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Abstract

The purpose of this paper is two-fold. First, we would like to write down algebraic
expression for the wave function of general excited state of harmonic oscillator which
doesn’t include derivative signs (this is to be contrasted with typical physics textbook
which only gets rid of derivative signs for first few excited states, while leaving deriva-
tives in when it comes to Hermite polynomial for general n). Secondly, we would like to
write similar expression for two dimensional case as well. In the process of tackling two
dimensions, we will highlight the interplay between Cartesian and polar coordinates in
2D in the context of an oscillator. All of the above mentioned results have probably
been derived by others but unfortunately they are not easily available. The purpose
of this paper is to make it easier for both students and general public to look up said
results and their derivations, should the need arise. We also attempt to illustrate differ-
ent angles from which one could look at the problem and this way encourage students
to think more deeply about the material.

1. Introduction

Typical textbook presentation of harmonic oscillator (see, for example [1] and [2]) proceeds
as follows: first creation/annihilation operators, their properties, and energy spectrum are
described, then by use of creation operators the wave functions for first four or five excited
states are given, and finally a general excited state is expressed in terms of Hermite polyno-
mial where the latter is defined in terms of n-th derivative of e−x

2/2. However, there is one
thing the textbooks skip. On the one hand, they give algebraic expression for Hermite poly-
nomial without derivative sign for first few states ; on the other hand, they give an expression
with derivative sign for general state; but they never give an expression without derivative
sign for general state. There is no good reason for such omission since said expression is
known (see [3]). But even if one does check out [3], one won’t see the derivation of such
expression, only the result. One of the purposes of this paper is to provide the derivation
of the above expression. I am not claiming to do anything new: after all, in order for such
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an expression to be found in [3], it must have been derived somehow by someone else; and
besides, once the reader sees that expression in [3], they should be able to carry out the
induction on their own. My task is to simply make such derivation more easily available for
both students and public, which could potentially save them a lot of time.

Apart from that, my other purpose is to expand the treatment of harmonic oscillator to
two dimensions. On the first glance, one can argue that it is a ”trivial” issue of separation
of variables. What makes it a lot less ”trivial”, however, is that a typical state obtained by
separation of variables is not rotationally symmetric. The reason for this is that any given
”Cartesian” state is a linear combination of ”polar” states of different angular momenta.
Each polar state ”by itself” is rotationally symmetric, but their linear combination is not,
due to the fact that difference in their angular momenta implies difference in phase factor
they pick up with rotation. Such an issue has been acknowledged in [4], and the differential
equation for Harmonic oscillator in polar coordinates was given. However, solving the polar
differential equation given in [4] is quite difficult. In this paper we pick a different approach.
We take the solutions for n-th excited state in x multiplied by ground state in y, and then
replace x with (reiθ + re−iθ)/2 (since in y direction we have a ground state, we don’t have
to worry about it other than extra factor e−mωy

2/2) ; after replacing xk with a binomial
expansion of the above, we can readily extract terms proportional to eiLθ which would thus
”isolate” the state with fixed angular momentum L.

The above way of doing it raises some interesting questions. In particular, one still
has raising/lowering operators described in polar coordinates (see Eq 41- 45, 54- 57, 67 and
73) which would allow us to generate any state with fixed energy and angular momentum
by acting on a vacuum state in polar coordinates with those operators enough times. This
procedure is clearly very different from the one described in the previous paragraph; so will
these two procedures really give the same answer? As a physicist, I know the answer is
yes; but a mathematician would want to verify it (such verification is left to the reader –
see Exercise 1). This is just one of several other examples where we can either save a lot
of work by ”trusting physics” or work a lot harder and carry various mathematical proofs
that different ”physics” approaches would in fact give us the same answer. As a matter of
fact, from the physicist’s point of view, this paper could have been reduced to Sections 2-4
and 6-8. On the other hand, Sections 5, 9 and 10, which make paper twice longer than it
could have been, are basically verifications that different results ”match” the way they are
”supposed” to. And, in fact, there are even more verifications that should be done – some
of which are listed as exercises in Section 11.

Since different approaches differ in difficulty, I have picked the easiest possible approach
in obtaining ”original” answer; but then I was ”forced” to face more difficulties in ”verifica-
tion” parts where I had to bring in ”alternative” ways of getting the answer (which would
be more difficult than the hand-picked way I started with). What this means is that, on
the one hand, the student can ”get” what is going on based on the ”easy” chapters and
then ”challenge themselves” on the difficult ones. This combination might allow a student
to tackle ”challenges” themselves without outside help, thus gain deeper understanding of
material. In particular, the student will get a lot of opportunities to think about interplay
between polar and Cartesian coordinates as well as the properties of angular momentum.
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2. Harmonic oscillator in 1D: The basics

The Hamiltonian of harmonic oscillator is given by

H =
mω2x2

2
− 1

2m

d2

dx2
(1)

We will define raising and lowering operator as

a† =

√
mω

2
x− 1√

2mω

d

dx
, a =

√
mω

2
x+

1√
2mω

d

dx
(2)

which produces commutation relations

[a, a†] = 1 (3)

and allows us to rewrite Hamiltonian as

H = ω

(
a†a+

1

2

)
(4)

Thus, the eigenstates of H are the same as the ones of a†a, with eigenvalues ”shifted” by
ω/2, which corresponds to ”vacuum energy”. The ground state |ψ0〉 would satisfy

H|ψ0〉 =
ω

2
|ψ0〉 (5)

if it satisfies a†a|ψ0〉 = 0, or, equivalently,

a|ψ0〉 = 0 (6)

By using Eq 2 for a, the solution of the latter takes the form

ψ0(x) = N0e
−mωx2

2 (7)

In order to determine the value of N0, we note that

1 =

∫ (
N0e

−mωx2/2
)2

dx = N2
0

∫
e−mωx

2

dx (8)

Thus,

N0 =

(∫
e−mωx

2

dx

)−1/2
(9)

In order to evaluate the above integral, we note that(∫ ∞
−∞

e−
cx2

2 dx

)2

=

∫
e−c(x

2+y2)/2dxdy =

∫ ∞
0

e−cr
2/22πrdr =

2π

a
(10)
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Here, r =
√
x2 + y2 is the distance from origin in (x, y)-plane, and 2πr comes from the

radius of the circle. The above calculation implies that∫ ∞
−∞

e−
cx2

2 dx =

√
2π

c
(11)

and, therefore,

N0 =

(∫
e−mωx

2

dx

)−1/2
=

(
mω

π

)1/4

(12)

leading to

ψ0(x) =

(
mω

π

)1/4

e−mωx
2/2 (13)

The fact that aψ0 = 0 implies that a†aψ0 = 0. Now, let us define |ψn〉 according to

|ψn〉 =
Nn

N0

(a†)n|ψ0〉 (14)

where Nn is selected in such a way that

〈ψn|ψn〉 = 1 (15)

Let us prove by induction that
(a†a)|ψn〉 = n|ψn〉 (16)

First of all, the above is true for n = 0. Now, suppose it holds for some other n. Eq 14
implies that

|ψn+1〉 =
Nn+1

Nn

a†|ψn〉 (17)

Therefore,

(a†a)|ψn+1〉 =
Nn+1

Nn

(a†a)(a†|ψn〉) =
Nn+1

Nn

a†(a†a+ [a, a†])|ψn〉 = (18)

=
Nn+1

Nn

a†(n+ 1)|ψn〉 = (n+ 1)a†
Nn+1

Nn

|ψn〉 = (n+ 1)|n+ 1〉 (19)

Thus, by induction, Eq 16 holds. Substitution of Eq 16 into Eq 4 further implies that

H|ψn〉 =

(
n+

1

2

)
ω|ψn〉 (20)

Now, if we apply Eq 16 to Eq 17, we obtain

1 = 〈ψn+1|ψn+1〉 =

(
Nn+1

Nn

)2

〈ψn|aa†|ψn〉 =

(
Nn+1

Nn

)2

〈ψn|([a, a†] + a†a)|ψn〉 =

=

(
Nn+1

Nn

)2

〈ψn|(1 + a†a)|ψn〉 =

(
Nn+1

Nn

)2

(n+ 1) (21)
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Therefore,
Nn+1

Nn

=
1√
n+ 1

(22)

which, by induction, implies that

Nn =
N0√
n!

=
1√
n!

(
mω

π

)1/4

(23)

By substituting Eq 13 and Eq 2 , we obtain

ψn(x) =
1√
n!

(
mω

π

)1/4(√
mω

2
x− 1√

2mω

d

dx

)n
e−

mωx2

2 (24)

Now, let us introduce an operator x̂ as distinct entity from variable x, defined in the following
way:

x̂1 = x ,
d

dx
x̂ = 1 + x̂

d

dx
,
d

dx
x = 1 (25)

For reasons that will be clear shortly, we will rewrite Eq 24 in the following way,

ψn(x) =
1√
n!

(
mω

π

)1/4

e−
mωx̂2

2

[
e

mωx̂2

2

(√
mω

2
x̂− 1√

2mω

d

dx

)
e−

mωx̂2

2

]n
1 (26)

Now, we notice that

d

dx
(e−cx

2/2f(x)) = −cxe−cx2/2f(x) + e−cx
2/2 df

dx
(27)

which can be rewritten in terms of an operator equation,

d

dx
e−cx̂

2/2 = −cx̂e−cx̂2/2 + e−cx̂
2/2 d

dx
(28)

and, therefore,

ecx̂
2/2 d

dx
e−cx̂

2/2 = −cx̂+
d

dx
(29)

At the same time, it is easy to see that

ecx̂
2/2x̂e−cx̂

2/2 = x̂ (30)

Equations 29 and 30 imply that

emωx̂
2/2

(√
mω

2
x− 1

2mω

d

dx

)
e−mωx

2/2 =
√

2mω x− 1√
2mω

d

dx
(31)

Therefore, Eq 26 can be rewritten as

ψn(x) =
1√
n!

(
mω

π

)1/4

e−
mωx̂2

2

(√
2mω x̂− 1√

2mω

d

dx

)n
1 (32)
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3. Harmonic oscillator in 2D: The basics

Let us now discuss operators that take us from one state to the other. In two dimensions,
we have raizing and lowering operators corresponding to both axis:

a†x =

√
mω

2
x− 1√

2mω

d

dx
, ax =

√
mω

2
x+

1√
2mω

d

dx
(33)

a†y =

√
mω

2
y − 1√

2mω

d

dy
, ay =

√
mω

2
y +

1√
2mω

d

dy
(34)

Thus, simple argument based on separation of variables tells us that

ψn1n2(x, y) = ψn1(x)ψn2(y) (35)

Since both x̂ and d/dx simultaneously commute with both ŷ and d/dy, we obtain

ψn1n2(x, y) =

√
mω

πn1!n2!
e−

mω(x̂2+ŷ2)
2 × (36)

×
(√

2mω x̂− 1√
2mω

∂

∂x

)n1
(√

2mω ŷ − 1√
2mω

∂

∂y

)n2

1

and the energy of the above state is

En1n2 = ω

(
n1 +

1

2

)
+ ω

(
n2 +

1

2

)
= ω(n1 + n2 + 1) (37)

It is, however, more natural to use the linear combinations of these operators given by

a++ =
a†x + ia†y√

2
, a+− =

a†x − ia†y√
2

(38)

a−+ =
ax + iay√

2
, a−− =

ax − iay√
2

(39)

and, therefore
a†++ = a−− , a

†
+− = a−+ , a

†
−+ = a+− , a

†
−− = a++ (40)

One can also show that they satisfy the following commutation relations:

[a−+, a+−] = [a−−, a++] = 1 (41)

[a+−, a−+] = [a++, a−−] = −1 (42)

[a++, a−+] = [a−+, a++] = [a+−, a−−] = [a−−, a+−] = 0 (43)

[a++, a+−] = [a+−, a++] = [a−+, a−−] = [a−−, a−+] = 0 (44)

[a++, a++] = [a+−, a+−] = [a−+, a−+] = [a−−, a−−] = 0 (45)

