ka1 + 100 = K + 30250, + 61220202 + Ay PPy 0 + 1200+
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+6k 12 + 12K 22101 + 6k, 307 + 3k313 (107)

In order to be able to generalize the above from n = 4 to general n, we would have to first
look closely at n = 4 case and see exactly how the above coefficients were produced. First of
all, it is clear that k comes for a ride with x while [ comes for a ride with 0, so for simplicity
we will drop k-s and [-s. Now, let us look at the numerical coefficients of each term:

1. There is only one way of producing x}, namely, z4,Za,%a,Ta,, Which is why it comes
with coefficient of 1.

2. In order to produce 230, we can "select” i € {1,2,3,4} and then write z, - - - T4, ,Za,,,
Since there are four choices of i € {1,2,3,4}, the term 230, comes with coefficient 4.

3. In order to produce z29? we have to select {ij,is} € {1,2,3,4} such that i; < iy.
This will "dictate” the values of i3 and i, if we demand that {i, 2,143,474} = {1,2,3,4} and
i3 < i4. Then we use z;,7;,0;,0;, to produce x?0?. There are 6 choices of i; < iy, and for
each such choice there is a unique choice of i3 < i4. Thus, 220? comes with the coefficient 6.

4. Tn order to produce 7,0} we can "select” i € {1,2,3,4} and then write 24,04, - - * Oa,_, O
Since there are four choices of i € {1,2,3,4}, the term 230, comes with coefficient 4.

5. There is only one way of producing 97, namely, 0y, 0a,04,0,,, which is why it comes
with coefficient of 1.

6. In order to produce 2% we need to start off from three z-s, one 9, and then ”contract”
one of the z-s with the 0 by replacing them with 53;, thus leaving two un-contracted z-s. For
example, if we decided to contract d,, with z,,, we would obtain 0;!24,4,. Now, in order to
compute the number of all possible ways of doing that, we can utilize the following algorithm.
First, we will select iy < 725 and "make up our mind” that we want to ”contract” 3% with
Ta,,. After that, we have unique way of specifying iz < iy such that {i, 49,43, 14} = {1,2, 3,4}
and including un-contracted z,,, and z,, , thus producing (5313 Ta;,Ta;, - Finally, when we set
a1 = ay = az = ay, the coefficient of §%1q;, will be replaced by 1, thus producing z%. Since
there are 6 ways of specifying i1 < i5 and for each such way there is a unique way of specifying
i3 < i4, we see that 27 comes with coefficient of 6.

7. In order to produce 19, we need to start off from two x-s, two 0-s, and then ”contract”
one of the x-s with one of 0-s by replacing them with (55;’_, thus leaving one un-contracted
x and one un-contracted 9. For example, if we decided to contract 0,, with z,,, we would
obtain either 07l24,0,, or 6517,,0,,. Now, in order to compute the number of all possible
ways of doing that, we can utilize the following algorithm. First, we will select ¢; < 75 and
"make up our mind” that we want to "contract” 9,, with z,, (in other words, we already

know that 5(?21 will be one of the factors). After that, we have unique way of specifying
i3 < 14 such that {iy,1s,143,i4} = {1,2,3,4}. Then we have two choices:either include Tay, Ouy,
or include x4, O,,,. The former would result in 63; Ta;,0a;, and the latter with 62; Ta;, Oa, -
Finally, once we set a; = as = az = ay, all of the coefficients of 63;’, will be replaced by 1,
thus we obtain x10;. Since we have 6 choices of 7; < iy, 1 choice of i3 < iy, and 2 choices
between x4, 0,,, and x,,, 0q,,, the total number of choices is 6 x 1 x 2 = 12, hence x10; comes

with coeflicient 12.
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8. In order to produce 97 we need to start off from three 9-s, one x, and then ”contract”
one of the 0-s with the z by replacing them with 53;’_, thus leaving two un-contracted d-s. For
example, if we decided to contract 9,, with x,,, we would obtain 7! 0,,0,,. Now, in order to
compute the number of all possible ways of doing that, we can utilize the following algorithm.
First, we will select i1 < i3 and "make up our mind” that we want to ”contract” 8% with
,,,. After that, we have unique way of specifying i3 < 44 such that {41, 12,143,434} = {1,2,3,4}
and including un-contracted 9,,, and 9, , thus producing 522; Ou;, O, - Finally, when we set
a; = ay = az = ay, the coefficient of §%1a;, will be replaced by 1, thus producing 9?. Since
there are 6 ways of specifying 7; < 75 and for each such way there is a unique way of specifying
i3 < 14, we see that 0? comes with coefficient of 6.