Some of what we included is trivial (such as last line which basically says operators commute
with themselves or second line which follows from first line). The reason we included ”trivial”
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results is so that we have total of 16 commutation relations thus making sure we haven’t
missed anything. Finally, one can also show that

ax =
a−+ + a−−√

2
, ay =

i(a−− − a−+)√
2

(46)

a†x =
a++ + a+−√

2
, a†y =

i(a+− − a++)√
2

(47)

In order to express them in terms of derivatives in polar coordinates, we recall that

x = r cos θ , y = r sin θ (48)

∂

∂x
= −sin θ

r
,
∂

∂y
=

cos θ

r
(49)

and, therefore,

a†x =

√
mω

2
x− 1√

2mω

∂

∂x
=

(√
mω

2
r − 1√

2mω

∂

∂r

)
cos θ +

1√
2mω

sin θ

r

∂

∂θ
(50)

ax =

√
mω

2
x+

1√
2mω

∂

∂x
=

(√
mω

2
r +

1√
2mω

∂

∂r

)
cos θ − 1√

2mω

sin θ

r

∂

∂θ
(51)

a†y =

√
mω

2
y − 1√

2mω

∂

∂y
=

(√
mω

2
r − 1√

2mω

∂

∂r

)
cos θ − 1√

2mω

sin θ

r

∂

∂θ
(52)

ay =

√
mω

2
y +

1√
2mω

∂

∂y
=

(√
mω

2
r +

1√
2mω

∂

∂r

)
cos θ +

1√
2mω

sin θ

r

∂

∂θ
(53)

Thus,

a++ =
a†x + ia†y√

2
=
eiθ

2

(
r
√
mω − 1√

mω

∂

∂r
− i

r
√
mω

∂

∂θ

)
(54)

a+− =
a†x − ia†y√

2
=
e−iθ

2

(
r
√
mω − 1√

mω

∂

∂r
+

i

r
√
mω

∂

∂θ

)
(55)

a−+ =
ax + iay√

2
=
eiθ

2

(
r
√
mω +

1√
mω

∂

∂r
+

i

r
√
mω

∂

∂θ

)
(56)

a−− =
ax − iay√

2
=
e−iθ

2

(
r
√
mω +

1√
mω

∂

∂r
− i

r
√
mω

∂

∂θ

)
(57)

We can now take linear combinations of the above expressions to obtain the following results:

reiθ =
a++ + a−+√

mω
(58)

re−iθ =
a+− + a−−√

mω
(59)

eiθ
∂

∂r
=
√
mω(a−+ − a++) (60)
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e−iθ
∂

∂r
=
√
mω(a−− − a+−) (61)

The angular momentum is given by

L = xpy − ypx (62)

which, in polar coordinates becomes

L = −i ∂
∂θ

(63)

By substituting

x =
ax + a†x√

2mω
, px =

−i(ax − a†x)√
2mω

(64)

y =
ay + a†y√

2mω
, py =

−i(ay − a†y)√
2mω

(65)

into Eq 62 we obtain
L = −i(a†xay − a†yax) (66)

and by using Eq 46 and Eq 47, the above evaluates to

L =
a++a−− − a+−a−+

2
(67)

which, in combination with Eq 63 implies that

∂

∂θ
=
i(a++a−− − a+−a−+)

2
(68)

Now, we can obtain the action of the operators given in Eq 56, 54, 57 and 55 in two different
ways. On the one hand, we can look at the right hand sides, and compare them to Eq 63.
This tells us that operators in Eq 56 and Eq 54 raise angular momentum by a unit, while
the operators in Eq 57 and 55 lower it by a unit. On the other hand, we can look at the
left hand sides of Eq ref128a, 54, 57 and 55 and, in each case, take their commutator with
angular momentum, as described in Eq 67:

[L, a++] = a++ , [L, a+−] = −a+− , [L, a−+] = a−+ , [L, a−−] = −a−− (69)

From this we know that operators that add to angular momentum are a++ and a−+, while
operators that subtract from angular momentum are a+− and a−−. On the other hand, by
looking at Eq 38 and 39, it is evident that the operators that add to energy are a++ and
a+− while the operators that subtract from energy are a−+ and a−−. The way to remember
what we just found out is that the ”first sign” indicates the addition/subtraction of ”unit”
to/from energy, while the ”second sign” indicates the addition/subtraction of ”unit” to/from
angular momentum. This is the reason behind our choice of notation. In terms of action on
states, our results imply

a−+|ψnL〉 = AnL|ψn−1,L+1〉 , a−−|ψnL〉 = BnL|ψn−1,L−1〉 (70)
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a++|ψnL〉 = CnL|ψn+1,L+1〉 , a+−|ψnL〉 = DnL|ψn+1,L−1〉 (71)

where the coefficients AnL, BnL, CnL and DnL will be computed later. We will also define
number operator as follows:

n̂x = a†xax , n̂y = a†yay , n̂ = n̂x + n̂y (72)

The operator n̂ can be re-expressed in polar coordinates as

n̂ = a++a−+ + a+−a−− (73)

Now, from the fact that n = nx + ny where nx ≥ 0 and ny ≥ 0, it is obvious that n = 0
if and only if nx = ny = 0. Therefore, n = 0 state is unique; namely, ψ(x, y) = ψ0(x)ψ0(y)
where ψ0 is 1-dimensional ground state. From symmetry, we know that ψ0(x)ψ0(y) happens
to have L = 0. In other words, we have ψ00 but we do not have ψ0L for L 6= 0.

Now, suppose we were to have ψ1L. If we were to simultaneously get zero by acting on it
with (ax + iay)/

√
2 and (ax − ay)/

√
2, then the linear combination of these two zeros would

tell us that ax and ay would each send it to zero, thus making it a vacuum state. Since we
know that ψ1L is not a vacuum, we have shown by contradiction that either (ax+ iay)/

√
2 or

(ax − iay)/
√

2 would send it to something non-zero. But we know that both of them would
send it to n = 0 state, and the only n = 0 state that is non-zero is the one that happens
to have L = 0. Thus, the only two ways for us to accomplish it is to either have ψ11, which
would be sent to ψ00 via (ax − iay)/

√
2, or to have ψ1,−1, which would be sent to ψ00 via

(ax + iay)/
√

2.

Now suppose we have ψ2L. By the same argument as before, either (ax + iay)/
√

2 or
(ax− iay)/

√
2 should send it to some non-zero entity. But each of these two operators would

send it to n = 1 state and, as we have just shown, the only n = 1 states are ψ11 and ψ1,−1.
If we are to arrive there from ψ2L then either L + 1 ∈ {1,−1} (in which case we arrive
there through (ax + iay)/

√
2) or L − 1 ∈ {1,−1} (in which case we arrive there through

(ax − iay)/
√

2). The statement ”either L + 1 ∈ {1,−1} or L − 1 ∈ {1,−1}” is equivalent
to the statement ”either L ∈ {0,−2} or L ∈ {2, 0}” which, in turn, is equivalent to the
statement L ∈ {−2, 0, 2}.

We can now try to generalize it: for any given n, the allowed values of L are {−n,−n+
2, · · · , n − 2, n}. In other words, they satisfy two conditions: first of all, −n ≤ L ≤ n
and, secondly, n − L is even. Now, suppose it is true for a given n, and let us look at
n + 1. As before, ψn+1,L should be sent to non-zero entity by either (ax + iay)/

√
2 or

by (ax − iay)/
√

2. In the former case, L + 1 ∈ {−n,−n + 2, · · · , n − 2, n} and in the
latter case L − 1 ∈ {−n,−n + 2, · · · , n − 2, n}. This means that, in the former case, L ∈
{−n−1,−n+1, · · · , n−3, n−1} and in the latter case Lin{−n+1,−n+3, · · · , n−1, n+1}.
Thus, if we combine both cases, we obtain L ∈ {−n − 1,−n + 1, · · · , n − 1, n + 1}. Thus,
the induction step works.

Let us now calculate AnL, BnL, CnL and DnL.

A2
nL = 〈ψnL|a+−a−+|ψnL〉 , BnL = |ψnL|a++a−−|ψnL〉 (74)
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C2
nL = |ψnL|a−−a++|ψnL〉 , D2

nL = 〈ψnL|a−+a+−|ψnL〉 (75)

By looking at Eq 66 it is easy to see that

a+−a−+ =
n̂− L̂

2
(76)

a++a−− =
n̂+ L̂

2
(77)

By using Eq 41 and 42, we obtain

a−−a++ = 1 +
n̂+ L̂

2
(78)

a−+a+− = 1 +
n̂− L̂

2
(79)

Therefore,

A2
nL =

n− L
2

, B2
nL =

n+ L

2
, C2

nL = 1 +
n+ L

2
, D2

nL = 1 +
n− L

2
(80)

Let us now check consistency between equation 70 and 71. We can relabel n and L in such
a way that any given equation only has n, L, n− 1 and L− 1 and does not have either n+ 1
or L+ 1:

a−+|ψn,L−1〉 = An,L−1|ψn−1,L〉 , a−−|ψnL〉 = BnL|ψn−1,L−1〉 (81)

a++|ψn−1,L−1〉 = Cn−1,L−1|ψnL〉 , a+−|ψn−1,L〉 = Dn−1,L|ψn,L−1〉 (82)

Therefore,

|ψnL〉 =
1

Cn−1,L−1
a++|ψn−1,L−1〉 =

1

BnLCn−1,L−1
a++a−−|ψnL〉 (83)

|ψn−1,L−1〉 =
1

BnL

ax − iay√
2
|ψnL〉 =

1

BnLCn−1,L−1
a−−a++|ψn−1,L−1〉 (84)

|ψn−1,L〉 =
1

An,L−1
a−+|ψn,L−1〉 =

1

An,L−1Dn−1,L
a−+a+−|ψn−1,L〉 (85)

|ψn,L−1〉 =
1

Dn−1,L
a+−|ψn−1,L〉 =

1

An,L−1Dn−1,L
a+−a−+|ψn,L−1〉 (86)

By using Eq 76, 77, 78 and 79, we obtain

|ψnL〉 =
1

BnLCn−1,L−1

n̂+ L̂

2
|ψnL〉 (87)

|ψn−1,L−1〉 =
1

BnLCn−1,L−1

(
1 +

n̂+ L̂

2

)
|ψn−1,L−1〉 (88)

|ψn−1,L〉 =
1

An,L−1Dn−1,L

(
1 +

n̂− L̂
2

)
|ψn−1,L〉 (89)
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|ψn,L−1〉 =
1

An,L−1Dn−1,L

n̂− L̂
2
|ψn,L−1〉 (90)

Now, we have to be careful when converting operators into scalars. For example,

n̂|ψn−1,L〉 = (n− 1)|ψn−1,L〉 6= n|ψn−1,L〉 (91)

It is crucial to keep track of where we have a hat and where we don’t. Keeping this in mind,
the above four equations become

|ψnL〉 =
1

BnLCn−1,L−1

n+ L

2
|ψnL〉 (92)

|ψn−1,L−1〉 =
1

BnLCn−1,L−1

(
1 +

(n− 1) + (L− 1)

2

)
|ψn−1,L−1〉 (93)

|ψn−1,L〉 =
1

An,L−1Dn−1,L

(
1 +

(n− 1)− L
2

)
|ψn−1,L〉 (94)

|ψn,L−1〉 =
1

An,L−1Dn−1,L

n− (L− 1)

2
|ψn,L−1〉 (95)

which evaluate to

|ψnL〉 =
1

BnLCn−1,L−1

n+ L

2
|ψnL〉 (96)

|ψn−1,L−1〉 =
1

BnLCn−1,L−1

n+ L

2
|ψn−1,L−1〉 (97)

|ψn−1,L〉 =
1

An,L−1Dn−1,L

n− L+ 1

2
|ψn−1,L〉 (98)

|ψn,L−1〉 =
1

An,L−1Dn−1,L

n− L+ 1

2
|ψn,L−1〉 (99)

Thus, the consistency requires that

BnLCn−1,L−1 =
n+ L

2
, An,L−1Dn−1,L =

n− L+ 1

2
(100)

Now, if we compare it to the definitions of A, B, C and D given in Eq 80, we will find that
the above conditions indeed hold:

BnLCn−1,L−1 =

√
n+ L

2

√
1 +

(n− 1) + (L− 1)

2
=
n+ L

2
(101)

An,L−1Dn−1,L =

√
n− (L− 1)

2

√
1 +

(n− 1)− L
2

=
n− L+ 1

2
(102)
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4. an and (a†)n in 1D: Hand waving calculation

So far we have shown how to make a ”single step” by using various operators that take us
from one step to the other. One can easily repeat said ”single step” a few times and thus
make two steps, three steps, and so forth. But generalizing it to n steps is not as simple.
The goal of this section is to carry out combinatoric arguments that would allow us to do
that. In particular, we would like to compute the expression of the form (kx+ l∂x)

n, where

k =
√

2mω , l = − 1√
2mω

(103)

Let us start with an example of n = 4. In order to see what happens combinatorically, let us
try ”more general” expression, (kxa1 + l∂a1) · · · (kxa4 + l∂a4) and then substitute a ”special
case” of a1 = a2 = a3 = a4 = 1. We will use the commutation relation

[∂ai , xaj ] = δaiaj (104)

in order to ”push” all of x-s to the left and all of ∂-s to the right. After some straightforward,
yet tedious, calculation, one finds that

(ka1xa1 + la1∂a1)(ka2xa2 + la2∂a2)(ka3xa3 + la3∂a3)(ka4xa4 + la4∂a4) =

= ka1ka2ka3ka4xa1xa2xa3xa4 + la1ka2ka3ka4xa2xa3xa4∂a1 + ka1la2ka3ka4xa1xa3xa4∂a2+

+ka1ka2la3ka4xa1xa2xa4∂a3 + ka1ka2ka3la4xa1xa2xa3∂a4 + ka1ka2la3la4xa1xa2∂a3∂a4+

+ka1la2ka3la4xa1xa3∂a2∂a4 + ka1la2la3ka4xa1xa4∂a2∂a3 + la1ka2ka3la4xa2xa3∂a1∂a4+

+la1ka2la3ka4xa2xa4∂a1∂a3 + la1la2ka3ka4xa3xa4∂a1∂a2 + ka1la2la3la4xa1∂a2∂a3∂a4+

+la1ka2la3la4xa2∂a1∂a3∂a4 + la1la2ka3la4xa3∂a1∂a2∂a4 + la1la2la3ka4xa4∂a1∂a2∂a3+

+la1la2la3la4∂a1∂a2∂a3∂a4 + δa1a2 la1ka2ka3ka4xa3xa4 + δa1a2 la1ka2ka3la4xa3∂a4+

+δa1a2 la1ka2la3ka4xa4∂a3 + δa1a2 la1ka2la3la4∂a3∂a4 + δa1a3 la1ka2ka3ka4xa2xa4+ (105)

+δa1a3 la1ka2ka3la4xa2∂a4 + δa1a3 la1la2ka3ka4xa4∂a2 + δa1a3 la1la2ka3la4∂a2∂a4+

+δa1a4 la1ka2ka3ka4xa2xa3 + δa1a4 la1ka2la3ka4xa2∂a3 + δa1a4 la1la2ka3ka4xa3∂a2+

+δa1a4 la1la2la3ka4∂a2∂a3 + δa2a3ka1la2ka3ka4xa1xa4 + δa2a3ka1la2ka3la4xa1∂a4+

+δa2a3 la1la2ka3ka4xa4∂a1 + δa2a3 la1la2ka3la4∂a1∂a4 + δa2a4ka1la2ka3ka4xa1xa3+

+δa2a4ka1la2la3ka4xa1∂a3 + δa2a4 la1la2ka3ka4xa3∂a1 + δa2a4 la1la2la3ka4∂a1∂a3+

+δa3a4ka1ka2la3ka4xa1xa2 + δa3a4ka1la2la3ka4xa1∂a2 + δa3a4 la1ka2la3ka4xa2∂a1+

+δa3a4 la1la2la3ka4∂a1∂a2 + δa1a2δ
a3
a4
la1ka2la3ka4 + δa1a3δ

a2
a4
la1la2ka3ka4 + δa1a4δ

a2
a3
la1la2ka3ka4

If we now set
a1 = a2 = a3 = a4 = 1 (106)

the above evaluates to

(kx1 + l∂1)
4 = k41x

4
1 + 4k31l1x

3
1∂1 + 6k21l

2
1x

2
1∂

2
1 + 4k1l

3
1x1∂

3
1 + l41∂

4
1+
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+6k31l1x
2 + 12k21l

2
1x1∂1 + 6k1l

3
1∂

2
1 + 3k21l

2
1 (107)

In order to be able to generalize the above from n = 4 to general n, we would have to first
look closely at n = 4 case and see exactly how the above coefficients were produced. First of
all, it is clear that k comes for a ride with x while l comes for a ride with ∂, so for simplicity
we will drop k-s and l-s. Now, let us look at the numerical coefficients of each term:

1. There is only one way of producing x41, namely, xa1xa2xa3xa4 , which is why it comes
with coefficient of 1.

2. In order to produce x31∂1 we can ”select” i ∈ {1, 2, 3, 4} and then write xa1 · · · xai−1
xai+1

· · ·xa4∂ai .
Since there are four choices of i ∈ {1, 2, 3, 4}, the term x31∂1 comes with coefficient 4.

3. In order to produce x21∂
2
1 we have to select {i1, i2} ∈ {1, 2, 3, 4} such that i1 < i2.

This will ”dictate” the values of i3 and i4 if we demand that {i1, i2, i3, i4} = {1, 2, 3, 4} and
i3 < i4. Then we use xi1xi2∂i3∂i4 to produce x21∂

2
1 . There are 6 choices of i1 < i2, and for

each such choice there is a unique choice of i3 < i4. Thus, x21∂
2
1 comes with the coefficient 6.

4. In order to produce x1∂
3
1 we can ”select” i ∈ {1, 2, 3, 4} and then write xai∂a1 · · · ∂ai−1

∂ai+1
· · · ∂a4 .

Since there are four choices of i ∈ {1, 2, 3, 4}, the term x31∂1 comes with coefficient 4.

5. There is only one way of producing ∂41 , namely, ∂a1∂a2∂a3∂a4 , which is why it comes
with coefficient of 1.

6. In order to produce x21 we need to start off from three x-s, one ∂, and then ”contract”
one of the x-s with the ∂ by replacing them with δaiaj , thus leaving two un-contracted x-s. For
example, if we decided to contract ∂a1 with xa2 , we would obtain δa1a2xa3xa4 . Now, in order to
compute the number of all possible ways of doing that, we can utilize the following algorithm.
First, we will select i1 < i2 and ”make up our mind” that we want to ”contract” ∂ai1 with
xai2 . After that, we have unique way of specifying i3 < i4 such that {i1, i2, i3, i4} = {1, 2, 3, 4}
and including un-contracted xai3 and xai4 , thus producing δ

ai1
ai2
xai3xai4 . Finally, when we set

a1 = a2 = a3 = a4, the coefficient of δai1ai2 will be replaced by 1, thus producing x21. Since
there are 6 ways of specifying i1 < i2 and for each such way there is a unique way of specifying
i3 < i4, we see that x21 comes with coefficient of 6.

7. In order to produce x1∂1 we need to start off from two x-s, two ∂-s, and then ”contract”
one of the x-s with one of ∂-s by replacing them with δaiaj , thus leaving one un-contracted
x and one un-contracted ∂. For example, if we decided to contract ∂a1 with xa2 , we would
obtain either δa1a2xa3∂a4 or δa1a2xa4∂a3 . Now, in order to compute the number of all possible
ways of doing that, we can utilize the following algorithm. First, we will select i1 < i2 and
”make up our mind” that we want to ”contract” ∂ai1 with xai2 (in other words, we already

know that δ
ai1
ai2

will be one of the factors). After that, we have unique way of specifying
i3 < i4 such that {i1, i2, i3, i4} = {1, 2, 3, 4}. Then we have two choices:either include xai3∂ai4
or include xai4∂ai3 . The former would result in δ

ai1
ai2
xai3∂ai4 and the latter with δ

ai1
ai2
xai4∂ai3 .

Finally, once we set a1 = a2 = a3 = a4, all of the coefficients of δaiaj will be replaced by 1,
thus we obtain x1∂1. Since we have 6 choices of i1 < i2, 1 choice of i3 < i4 and 2 choices
between xai3∂ai4 and xai4∂ai3 , the total number of choices is 6×1×2 = 12, hence x1∂1 comes
with coefficient 12.
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8. In order to produce ∂21 we need to start off from three ∂-s, one x, and then ”contract”
one of the ∂-s with the x by replacing them with δaiaj , thus leaving two un-contracted ∂-s. For
example, if we decided to contract ∂a1 with xa2 , we would obtain δa1a2∂a3∂a4 . Now, in order to
compute the number of all possible ways of doing that, we can utilize the following algorithm.
First, we will select i1 < i2 and ”make up our mind” that we want to ”contract” ∂ai1 with
xai2 . After that, we have unique way of specifying i3 < i4 such that {i1, i2, i3, i4} = {1, 2, 3, 4}
and including un-contracted ∂ai3 and ∂ai4 , thus producing δ

ai1
ai2
∂ai3∂ai4 . Finally, when we set

a1 = a2 = a3 = a4, the coefficient of δai1ai2 will be replaced by 1, thus producing ∂21 . Since
there are 6 ways of specifying i1 < i2 and for each such way there is a unique way of specifying
i3 < i4, we see that ∂21 comes with coefficient of 6.

9.In order to produce a scalar, we need to contract all four indexes. We first specify
i1 < i2. Then we have a unique way of specifying i3 < i4 such that {i1, i2, i3, i4} = {1, 2, 3, 4}.
Then we contract i1 with i2 and i3 with i4, producing δ

ai1
ai2
δ
ai3
ai4

. Then, by setting a1 = a2 =
a3 = a4 this produces 1. Now, since there are 6 ways of selecting i1 < i2 and for each of those
there is 1 way of selecting i3 < i4, on the first glance one might wrongly say that coefficient is
6×1 = 6. The reason the actual coefficient is 3 is that the situation (i1, i2, i3, i4) = (1, 2, 3, 4)
is equivalent to the situation (i1, i2, i3, i4) = (3, 4, 1, 2) since both would produce δa1a2δ

a3
a4

. In
other words, we have 2 contractions and, therefore, 2! ways of permuting said contractions.
Thus, we have to divide our result by 2!, which would produce 6× 1/2! = 3. The latter, in
fact, coincides with the actual coefficient we have obtained.

Let us now use the above examples to generalize from (x1 + ∂1)
4 to (x1 + ∂1)

n. Suppose
we are interested in the coefficient next to xA∂B. If A + B < n, we need to ”get rid of” all
the rest of x-s and ∂-s by means of contractions. This means that n−A−B should be even,
and also that the number of x-s and ∂-s we are getting rid of should be the same. In other
words, we start out with the number of x-s being A + C, the number of ∂-s being B + C
and then introducing C contractions in order to bring down the number of x-s from A + C
to A, and number of ∂-s from B + C to B. This means that

A+B + 2C = n (108)

Now, the crucial thing is to count the number of ways we can accomplish the above. By
looking at examples earlier, it is apparent that ”a way” amounts to our specification which
of the indexes correspond to x, which to ∂, and which are contracted with which. Going
back to n = 4, if I say that index 1 is contracted with index 3, index 2 corresponds to
x and index 4 corresponds to ∂, then we can immediately read off that we have started
with ∂a1xa2xa3∂a4 and produced δa1a3xa2∂a4 . The way we know that we had ∂a1 · · ·xa3 · · · as
opposed to xa1 · · · ∂a3 · · · is that we know from our earlier examples that ∂ and x contract
only if ∂ has smaller index than x does. This means that we do not have to specify how we
fill the contractions. As long as we say what contractions are by listing pairs of numbers,
there will only be one way of filling them with x-s and ∂-s. On the other hand, among
non-contracted indexes x-s and ∂-s can be distributed in any way we choose. Thus, while
continuing to insist that 1 is contracted with 3, we could also say that 2 is occupied by ∂
and 4 by x. Then we would produce δa1a3x4∂2. Notably, ∂ would still stay at the right of x:
after all, our entire goal is to push all the ∂-s to the right. But, at the same time, it would
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have smaller index. On the other hand, we do have a constraint speficying the total number
of non-contracted x-s and the total number of non-contracted ∂-s: in case of this example
these are A = 1 and B = 1, respectively. So, going back to the general case, our strategy
involves the following steps:

1. Select the choice of C contractions

2. Distribute A x-s and B ∂-s among n− 2C of non-contracted cells

Let us specify each new contraction one by one. So, the number of choices of first con-
traction is n(n− 1)/2, the number of choices of second contraction is (n− 2)(n− 3)/2, and
when we reach the last contraction, we would have (n+ 2− 2C)(n+ 1− 2C)/2 options. Fur-
thermore, by looking at part 9, we see that ”first” specifying δa1a2 and ”after that” specifying
δa3a4 is the same as doing it in reverse order. Thus, we have to divide that product by C!.
Therefore,

]{ways to contract} =
1

C!

n(n− 1)

2
· · · (n+ 2− 2C)(n+ 1− 2C)

2
=

n!