9.In order to produce a scalar, we need to contract all four indexes. We first specify
i1 < i5. Then we have a unique way of specifying i3 < i4 such that {iy,s,13,i4} = {1,2,3,4}.
Then we contract 7; with i5 and i3 with i4, producing 52;21 5ij Then, by setting a1 = ay =
az = a4 this produces 1. Now, since there are 6 ways of selecting i; < i and for each of those
there is 1 way of selecting i3 < 44, on the first glance one might wrongly say that coefficient is
6 x 1 = 6. The reason the actual coefficient is 3 is that the situation (iy, is,43,44) = (1,2, 3,4)
is equivalent to the situation (71,12,13,74) = (3,4,1,2) since both would produce 31452 In
other words, we have 2 contractions and, therefore, 2! ways of permuting said contractions.
Thus, we have to divide our result by 2!, which would produce 6 x 1/2! = 3. The latter, in
fact, coincides with the actual coefficient we have obtained.

Let us now use the above examples to generalize from (z; + 91)* to (z1 + 01)™. Suppose
we are interested in the coeflicient next to x49%. If A + B < n, we need to "get rid of” all
the rest of x-s and 0-s by means of contractions. This means that n — A — B should be even,
and also that the number of x-s and 0-s we are getting rid of should be the same. In other
words, we start out with the number of z-s being A + C, the number of J-s being B + C
and then introducing C contractions in order to bring down the number of z-s from A + C
to A, and number of 0-s from B + C' to B. This means that

A+B+2C =n (108)

Now, the crucial thing is to count the number of ways we can accomplish the above. By
looking at examples earlier, it is apparent that ”a way” amounts to our specification which
of the indexes correspond to x, which to 0, and which are contracted with which. Going
back to n = 4, if I say that index 1 is contracted with index 3, index 2 corresponds to
x and index 4 corresponds to 0, then we can immediately read off that we have started
with g, Ta,Ta;0,, and produced 03! wq,0,,. The way we know that we had 0, -+ 24, -+ as
opposed to x4, - -+ Oy, - -+ is that we know from our earlier examples that 0 and x contract
only if 0 has smaller index than x does. This means that we do not have to specify how we
fill the contractions. As long as we say what contractions are by listing pairs of numbers,
there will only be one way of filling them with x-s and d-s. On the other hand, among
non-contracted indexes z-s and 0-s can be distributed in any way we choose. Thus, while
continuing to insist that 1 is contracted with 3, we could also say that 2 is occupied by 0
and 4 by z. Then we would produce 93! 240,. Notably, 0 would still stay at the right of x:
after all, our entire goal is to push all the 0-s to the right. But, at the same time, it would
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have smaller index. On the other hand, we do have a constraint speficying the total number
of non-contracted z-s and the total number of non-contracted 0-s: in case of this example
these are A = 1 and B = 1, respectively. So, going back to the general case, our strategy
involves the following steps:

1. Select the choice of C' contractions
2. Distribute A x-s and B 0-s among n — 2C' of non-contracted cells

Let us specify each new contraction one by one. So, the number of choices of first con-
traction is n(n — 1)/2, the number of choices of second contraction is (n — 2)(n — 3)/2, and
when we reach the last contraction, we would have (n+2—2C)(n+1—2C)/2 options. Fur-
thermore, by looking at part 9, we see that "first” specifying 3! and ”after that” specifying
g2 is the same as doing it in reverse order. Thus, we have to divide that product by C!.
Therefore,

I nn—-—1) n+2-2C)(n+1-20C) n!