2CC!(n− 2C)!
(109)

Now, once we have established which elements are contracted, we have to decide which of
the non-contracted elements will be occupied by x and which by ∂. At this point, we have
n− 2C non-contracted ”cells” left, and we have A x-s and B ∂-s to distribute among them.
It is easy to see that the number of ways of doing so is

]{non− contracted choices} =
(n− 2C)!

A!B!
(110)

Therefore, the total number of ways of producing xA∂B is

]{complete prescriptions} =
n!

2CC!(n− 2C)!

(n− 2C)!

A!B!
=

n!

2CA!B!C!
(111)

Now, when we contract ∂ with x, we still retain l that came with ∂ and k that came with
x. Thus, despite the fact that the number of non-contracted x-s is A, the number of k-s is
A + C. Likewise, despite the fact that the number of non-contracted ∂-s is B, the number
of l-s is B + C. This, together with Eq 108, tells us that(

kx+ l
d

dx

)n
=

∑
A+B+2C=n

n!kA+C lB+C

2CA!B!C!
xA
(
d

dx

)B
(112)

Now, Eq 108 allows us to remove B by replacing it with

B = n− 2C − A (113)

This, however, immediately tells us that

A < n− 2C (114)

which, in turn, tells us that C ≤ n/2. Since C is integer, this means that

C ≤
⌊
n

2

⌋
(115)
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Thus, we obtain

(
kx+ l

d

dx

)n
= n!

bn
2
c∑

C=0

n−2C∑
A=0

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
(116)

where we have pulled out n! outside of the sum, as constant factor.

5. an and (a†)n in 1D: Proof by induction

So far we have made an ”intuitive” argument in favor of Eq 116. Now, in order to know for
sure that our ”intuition” didn’t let us down, we now have to verify Eq 116 by induction. Let
us rewrite Eq 116 as(

kx+ l
d

dx

)n
= n!

∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
(117)

where

Sn =

{
(A,C)

∣∣∣∣A ∈ N, C ∈ N, 0 ≤ C ≤
⌊
n

2

⌋
, 0 ≤ A ≤ n− 2C

}
(118)

Since the combinatorial arguments we were using are quite hand waving, it is instructive to
prove our result by induction. In other words, we will act with kx+ ld/dx on the right hand
side and show that the result will be the same, up to replacing n with n+ 1. Let us first act
with d/dx. It is easy to see that

d

dx

xA

A!
=

xA−1

(A− 1)!
+
xA

A!

d

dx
, A ≥ 1 (119)

However, since (−1)! is undefined, the above only holds for A ≥ 1. On the other hand, for
A = 0 one trivially has

d

dx

x0

0!
=

d

dx
=
x0

0!

d

dx
(120)

Therefore,
d

dx

∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

=
∑

A≥1;(A,C)∈Sn

kA+C ln−A−C

2CC!(A− 1)!(n− 2C − A)!
xA−1

(
d

dx

)n−2C−A
+ (121)

+
∑

(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n+1−2C−A

Now, as far as the first step is concerned, we can re-label A by introducing

A′ = A− 1 (122)
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Now, we are hoping to claim that the induction step works. Thus, we are trying to replace
n with n+ 1. In order to do it, we re-label C as well via

C ′ = C + 1 (123)

which results in

xA−1
(
d

dx

)n−2C−A
= xA

′
(
d

dx

)n+1−2C′−A′

(124)

At the same time, the coefficients still have A and C, so it would take a little bit of algebra
to show that we would, indeed, obtain the desired result. Before we do that, however,
let us address a bit more serious issue: making sure that we will end up summing over
(A′, C ′) ∈ Sn+1. We can re-express the condition given in the sum of the first term on the
right hand side in the following way:

{
A ≥ 1
(A,C) ∈ Sn

}
⇐⇒


A ≥ 1
0 ≤ C ≤ bn

2
c

0 ≤ A ≤ n− 2C

⇐⇒
{

1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn

2
c

}
(125)

Apart from that, we also see that

1 ≤ A ≤ n− 2C =⇒ 1 ≤ n− 2c =⇒ C ≤ n− 1

2
=⇒ C ≤

⌊
n− 1

2

⌋
(126)

This shows that {
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn

2
c

}
=⇒

{
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn−1

2
c

}
(127)

At the same time, the fact that

0 ≤ C ≤
⌊
n− 1

2

⌋
=⇒ 0 ≤ C ≤

⌊
n

2

⌋
(128)

shows that {
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn−1

2
c

}
=⇒

{
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn

2
c

}
(129)

Therefore, 127 and 129 together imply that{
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn

2
c

}
⇐⇒

{
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn−1

2
c

}
(130)

This, together with Eq 125 implies that{
A ≥ 1
(A,C) ∈ Sn

}
⇐⇒

{
1 ≤ A ≤ n− 2C
0 ≤ C ≤ bn−1

2
c

}
(131)

Now, we know from Eq 122 and 123 that

A′ = A− 1 , C ′ = C + 1 (132)
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Therefore,

1 ≤ A ≤ n− 2C ⇐⇒ 0 ≤ A′ ≤ n− 1− 2C ⇐⇒ 0 ≤ A′ ≤ n+ 1− 2C ′ (133)

where we have used Eq 122 during the first step and Eq 123 during the second step. Fur-
thermore, by using ⌊

n− 1

2

⌋
+ 1 =

⌊
n− 1

2
+ 1

⌋
=

⌊
n+ 1

2

⌋
(134)

we have

0 ≤ C ≤
⌊
n− 1

2

⌋
⇐⇒ 1 ≤ C ′ ≤

⌊
n+ 1

2

⌋
(135)

Now, let us keep A and C on the left hand side of Eq 131 while, at the same time, use Eq
133 and 135 in order to convert everything to A′ and C ′ on right hand side. Thus, we obtain{

A ≥ 1
(A,C) ∈ Sn

}
⇐⇒

{
0 ≤ A′ ≤ n+ 1− 2C ′

1 ≤ C ′ ≤ bn+1
2
c

}
(136)

By comparing it to the definition of Sn+1 (which can be obtained by replacing n with n+ 1
in Eq 118), we can rewrite Eq 136 as{

A ≥ 1
(A,C) ∈ Sn

}
⇐⇒

{
C ′ ≥ 1
(A′, C ′) ∈ Sn+1

}
(137)

So, in order to obtain the sum over Sn+1, we have to make sure that summands are equal
to 0 for C = 0, which would allow us to include C = 0 terms in the sum without any
consequences. To remind the reader, all of the above manipulations were pertaining to first
term on the right hand side of Eq 121. That term has 1/C! in it, which is the same as
1/(C ′ − 1)!. So we can re-express it as C ′/C ′!, and then note that it is equal to zero for
C ′ = 0, which would allow us to include C ′ = 0 term. More precisely, what we will do is the
following:∑
A≥1;(A,C)∈Sn

· · ·
C!

=
∑

A≥1;(A,C)∈Sn

(C + 1)(· · · )
(C + 1)!

=
∑

C′≥1 (A′,C′)∈Sn+1

C ′(· · · )
C ′!

=
∑

(A′,C′)∈Sn+1

C ′(· · · )
C ′!

(138)
The first step holds for both zero and non-zero C. The second step is merely conversion C
into C ′ as well as re-writing the condition of the sum by means of Eq 137. The third step
amounts to dropping C ′ ≥ 1 from the condition under the sum since we note that the terms
corresponding to C ′ = 0 at the third expression are zero anyway. This will lead to the last
expression which is the sum over Sn+1 as desired. Once this is established, the conversion
of the summands of the first term on the right hand side of Eq 137 boils down to simple
substitution which, after some trivial algebra, produces∑

A≥1;(A,C)∈Sn

kA+C ln−A−C

2CC!(A− 1)!(n− 2C − A)!
xA−1

(
d

dx

)n−2C−A
=

=
∑

(A′,C′)∈Sn+1

2C ′

l

kA
′+C′ln+1−A′−C′

2C′C ′!A′!(n+ 1− 2C ′ − A′)!
xA
′
(
d

dx

)n+1−2C′−A′

(139)
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Let us now move to the second term on the right hand side of Eq 137. This time, the powers
of x and d/dx match the desired ones for n + 1. So there is no need to replace A or C
with anything else. However, we would like to change (n − 2C − A)! in denominator into
(n+ 1− 2C − A)!. This we will do by using

1

(n− 2C − A)!
=

n+ 1− 2C − A
(n+ 1− 2C − A)!

(140)

Now, if we show that the right hand side of Eq 140 is equal to zero for (A,C) ∈ Sn+1 \ Sn,
then, keeping in mind that Sn ⊂ Sn+1, we would be able to replace the sum over Sn with the
one over Sn+1, as long as we replace left hand side of Eq 140 with right hand side whenever
it occurs. Now, in order for (A,C) to be an element of Sn+1 \ Sn we have to assume that it
is an element of Sn+1 and then find a way of ”disqualifying” it from Sn. From Eq 118, we
see that there are two ways of doing ”disqualifying” part: either C > bn/2c or A > n− 2C.
We will break it into two separate cases.

Case 1: (A,C) ∈ Sn+1 but C > bn/2c.

Since (A,C) ∈ Sn+1, we know that C ≤ b(n + 1)/2c. Thus, the assumption that
C > bn/2c implies that bn/2c < b(n + 1)/2c and, therefore, n is odd. Thus, n + 1 is even
and C = (n + 1)/2 holds exactly. This means that n + 1 − 2C = 0. Now, the fact that
(A,C) ∈ Sn+1 implies that A ≤ n+ 1− 2C. This, together with n+ 1− 2C = 0 implies that
A = 0 holds exactly. Therefore, (n+1−2C−A)/(n+1−2C−A)! = (0−0)/(0−0)! = 0/1 = 0.

Case 2: (A,C) ∈ Sn+1 but A > n− 2C.

Since (A,C) ∈ Sn+1, we know that A ≤ n + 1 − 2C. In combination with assumption
A > n− 2C this implies exact equality A = n+ 1− 2C. Therefore, n+ 1− 2C −A = 0 and,
therefore, (n+ 1− 2C − A)(n+ 1− 2C − A)! = 0/0! = 0/1 = 0.

The combination of above two cases implies that

∀(A,C) ∈ Sn+1 \ Sn
(

n+ 1− 2C − A
(n+ 1− 2C − A)!

= 0

)
(141)

This means that if we substitute Eq 140 into the last term on the right hand side of Eq
121,we can freely replace Sn with Sn+1 under the sum, which lead to

∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n+1−A−C

= (142)

=
∑

(A,C)∈Sn+1

n+ 1− 2C − A
l

kA+C ln+1−A−C

2CC!A!(n+ 1− 2C − A)!
xA
(
d

dx

)n+1−2C−A

We will now change the notation in Eq 139: we will ”drop” the ”prime” signs while, at the
same time, treating A and C the same way we were treating A′ and C ′: in other words,
(A′, C ′) ∈ Sn+1 will be replaced by (A,C) ∈ Sn+1, 2C ′/l will be replaced by 2C/l, and so
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forth. By substitutting Eq 142, together with the ”relabeled” version of Eq 139, on the right
hand side of Eq 121 we obtain

d

dx

∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
= (143)

=
∑

(A,C)∈Sn+1

n+ 1− A
l

kA+C ln+1−A−C

2CC!A!(n+ 1− 2C − A)!
xA
(
d

dx

)n+1−2C−A

So far we have found the outcome of the product of d/dx with the sum in question. Since
our final goal is to compute the action of kx+ ld/dx, our next step is to evaluate the product
of x with that sum,

x
∑

(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

=
∑

(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n+1−2C−A

(144)

By defining
A′′ = A+ 1 (145)

this becomes

x
∑

(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

=
∑

(A′′−1,C)∈Sn

A′′

k

kA
′′+C ln+1−A′′−C

2CC!A′′!(n+ 1− 2C − A′′)!
xA
′′
(
d

dx

)n+1−2C−A′′

(146)

Once again, our goal is to replace (A′′− 1, C) ∈ Sn with (A′′, C) ∈ Sn+1. First, we note that

(A′′ − 1, C) ∈ Sn ⇐⇒
{

0 ≤ A′′ − 1 ≤ n− 2C
0 ≤ C ≤ bn

2
c

}
⇐⇒

{
1 ≤ A′′ ≤ n+ 1− 2C
0 ≤ C ≤ bn/2c

}
(147)

and

(A′′, C) ∈ Sn+1 ⇐⇒
{

0 ≤ A′′ ≤ n+ 1− 2C
0 ≤ C ≤ bn+1

2
c

}
(148)

which tells us that
(A′′ − 1, C) ∈ Sn =⇒ (A′′, C) ∈ Sn+1 (149)

Therefore, our only concern is a situation when (A′′, C) ∈ Sn+1 holds but (A′′ − 1, C) ∈ Sn
does not. We would like to show that in this case the summand is zero. There are only two
ways of ”disqualifying” (A′′ − 1, C) from Sn: either A′′ − 1 should be outside the {0, · · · , n}
range, or else C should be greater than bn/2c. We will consider these two cases separately.

Case 3: (A′′, C) ∈ Sn+1 but A′′ − 1 is outside of {0, · · · , n} range.
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Since (A′′, C) ∈ Sn+1, we know that A′′ ∈ {0, · · · , n+1}. Thus, we know that A′′−1 ≤ n.
Therefore, the only way for A′′ − 1 not to be part of {0, · · · , n} is to have A′′ = 0 and
A′′ − 1 = −1. This, however, will imply that A′′/A′′! = 0/0! = 0. Since the summand
includes multiplication by A′′/A′′!, this means that it is zero.

Case 4: (A′′, C) ∈ Sn+1 but C > bn/2c.

The fact that (A′′, C) ∈ Sn+1 implies that C ≤ b(n + 1)/2c. This, in combination with
the assumption C > bn/2c implies that C = b(n + 1)/2c holds exactly. This also implies
that b(n + 1)/2c > bn/2c, which is equivalent to saying that n is odd. The fact that n is
odd implies that b(n+ 1)/2c = (n+ 1)/2 and, therefore, C = (n+ 1)/2. Now, the fact that
(A′′, C) ∈ Sn+1 implies that 0 ≤ A′′ ≤ n+ 1− 2C. By substituting C = (n+ 1)/2, we obtain
0 ≤ A′′ ≤ 0 which means that A′′ = 0. Therefore, A′′/A′′! = 0/0! = 0. So the fact that
summand includes A′′/A′′! implies that summand is zero.

Thus, the combination of Case 3 and Case 4 tells us that, whenever (A′′, C) ∈ Sn+1

holds while (A′′ − 1, C) ∈ Sn does not, the corresponding summand is equal to zero, as
long as the summands are expressed in the form that includes A′′/A′′!. Besides, we have
shown earlier that if (A′′ − 1, C) ∈ Sn holds, then (A′′, C) ∈ Sn+1 holds as well. These two
statements together imply that the sum over (A′′− 1, C) ∈ Sn can be replaced with the sum
over (A′′, C) ∈ Sn+1, provided that summands contain A′′/A′′!. Since the right hand side of
Eq 146, indeed, contains A′′/A′′!, we can rewrite Eq 146 as

x
∑

(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

=
∑

(A′′,C)∈Sn+1

A′′

k

kA
′′+C ln+1−A′′−C

2CC!A′′!(n+ 1− 2C − A′′)!
xA
′′
(
d

dx

)n+1−2C−A′′

(150)

We will now re-label the above equation by simply dropping the ”double prime” sign while
treating A the same exact way we were treating A. Thus, (A′′, C) ∈ Sn+1 will be replaced
with (A,C) ∈ Sn+1, k

A′′+C will be replaced with kA+C , and so forth. If we combine the
”relabeled” version of Eq 150 with the Eq 143, we obtain(

kx+ l
d

dx

) ∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

= (n+ 1)
∑

(A,C)∈Sn+1

kA+C ln+1−A−C

2CC!A!(n+ 1− A− C)!
xA
(
d

dx

)n+1−2C−A

(151)

Finally, if we remember to include n! outside the sum in Eq 117, we obtain(
kx+ l

d

dx

)
n!

∑
(A,C)∈Sn

kA+C ln−A−C

2CC!A!(n− 2C − A)!
xA
(
d

dx

)n−2C−A
=

= (n+ 1)!
∑

(A,C)∈Sn+1

kA+C ln+1−A−C

2CC!A!(n+ 1− A− C)!
xA
(
d

dx

)n+1−2C−A

(152)

21



which ultimately proves that induction step holds. It is trivial to show that Eq 117 holds
for n = 0. So, by induction, it holds for all n.

6. General excited state in 1D

Now that we have proven the relevant operator equation, obtaining wave function is straight-
forward. We substitute Eq 116 into Eq 32. Since Eq 116 will act on 1, all the terms with
non-zero power of d/dx will drop out. This means that the only terms that remain are the
ones for which n− 2C −A = 0. Therefore, we can replace A with n− 2C. Thus, we obtain

(
kx̂+ l

d

dx

)n
1 = n!

bn
2
c∑

C=0

kn−C lC

2CC!(n− 2C)!
xn−2C (153)

If we now substitute it into Eq 32, we obtain

ψn(x) =

[
1√
n!

(
mω

π

)1/4

e−mωx
2/2

] [
n!

bn/2c∑
C=0

(
√

2mω)n−C
(
− 1√

2mω

)C
2CC!(n− 2C)!

xn−2C
]

(154)

which, after simple cancellation and combining of multiples, evaluates to

ψn(x) =
√
n!

(
mω

π

)1/4

e−mωx
2/2

bn/2c∑
C=0

(−1)C(2mω)
n
2
−C

2CC!(n− 2C)!
xn−2C (155)

Interestingly, the above wave function is already normalized; after all, the coefficient n!(mω/π)1/4

comes from the normalization of ψ0, and n! in Eq 154 comes from the factors needed to pre-
serve normalization in transition from ψ0 to ψn. We will explicitly check that it is the case
in Section 9.

7. Wave functions in 2D, without normalization

Let us now turn to two dimensional oscillator. In order to find the wave function, we consider
the following trick: we will imagine an oscillator that is in n-th excited state with respect to
x and ground state with respect to y,

ψ(x, y) = ψn(x)ψ0(y) (156)

where ψ0 is given by Eq 13 and ψn is given by Eq 155. We then introduce polar coordinates,

x = r cos θ , y = r sin θ (157)

and do some algebra that would lead to the expression of the form

ψn(r cos θ)ψ0(r sin θ) =
∑

ψnL(r)eiLθ (158)
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and then ψnL(r)eiLθ will automatically become a solution with total excitation n and angular
momentum L, up to some normalization. Let us now do it more explicitly. By substituting
Eq 13 and Eq 155 into Eq 156, we obtain

ψn0(x, y) =

√
mω

π
e−mω(x

2+y2)/2

bn/2c∑
C=0

(−1)C(2mω)
n
2
−C

2CC!(n− 2C)!
xn−2C (159)

which, after substitution of 157 becomes

ψn0(r, θ) =

√
mω

π
e−mωr

2/2

bn/2c∑
C=0

(−1)C(2mω)
n
2
−C

2CC!(n− 2C)!
rn−2C(cos θ)n−2C (160)

Now, by using

cos θ =
eiθ + e−iθ

2
(161)

and then expanding (cos θ)n−2C in terms of its eiθ and e−iθ components, the above becomes

ψ(r, θ) =

√
mω

π
e−mωr

2/2

bn/2c∑
C=0

(
(−1)C(2mω)

n
2
−C

2CC!(n− 2C)!
rn−2C

n−2C∑
D=0

(
n− 2C

D

)
eiθ(2C+2D−n)

2n−2C

)
(162)

Now, we will set
L = 2C + 2D − n (163)

and replace the sum over C and D with the sum over L and C (thus, we will also rearrange
the order of the sums). We will also do some simple combining of factors, leading to

ψ(r, θ) =

√
mω

π
e−mωr

2/2
∑

L∈{−n,−n+2,··· ,n−2,n}

min
(

n−L
2
,n+L

2

)∑
C=0

(−1)C(2mω)
n
2
−Crn−2CeiLθ

2n−CC!
(
n+L
2
− C

)
!
(
n−L
2
− C

)
!

(164)
Because of the factor eiLθ, the Eq 63 tells us that L represents angular momentum. Thus,
we can now produce a state with fixed angular momentum L by ”extracting” L-th term
from the above sum. Now, we recall from previous discussion that, for any given n, the only
”allowed” angular momenta are L ∈ {−n,−n + 2, · · · , n − 2, n}; in other words, n − L is
even. Thus, L-s, as described in Eq 163 ”cover” all possible angular momenta; and, similarly,
the upper bound of the sum of Eq 164 is integer.

It should be noted that the above described state is not normalized (as a matter of fact,
since ψ(r, θ) is norm 1, any of the ”ingredient” states should have norm less than 1). Thus,
we introduce normalization constant NnL, into which we will also absorb other constant
factors; thus,

ψnL(r, θ) = NnLe
−mωr2/2

min
(

n−L
2
,n+L

2

)∑
C=0

(−1)C(2mω)
n
2
−Crn−2CeiLθ

2n−CC!
(
n+L
2
− C

)
!
(
n−L
2
− C

)
!

(165)
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Clearly, the letter n in ψnL no longer represents the excitation along x-axis; after all, the
above is eigenstate of L, and L does not commute with excitation along any particular axis.
However, L does commute with Hamiltonian, and the latter is given by

Ĥ =

(
n̂x +

1

2

)
+

(
n̂y +

1

2

)
= n̂x + n̂y + 1 (166)

Thus, we interpret the above n as

n̂ = n̂x + n̂y , where n̂x = â†xâx , n̂y = â†yây (167)

After all, the state we have started with, which corresponds to ny = 0 can, indeed, be
described as n = nx; all the other states we produce have the same n but uncertain nx-s
which, in turn, are being compensated by uncertainty in equal and opposite deviation of ny.

8. Normalization of two-dimensional oscillator

Let us now compute the normalization constant. Doing so by brute force is increasingly
complicated. Therefore, in this section, we will introduce some tricks that would allow us
to avoid brute force calculation altogether. But, for those of you that are curious, we will
perform the brute force calculation in Section 10 and demonstrate that the results match.

Noticing e−mωr
2/2 in

ψnL(r, θ) = NnLe
−mωr2/2

min
(

n−L
2
,n+L

2

)∑
C=0

(−1)C(2mω)
n
2
−Crn−2CeiLθ

2n−CC!
(
n+L
2
− C

)
!
(
n−L
2
− C

)
!