cl 2 2 ZQCCl(n—QC’)!(

#{ways to contract} = 109)
Now, once we have established which elements are contracted, we have to decide which of
the non-contracted elements will be occupied by x and which by 0. At this point, we have
n — 2C' non-contracted ”cells” left, and we have A z-s and B 0-s to distribute among them.
It is easy to see that the number of ways of doing so is

—20)!
f{non — contracted choices} = % (110)
Therefore, the total number of ways of producing z49? is
. n! (n —2C)! n!
#{complete prescriptions} = 3CCIn —20)1 AIBI = SCAIBIC (111)

Now, when we contract d with x, we still retain [ that came with 0 and k that came with
x. Thus, despite the fact that the number of non-contracted z-s is A, the number of k-s is
A+ C. Likewise, despite the fact that the number of non-contracted 0-s is B, the number
of I-s is B + C. This, together with Eq 108, tells us that

n!/{:A+ClB+C

d\" d\"”
kx+1— | = — 4 — 112
( v da:> ) el <d:c) (112)
A+B+2C=n
Now, Eq 108 allows us to remove B by replacing it with
B=n-20C-A (113)

This, however, immediately tells us that

A<n-2C (114)
which, in turn, tells us that C' < n/2. Since C' is integer, this means that
C< EJ (115)



Thus, we obtain

d n 5] n—2c k’A+Cln A—C d n—2C—-A
kr+1— ) = | — 11
<“ dx) 2°CIAl(n —2C — A" (dx> (116)

where we have pulled out n! outside of the sum, as constant factor.

\ 3

5. " and (a')" in 1D: Proof by induction

So far we have made an ”intuitive” argument in favor of Eq 116. Now, in order to know for
sure that our ”intuition” didn’t let us down, we now have to verify Eq 116 by induction. Let
us rewrite Eq 116 as

d\" LA+Cn—A-C A d n—2C—-A
— — nl R
(karldx) nto 2CCTAl(n — 2C — A)" (da:) (117)
(A,C)ESR
where
Sn:{(A,C)‘AEN,C’eN,OgCgLgJ,OSAgn—ZC} (118)

Since the combinatorial arguments we were using are quite hand waving, it is instructive to
prove our result by induction. In other words, we will act with kx + ld/dz on the right hand
side and show that the result will be the same, up to replacing n with n 4 1. Let us first act
with d/dz. It is easy to see that

d [EA fol ZL’A

d
il i >
A A A e (119)

However, since (—1)! is undefined, the above only holds for A > 1. On the other hand, for
A = 0 one trivially has

da® d 2°d

— = = 12
dr 0!  dx 0ldx (120)

Therefore,

d kA—&-C’zn—A—C A d n—2C—A
)

i 2 2CCIAIn — 20 — A)" \da
(A,C)ESN

kA+Cln—A—C’ d n—2C—A
- Z A7 — + (121)
20C1A = 1)l(n—2C — A)! dx

A>1;(A,C)ESy

kA—i—Cln A-C d n+1-2C—-A

DS (&
2CCIAl(n —2C — A" \ldx

(A,C)eSR

Now, as far as the first step is concerned, we can re-label A by introducing

A=A-1 (122)
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Now, we are hoping to claim that the induction step works. Thus, we are trying to replace
n with n + 1. In order to do it, we re-label C as well via

C'=C+1 (123)

d n—2C—A /d n+1-2C"—A’
A-1( & _ LA 124
) (@) azs

At the same time, the coefficients still have A and C, so it would take a little bit of algebra
to show that we would, indeed, obtain the desired result. Before we do that, however,
let us address a bit more serious issue: making sure that we will end up summing over
(A, C") € S,41. We can re-express the condition given in the sum of the first term on the
right hand side in the following way:

which results in

A>1
> - <A<n-—
{?A_Ol)es }<:> 0<C< (%] @{é;é;nﬁ 20} (125)
’ " 0<A<n-2C - — b2
Apart from that, we also see that
n—1 n—1
1§A§n—20=>1§n—20=>C§T:>C§{ 5 J (126)
This shows that
1<A<n-=-20C . 1<A<n-2C (127)
0<C< |2 0<C <[5t
At th