(168)

it is easy to see that, by cancellation of r- terms,(√
mω

2
r +

1√
2mω

∂

∂r

)(
f(r, θ)e−mωr

2/2
)

=
e−mωr

2/2

√
2mω

∂f

∂r
(169)

Therefore, (√
mω

2
r +

1√
2mω

∂

∂r

)
ψnL = (170)

=
NnL√
2mω

e−
mωr2

2
+iLθ

min
(

n+L
2
,n−L

2

)∑
c=0

(−1)c(2mω)
n
2
−c

2n−c
(n− 2c)rn−2c−1

c!
(
n+L
2
− c)!

(
n−L
2
− c)!

and, after moving outside factor of
√

2mω into the sum, we obtain,(√
mω

2
r +

1√
2mω

∂

∂r

)
ψnL = (171)

= NnLe
−mωr2

2
+iLθ

min
(

n+L
2
,n−L

2

)∑
c=0

(−1)c(2mω)
n−1
2
−c

2n−c
(n− 2c)rn−2c−1

c!
(
n+L
2
− c)!

(
n−L
2
− c)!
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We then re-express n− 2c in the numerator as

n− 2c =

(
n− L

2
− c
)

+

(
n+ L

2
− c
)

(172)

and use that to split the expression under the sum into two parts:(√
mω

2
r +

1√
2mω

∂

∂r

)
ψnL =

= NnLe
−mωr2

2
+iLθ

min
(

n+L
2
,n−L

2

)∑
c=0

[
(−1)c(2mω)

n−1
2
−c

2n−c
× (173)

×
( (

n−L
2
− c
)
rn−2c−1

c!
(
n+L
2
− c
)
!
(
n−L
2
− c
)
!

+

(
n+L
2
− c
)
rn−2c−1

c!
(
n+L
2
− c
)
!
(
n−L
2
− c
)
!

)]
Now we note that

k

k!
=

{
(k − 1)! if k ≥ 1
0 if k = 0

(174)

and, therefore,
m∑
k=0

µkk

k!
=

m∑
k=1

µk
(k − 1)!

(175)

where k = 0 term is dropped because it is equal to zero, which is why lower bound of the sum
changes from k = 0 to k = 1. Similarly, if we have (m− k)/(m− k)!, then the lower bound
would remain the same, while the upper bound would change from m = k to m = k − 1:

m∑
k=0

µk(m− k)

(m− k)!
=

m−1∑
k=0

µk
(m− k − 1)!

(176)

Keeping these things in mind, we can rewrite Eq 173 in the following way:(√
mω

2
r +

1√
2mω

∂

∂r

)
ψnL =

= NnLe
−mωr2

2
+iLθ

(min
(

n+L
2
,n−L

2
−1
)∑

c=0

(−1)c(2mω)
n−1
2
−c

2n−c
rn−1−2c

c!
(
n+L
2
− c
)(

n−L
2
− c− 1

)
!
+ (177)

+

min
(

n+L
2
−1,n−L

2

)∑
c=0

(−1)c(2mω)
n−1
2
−c

2n−c
rn−1−2c

c!
(
n+L
2
− 1− c

)
!
(
n−L
2
− c
)
!

)
We will now rewrite it as

1

NnL

(
r
√

2mω +

√
2

mω

∂

∂r

)
ψnL =
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= e−iθe−
mωr2

2
+iθ(L+1)

min
(

(n−1)+(L+1)
2

,
(n−1)−(L+1)

2

)∑
c=0

(−1)c(2mω)
n−1
2
−c

2n−c−1
rn−1−2c

c!
(
(n−1)+(L+1)

2
− c
)
!
(
(n−1)−(L+1)

2
− c
)
!
+

+eiθe−
mωr2

2
+iθ(L−1)

min
(

(n−1)+(L−1)
2

,
(n−1)−(L−1)

2

)∑
c=0

(−1)c(2mω)
n−1
2
−c

2n−c−1
rn−1−2c

c!
( (n−1)+(L−1)

2
− c
)
!
( (n−1)−(L−1)

2
− c
)
!

where we have multiplied both sides by 2/NnL. By using Eq 168 we can rewrite the above
as

1

nNnL

(
r
√

2mω +

√
2

mω

∂

∂r

)
ψnL =

e−iθψn−1,L+1

Nn−1,L+1

+
eiθψn−1,L−1
Nn−1,L−1

(178)

Let us now compute it in a different way. Linear combination of Eq 56 and 57 tells us that

a−+e
−iθ + a−−e

iθ = r
√
mω +

1√
mω

∂

∂r
(179)

By acting with this on |ψnL〉 and using Eq 70, we obtain(
r
√
mω +

1√
mω

∂

∂r

)
|ψnL〉 = e−iθAnL|ψn−1,L+1〉+ eiθBnL|ψn−1,L−1〉 (180)

By comparing Eq 178 and 180, we obtain

1

Nn−1,L+1

=

√
2

nNnL

AnL ,
1

Nn−1,L−1
=

√
2

nNnL

BnL (181)

By dividing these two equations one by the other, we obtain

Nn−1,L−1

Nn−1,L+1

=
AnL
BnL

(182)

and by substituting the values of AnL and BnL given in Eq 80, this becomes

Nn−1,L−1

Nn−1,L+1

=

√
n− L
n+ L

(183)

By relabeling n and L, we can rewrite it as

Nn,L−2

NnL

=

√
n− L+ 2

n+ L
(184)

Therefore,

Nn,L−4

NnL

=
Nn,L−4

Nn,L−2

Nn,L−2

NnL

=

√
n− L+ 4

N + L− 2

√
n− L+ 2

N + L
=

√
(N − L+ 4)(N − L+ 2)

(N + L− 2)(N + L)
(185)

By induction, one can show that

Nn,L−2M

NnL

=

√√√√ ∏M
j=1(n− L+ 2j)∏M

i=1(n+ L+ 2− 2i)
(186)
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Now, we have shown earlier that, for any given n, the allowed values of L are L ∈ {−n,−n+
2, · · · , n− 2, n}; thus, n− L and n+ L are both even. Therefore, we can rewrite Eq 168 as

Nn,L−2M

NnL

=

√√√√ ∏M
j=1

(
n−L
2

+ j
)∏M

i=1

(
n+L
2

+ 1− i)
=

√√√√√√√√
(

n−L
2

+M
)
!(

n−L
2

)
!(

n+L
2

)
!(

n+L
2
−M
)
!

=

√(
n−L
2

+M
)
!
(
n+L
2
−M

)
!(

n−L
2

)
!
(
n+L
2

)
!

(187)

Now, we will first compute Nnn and then use the above ratio to produce NnL. By substitut-
ting L = n into Eq 165, we obtain

ψnn(r, θ) = Nnne
−mωr2/2

0∑
C=0

(−1)C(2mω)
n
2
−Crn−2Ceinθ

2n−CC!(n− C)!(0− C)!
=

= Nnne
−mωr2/2 (2mω)n/2rneinθ

2nn!
=
Nnn

n!

(
mω

2

)n/2
rne

−mωr2

2
+inθ (188)

Therefore,

〈ψnn|ψnn〉 =

(
NnL

n!

)2(
mω

2

)n ∫
d2r r2ne−mωr

2

(189)

By using
d2r = 2πrdr (190)

this becomes

〈ψnn|ψnn〉 = 2π

(
Nnn

n!

)2(
mω

2

)n ∫ ∞
0

r2n+1e−mωr
2

dr (191)

Let us now evaluate the above integral. A single induction step takes the form∫ ∞
0

r2l+1e−r
2/2dr =

∫ ∞
0

r2le−r
2/2d

r2

2
= −

∫ ∞
0

r2kde−r
2/2 = (192)

= −
(
r2le−r

2/2

∣∣∣∣∞
0

−
∫ ∞
0

e−r
2/2dr2l

)
=

∫ ∞
0

e−r
2/2(2l)r2l−1dr = 2l

∫ ∞
0

e−r
2/2r2l−1dr

Now, if we do this repeatedly k times, we get∫ ∞
0

r2k+1e−r
2/2dr = 2k

∫ ∞
0

e−r
2/2r2k−1dr = (2k)(2k − 2)

∫ ∞
0

e−r
2/2r2k−3dr−

= · · · = (2k)(2k − 2) · · · (4)(2)

∫ ∞
0

e−r
2/2 rdr = 2k(k)(k − 1) · · · (2)(1)

∫ ∞
0

e−r
2/2 rdr =

= 2kk!

∫ ∞
0

e−r
2/2 rdr = 2kk!

∫ ∞
0

e−r
2/2d(r2/2) = −2kk!e−r

2/2

∣∣∣∣∞
0

= 2kk! (193)

and, therefore, by using new variable

s = r
√

2mω (194)
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we obtain ∫ ∞
0

r2k+1e−mωr
2

dr =

∫ ∞
0

(
s√

2mω

)2k+1

e−s
2/2 d

(
s√

2mω

)
=

=
1

(2mω)k+1

∫ ∞
0

s2k+1e−s
2/2ds =

2kk!

(2mω)k+1
=

k!

2 (mω)n+1
(195)

Now, if we substitute Eq 195 into Eq 189, we obtain

〈ψnn|ψnn〉 = 2π

(
Nnn

n!

)2(
mω

2

)n
n!

2 (mω)n+1
=

N2
nnπ

2nn!mω
(196)

Thus, the normalization implies that

〈ψnn|ψnn〉 = 1 =⇒ Nnn =

√
2nn!mω

π
(197)

Now, by substituting L = n into Eq 187 we obtain

Nn,n−2M

Nnn

=

√
M !(n−M)!

n!
(198)

and if we now re-label L so that L = n− 2M , then Eq 198 becomes

NnL

Nnn

=

√(
n−L
2

)
!
(
n+L
2

)
!

n!
(199)

Thus, Eq 197 in combination with Eq 199 imply that

NnL =

√(
n−L
2

)
!
(
n+L
2

)
!

n!

√
2nn!mω

π
(200)

Therefore, Eq 168 becomes

ψnL(r, θ) =

√(
n−L
2

)
!
(
n+L
2

)
!

n!

√
2nn!mω

π
e−mωr

2/2×

×
min
(

n−L
2
,n+L

2

)∑
C=0

(−1)C(2mω)
n
2
−Crn−2CeiLθ

2n−CC!
(
n+L
2
− C

)
!
(
n−L
2
− C

)
!

(201)

If we didn’t know where the above equation came from, the fact that it is norm 1 is far from
obvious; but if one plugs in various specific numbers one can see that the norm ”happens” to
be 1 ”each time”. The same is true on both accounts for the 1D case worked out in Section
6. In the two sections that follow we will perform proofs by induction that this is indeed
the case for all numbers rather than just some type of coincidence, and we will make sure to
carry out such proofs without any appeal to ”physics”.
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9. Verification of orthonormality for 1D

Keeping with our habit of doing 1D before 2D, let us go back and check that the 1D wave
function we obtained in Section 6 is properly normalized. And then in Section 10 we will do
the same for the 2D case we just obtained.

Naively, the inner product 〈ψp|ψq〉 (where |ψn〉 is defined by Eq 155) is given by

〈ψp|ψq〉 =
√
p!q!

√
mω

π

bp/2c∑
c1=0

bq/2c∑
c2=0

(
(−1)c1+c2(2mω)

p+q
2
−c1−c2

2c1+c2c1!c2!(p− 2c1)!(q − 2c2)!

∫
xp+q−2c1−2c2e−mωx

2

dx

)
(202)

Let us now evaluate the integral. First of all, we note that if p + q is odd, then the above
expression produces a sum of integrals of odd functions which is zero; thus,

p+ q is odd =⇒ 〈ψp|ψq〉 = 0 (203)

Therefore, our only concern is the situation where p + q is even. The induction step takes
the following form:∫ ∞

−∞
e−x

2/2xldx =

∫ ∞
−∞

e−x
2/2xl−1d

x2

2
= −

∫ ∞
−∞

xl−1de−x
2/2 =

= −
(
xl−1e−x

2/2

∣∣∣∣∞
−∞
−
∫ ∞
−∞

e−x
2/2dxl−1

)
=

∫ ∞
−∞

e−x
2/2dxl−1 = (204)

=

∫ ∞
−∞

e−x
2/2(l − 1)xl−2dx = (l − 1)

∫ ∞
−∞

e−x
2/2xl−2dx

By repeating this step k times we obtain∫ ∞
−∞

e−x
2/2x2kdx = (2k − 1)

∫ ∞
−∞

e−x
2/2x2k−2dx = (2k − 1)(2k − 3)

∫ ∞
−∞

e−x
2/2x2k−4dx =

= · · · = (2k − 1)(2k − 3) · · · (3)(1)

∫ ∞
−∞

e−x
2/2dx =

√
2π(2k − 1)(2k − 3) · · · (3)(1) =

=
√

2π
∏

l≤2k , l is odd

l =
√

2π

∏
l′≤2k l

′∏
l′′≤2k , l′′ is even l

′′ = (205)

=
√

2π

∏
l′≤2k l

′∏
l′′′≤k(2l

′′′)
=
√

2π

∏
l′≤2k l

′

2k
∏

l′′′≤k l
′′′ =

(2k)!
√

2π

2kk!

Now, by setting
x′ = x

√
2mω (206)

we obtain ∫
e−mωx

2

x2kdx =

∫
e−x

′2/2

(
x′√
2mω

)2k

d
x′√
2mω

=
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=
1

(2mω)k+
1
2

∫
e−x

′2/2x′2kdx′
1

(2mω)k+
1
2

(2k)!
√

2π

2kk!
=

(2k)!
√
π

22kk!(mω)k+
1
2

(207)

By setting k = n− c1 − c2 we obtain .∫
e−mωx

2

x2n−2c1−2c2dx =
(2n− 2c1 − 2c2)!

√
π

22n−2c1−2c2(n− c1 − c2)!(mω)n−c1−c2+
1
2

(208)

Now, the above can be substituted into Eq 202 only if p + q is even, which is fine with us
given that we already know the answer for odd functions is zero (see Eq 203). Thus,

p+ q is even =⇒ 〈ψp|ψq〉 =
√
p!q!

√
mω

π

bp/2c∑
c1=0

bq/2c∑
c1=0

(
(−1)c1+c2(2mω)

p+q
2
−c1−c2

2c1+c2c1!c2!(p− 2c1)!(q − 2c2)!
×

× (p+ q − 2c1 − 2c2)!
√
π

2p+q−2c1−2c2(p+q
2
− c1 − c2)!(mω)

p+q
2
−c1−c2+ 1

2

)
(209)

which, after combining of factors and cancellations, evaluates to

p+ q is even =⇒ (210)

=⇒ 〈ψp|ψq〉 =

√
p!q!

2(p+q)/2

bp/2c∑
c1=0

bq/2c∑
c2=0

(
(−1)c1+c2

c1!c2!(p− 2c1)!(q − 2c2)!

(p+ q − 2c1 − 2c2)!

(p+q
2
− c1 − c2)!

)
But, as we have earlier remarked, orthonormality condition has to hold; in other words,

〈ψp|ψq〉 = δpq (211)

Comparison of Eq 210 to Eq 211 tells us that

p+ q is even =⇒ (212)

=⇒
bp/2c∑
c1=0

bq/2c∑
c1=0

(
(−1)c1+c2

c1!c2!(p− 2c1)!(q − 2c2)!

(p+ q − 2c1 − 2c2)!

(p+q
2
− c1 − c2)!

)
=

2(p+q)/2

√
p!q!

δpq

Now, note the following:

p = q =⇒ 2(p+q)/2

√
p!q!

δpq =
2p

p!
=

2q

q!
(213)

p 6= q =⇒ 2(p+q)/2

√
p!q!

δpq = 0 (214)

Therefore, for general p and q,

2(p+q)/2

√
p!q!

δpq =
2p

p!
δpq =

2q

q!
δpq (215)

which means that we can rewrite Eq 212 as

p+ q is even =⇒ (216)
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=⇒
bp/2c∑
c1=0

bq/2c∑
c1=0

(
(−1)c1+c2

c1!c2!(p− 2c1)!(q − 2c2)!

(p+ q − 2c1 − 2c2)!

(p+q
2
− c1 − c2)!

)
=

2p

p!
δpq =

2q

q!
δpq

In other words, we have used ”physics” in order to prove ”math”. The first reaction
to this is that something must be wrong with our ”physics” unless we can prove that same
”math” by using ”math alone”. Let us do the latter. Thus, our task is to prove Eq 212 by
induction, without resorting to either physics or calculus. Let us define

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xpqr =

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r − c1 − c2)!
(217)

Therefore,

r =
p+ q

2
=⇒ Xpqr = desired expression (218)

or, in other words,

Xp,q,(p+q)/2 =
2p

p!
δpq =

2q

q!
δpq (219)

but we find it more convenient to define X for general (p, q, r) first. The reason for this is
that it is a lot more difficult to figure out how to ”go” from (p, q, (p + q)/2) to (p + 1, q +
1, 1 + (p + q)/2) than it is to figure out how to do ”simpler” steps, such as ”going” from
(p, q, r) to (p+ 1, q, r). The Eq 217 is only well defined if

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
(220)

because in order for (r−c1−c2)! to be well defined, we need to have r ≥ c1+c2, while the sum
includes the term where c1 = bp/2c and c2 = bq/2c. This restriction is okay with us, since
our ”target” r = (p+ q)/2 falls into the above domain. We don’t need any other restrictions
for other factorials to hold. The fact that upper bounds for c1 and c2 are bp/2c and bq/2c
automatically implies that p− 2c1 ≥ 0 and q− 2c2 ≥ 0 and, therefore, p+ q− 2c1− 2c2 ≥ 0.

In order to be able to use induction, we have to relate Xpqr to the ”neighboring” values
of X where p, q or r are being altered by either 0 or 1. In order to obtain such an expression,
we will multiply Xpqr by a ”unit” expressed in the following way:

1 =
p− 2c1

p+ q − 2c1 − 2c2
+

q − 2c2
p+ q − 2c1 − 2c2

(221)

Thus, we obtain

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr =

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r − c1 − c2)!
p− 2c1

p+ q − 2c1 − 2c2
+

+

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r − c1 − c2)!
q − 2c2

p+ q − 2c1 − 2c2
(222)
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Now, the p− 2c1 in the numerator implies that a given term will be sent to 0 if p− 2c1 = 0;
this means that, if it is convenient to us, we can change the upper bound of the sum, provided
that it would only amount to throwing away said zero. If p is odd then zeros won’t occur so
the upper bound of the sum would have to remain the same; namely, bp/2c. On the other
hand, if p is even, then the above zero would occur at c1 = bp/2c = p/2, thus we can change
upper bound of the sum to p/2 − 1. We then note that, in both cases, the ”new” upper
bound happens to coincide with b(p− 1)/2c. Thus, we use the latter for general p:

First Term =⇒ 0 ≤ c1 ≤
⌊
p− 1

2

⌋
(223)

Similarly, we also change upper bound for summation over c2 to b(q − 1)/2c:

Second Term =⇒ 0 ≤ c2 ≤
⌊
q − 1

2

⌋
(224)

Now, since p − 2c1 occurs only in first term while q − 2c2 only in second term, the upper
bound for summation over q in the first term and over p in the second term would remain
the same:

First Term =⇒ 0 ≤ c2 ≤
⌊
q

2

⌋
(225)

Second Term =⇒ 0 ≤ c1 ≤
⌊
p

2

⌋
(226)

In light of new upper bounds, we can use the following in order to re-express the expression
under the sum:

first term =⇒ p− 2c1 ≥ 1 =⇒ p− 2c1
(p− 2c1)!

=
1

(p− 1− 2c1)!
(227)

second term =⇒ q − 2c2 ≥ 1 =⇒ q − 2c2
(q − 2c2)!

=
1

(q − 1− 2c2)!
(228)

first term =⇒ p− 2c1 ≥ 1 =⇒ p+ q − 2c1 − 2c2 ≥ 1 =⇒

=⇒ (p+ q − 2c1 − 2c2)!

p+ q − 2c1 − 2c2
= (p+ q − 2c1 − 2c2 − 1)! (229)

second term =⇒ q − 2c2 ≥ 1 =⇒ p+ q − 2c1 − 2c2 ≥ 1 =⇒

=⇒ (p+ q − 2c1 − 2c2)!

p+ q − 2c1 − 2c2
= (p+ q − 2c1 − 2c2 − 1)! (230)

The ”≥ 1” part was crucial because that is what allowed us to avoid ”(−1)!” when doing
k!/k = (k−1)! By taking into account everything we said so far, our new expression becomes

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr =

b(p−1)/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2((p− 1) + q − 2c1 − 2c2)!

c1!c2!((p− 1)− 2c1)!(q − 2c2)!(r − c1 − c2)!
+
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+

bp/2c∑
c1=0

b(q−1)/2c∑
c2=0

(−1)c1+c2(p+ (q − 1)− 2c1 − 2c2)!

c1!c2!(p− 2c1)!((q − 1)− 2c2)!(r − c1 − c2)!
(231)

By comparing the right hand side to the definition of Xpqr as given in Eq 217, we can rewrite
the above as

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xpqr = Xp−1,q,r +Xp,q−1,r (232)

This will be one thing that will help us with induction. But we notice that the above
expression leaves r unaltered. So let us derive some other expression that would alter r.
Recalling that r satisfies the condition given in Eq 220, we can re-express Eq 217 in the
following way:

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ (233)

=⇒ Xpqr =

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
(r + 1− c1 − c2) (234)

which we then rewrite as

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr = (r + 1)

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
−

−
bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!c1
c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!

− (235)

−
bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!c2
c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!

Now, the second term will become 0 for c1 = 0. Thus, we are free to replace the lower bound
of the sum on the second term with c1 = 1. Similarly, due to c2 in the numerator of the
third term, we replace the lower bound of that sum with c2 = 1. However, since c2 doesn’t
occur in the first term, the sum over c2 on the first term continues to start from c2 = 0; and,
similarly, the sum over c1 on the second term continues to start with c1 = 0. Since neither
c1 nor c2 is present in the numerator of the first term, no bounds are changed there. Thus,

First Term =⇒ 0 ≤ c1 ≤
⌊
p

2

⌋
, 0 ≤ c2 ≤

⌊
q

2

⌋
(236)

Second Term =⇒ 1 ≤ c1 ≤
⌊
p

2

⌋
, 0 ≤ c2 ≤

⌊
q

2

⌋
(237)

Third Term =⇒ 0 ≤ c1 ≤
⌊
p

2

⌋
, 1 ≤ c2 ≤

⌊
q

2

⌋
(238)
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We can now use c1 ≥ 1 and c2 ≥ 1, wherever thats the case, in order to replace c1!/c1 and
c2!/c2 with 1/(c1 − 1)! and 1/(c2 − 1)! respectively:

Second Term =⇒ c1 ≥ 1 =⇒ c1
c1!

=
1

(c1 − 1)!
(239)

Third Term =⇒ c2 ≥ 1 =⇒ c2
c2!

=
1

(c2 − 1)!
(240)

Thus, we can rewrite Xpqr as

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr = (r + 1)

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
−

−
bp−/2c∑
c1=1

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

(c1 − 1)!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
− (241)

−
bp/2c∑
c1=0

bq/2c∑
c2=1

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!(c2 − 1)!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!

Now, in the second term, we will re-label c1 so as to replace the sum from c1 = 1 to b(p−1)/2c
with the sum from c1 = 0 to b(p−1)/2c−1. Similarly, in the third term, we will re-label c2 so
as to replace the sum from c2 = 1 to b(q−1)/2c with the sum from c2 = 0 to b(q−1)/2c−1.
On the other hand, c2 on the second term and c1 on the third term will remain the same:

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr = (r + 1)

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
−

−
bp/2c−1∑
c1=1

bq/2c∑
c2=0

(−1)1+c1+c2(p+ q − 2c1 − 2− 2c2)!

c1!c2!(p− 2− 2c1)!(q − 2c2)!(r − c1 − c2)!
− (242)

−
bp/2c∑
c1=0

bq/2c−1∑
c2=0

(−1)1+c1+c2(p+ q − 2c1 − 2c2 − 2)!

c1!c2!(p− 2c1)!(q − 2− 2c2)!(r − c1 − c2)!

Now, by noticing that ⌊
p

2

⌋
− 1 =

⌊
p− 2

2

⌋
,

⌊
q

2

⌋
− 1 =

⌊
q − 2

2

⌋
(243)

and also that
−(−1)1+c1+c2 = +(−1)c1+c2 (244)
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we can rewrite the above as

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ Xpqr = (r + 1)

bp/2c∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2)!

c1!c2!(p− 2c1)!(q − 2c2)!(r + 1− c1 − c2)!
+

+

b(p−2)/2c∑
c1=1

bq/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2− 2c2)!

c1!c2!(p− 2− 2c1)!(q − 2c2)!(r − c1 − c2)!
+ (245)

+

bp/2c∑
c1=0

b(q−2)/2c∑
c2=0

(−1)c1+c2(p+ q − 2c1 − 2c2 − 2)!

c1!c2!(p− 2c1)!(q − 2− 2c2)!(r − c1 − c2)!

By comparing this to Eq 217, we can rewrite it as

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xpqr = (r + 1)Xp,q,r+1 +Xp−2,q,r +Xp,q,r−2 (246)

On the other hand, by repeated use of Eq 232, we have

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xpqr = Xp−1,q,r +Xp,q−1,r =

= (Xp−2,q,r +Xp−1,q−1,r) + (Xp−1,q−1,r +Xp,q−2,r) = Xp−2,q,r + 2Xp−1,q−1,r +Xp,q−2,r (247)

By comparing right hand sides of Eq 246 and Eq 247, we have

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒

=⇒ (r + 1)Xp,q,r+1 +Xp−2,q,r +Xp,q,r−2 = Xp−2,q,r + 2Xp−1,q−1,r +Xp,q−2,r (248)

By canceling Xp−2,q,r and Xp,q−2,r on both sides, we obtain

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ (r + 1)Xp,q,r+1 = 2Xp−1,q−1,r (249)

and, therefore,

r ≥
⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xp,q,r+1 =

2

r + 1
Xp−1,q−1,r (250)

By re-labeling r this becomes

r ≥ 1 +

⌊
p

2

⌋
+

⌊
q

2

⌋
=⇒ Xp,q,r =

2

r
Xp−1,q−1,r−1 (251)

the extra 1 in the domain of r, which comes from re-labeling, leaves out r = bp/2c+ bq/2c.
Now, our only aim is to include r = (p+ q)/2, where p+ q is even; or, in other words, either
p and q are both even, or they are both odd. Now, we observe that

p and q are even =⇒ p+ q

2
=

⌊
p

2

⌋
+

⌊
q

2

⌋
(252)
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p and q are odd =⇒ p+ q

2
=

⌊
p

2

⌋
+

⌊
q

2

⌋
+ 1 (253)

Thus, (p, q, (p+ q)/2) meet the pre-condition of Eq 251 if they are odd, but they fail to meet
it if they are even. Therefore, for the case of odd p and q, we automatically know that

p and q are odd =⇒ Xp,q,(p+q)/2 = Xp−1,q,(p+q)/2 +Xp,q−1,(p+q)/2 (254)

but for the case of even p and q we need to do some extra work. We will re-express Xp,q,(p+q)/2

as
Xp,q,(p+q)/2 = Xp−1,q,(p+q)/2 +Xp,q−1,(p+q)/2 (255)

Since our only concern is the case of even p and q, we note that

p and q are even =⇒ p+ q

2
= 1 +

⌊
p− 1

2

⌋
+

⌊
q

2

⌋
= 1 +

⌊
p

2

⌋
+

⌊
q − 1

2

⌋
(256)

thus, as long as p and q are even, we know that both (p−1, q, (p+q)/2) and (p, q−1, (p+q)/2)
fall into the domain of Eq 251, which allows us to re-express them as

p and q are even =⇒
{
Xp−1,q,(p+q)/2 = 4

p+q
Xp−2,q−1,(p+q)/2−1

Xp,q−1,(p+q)/2 = 4
p+q

Xp−1,q−2,(p+q)/2−1

}
(257)

By substituting this into Eq 255, we obtain

p and q are even =⇒ Xp,q,(p+q)/2 =
4

p+ q
Xp−2,q−1,(p+q)/2−1 +

4

p+ q
Xp−1,q−2,(p+q)/2−1 (258)

But Eq 254, after re-labeling p and q, implies that

p and q are even =⇒ Xp−1,q−1,(p+q)/2−1 = Xp−2,q−1,(p+q)/2−1 +Xp−1,q−2,(p+q)/2−1 (259)

By comparing Eq 258 and Eq 259, we obtain

p and q are even =⇒ Xp,q,(p+q)/2 =
4

p+ q
Xp−1,q−1,(p+q)/2−1 (260)

Taking together Eq 254 and Eq 260 we see that

p+ q is even =⇒ Xp,q,(p+q)/2 =
4

p+ q
Xp−1,q−1,(p+q)/2−1 (261)

But, if p + q is even, then (p− 1) + (q − 1) is also even, and so is (p− 2) + (q − 2), and so
forth. Thus,

p+ q is even =⇒ Xp,q,(p+q)/2 =
4

p+ q
Xp−1,q−1,(p+q)/2−1 =

=
4

p+ q

4

(p− 1) + (q − 1)
Xp−2,q−2,(p+q)/2−2 = · · · =

=
4min(p,q)Xp−min(p,q),q−min(p,q),(p+q)/2−min(p,q)∏min(p,q)−1

k=0 ((p− k) + (q − k))
=
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=
4min(p,q)Xmax(0,p−q),max(0,q−p),|q−p|/2∏min(p,q)−1

k=0

(
2
(
p+q
2
− k
)) = (262)

=
4min(p,q)Xmax(0,p−q),max(0,q−p),|q−p|/2

2min(p,q)
∏min(p,q)−1

k=0

(
p+q
2
− k
) =

=
2min(p,q)Xmax(0,p−q),max(0,q−p),|q−p|/2∏min(p,q)−1

k=0

(
p+q
2
− k
) =

=
2min(p,q)((p+ q)/2−min(p, q))!Xmax(0,p−q),max(0,q−p),|q−p|/2

((p+ q)/2)!
=

=
2min(p,q)|(q − p)/2|!

((p+ q)/2)!
Xmax(0,p−q),max(0,q−p),|q−p|/2

we can rewrite the above result as

p+ q is even =⇒ Xp,q,(p+q)/2 =


2p((q−p)/2)!
((p+q)/2)!

X0,q−p,(q−p)/2 if p < q
2q((p−q)/2)!
((p+q)/2)!

Xp−q,0,(p−q)/2 if p > q
2p

p!
X000 = 2q

q!
X000 if p = q

(263)

We will, therefore, compute Xp0r, X0qr and X000 and then substitute them with appropriate
relabeling of p and q into the above equation. By substituting p = 0 into Eq 217, we obtain

r ≥
⌊
q

2

⌋
=⇒ X0qr =

0∑
c1=0

bq/2c∑
c2=0

(−1)c1+c2(0 + q − 2c1 − 2c2)!

c1!c2!(0− 2c1)!(q − 2c2)!(r − c1 − c2)!
=

=

bq/2c∑
c2=0

(−1)0+c2(0 + q − 2 ∗ 0− 2c2)!

0!c2!(0− 2 ∗ 0)!(q − 2c2)!(r − 0− c2)!
= (264)

=

bq/2c∑
c2=0

(−1)c2(q − 2c2)!

c2!(q − 2c2)!(r − c2)!
=

bq/2c∑
c2=0

(−1)c2

c2!(r − c2)!

Therefore, if we assume r = bq/2c, we obtain

X0,q,bq/2c =

bq/2c∑
c2=0

(−1)c2

c2!(bq/2c − c2)!
=

1

bq/2c!

bq/2c∑
c2=0

(
bq/2c
c2

)
(−1)c2(+1)bq/2c−c2 =

=
(−1 + 1)bq/2c

bq/2c!
=

0bq/2c

bq/2c!
(265)

Now we have to be careful. The expression 0n = 0 holds only for n ≥ 1; as far as 00 is
concerned, its value is a ”philosophical” question. Thus, the only thing we have found out
is that ⌊

q

2

⌋
≥ 1 =⇒ X0,q,bq/2c = 0 (266)
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On the other hand, for the case of bq/2c = 0 we have⌊
q

2

⌋
= 0 =⇒ X0,q,bq/2c =

bq/2c∑
c2=0

(−1)c2

c2!(bq/2c − c2)!
=

0∑
c2=0

(−1)c2

c2!(0− c2)!
=

(−1)0

0!(0− 0)!
= 1 (267)

In other words, for general q,
X0,q,bq/2c = δq0 (268)

and, similarly,
Xp,0,bq/2c = δp0 (269)

If we use these results for Eq 263, we obtain

p+ q is even =⇒ Xp,q,(p+q)/2 =


0 if p < q
0 if p > q
2p

p!
= 2q

q!
if p = q

(270)

which can be rewritten as

p+ q is even =⇒ Xp,q,(p+q)/2 =
2p

p!
δpq =

2q

q!
δpq (271)

which agrees with Eq 216. Now, the reason we wanted Eq 216 to hold is that, from our
earlier discussion,

Eq 216 holds =⇒ 〈ψp|ψq〉 = δpq for even p+ q (272)

On the other hand, inspection of Eq 202 tells us that∫
(odd function) = 0 =⇒ 〈ψp|ψq〉 = 0 for odd p+ q (273)

as has also been observed in Eq 203. Thus, by combining the above two statements, we have

∀p, q(〈ψp|ψq〉 = 0) (274)

as desired.

10. Verification of orthonormality for 2D

Let us now turn to 2D case and verify the orthonormality of Eq 201. If we take inner product
between two states given in Eq 168, we find

〈ψpL|ψqL〉 = NpLNqL

min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

[(∫
d3r e−mωr

2

rp+q−2c1−2c2
)
×

×
(

(−1)c1+c2(2mω)
p+q
2
−c1−c2

2p+q−c1−c2c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

)]
(275)
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by using
d2r = 2πrdr (276)

this becomes

〈ψpL|ψqL〉 = 2πNpLNqL

min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

[(∫ ∞
0

dr e−mωr
2

rp+q−2c1−2c2+1

)
×

×
(

(−1)c1+c2(2mω)
p+q
2
−c1−c2

2p+q−c1−c2c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

)]
(277)

Let us assume that p+ q is even. By replacing n with (p+ q)/2− c1− c2 in Eq 195 we obtain

p+ q is even =⇒
∫ ∞
0

rp+q−2c1−2c2+1e−mωr
2

dr =
(p+q

2
− c1 − c2)!

2 (mω)
p+q
2
−c1−c2+1

(278)

By plugging in Eq 278 into Eq 277, we obtain

p+ q is even =⇒ 〈ψpL|ψqL〉 = 2πNpL

min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

[(
(p+q

2
− c1 − c2)!

2 (mω)
p+q
2
−c1−c2+1

)
×

×
(

(−1)c1+c2(2mω)
p+q
2
−c1−c2

2p+q−c1−c2c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

)]
(279)

which, after some combining of factors and some cancellations, becomes

p+ q is even =⇒ 〈ψpL|ψqL〉 = (280)

=
πNpLNqL

2(p+q)/2mω

min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

(−1)c1+c2(p+q
2
− c1 − c2)!

c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

By substituting Eq 200 for NpL and NqL, we obtain

p+ q is even =⇒ 〈ψpL|ψqL〉 =
π

√(
p−L
2

)
!
(

p+L
2

)
!

p!

√
2pp!mω

π

√(
q−L
2

)
!
(

q+L
2

)
!

n!

√
2qq!mω

π

2(p+q)/2mω
×

×
min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

(−1)c1+c2(p+q
2
− c1 − c2)!

c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

(281)

which evaluates to

p+ q is even =⇒ 〈ψpL|ψqL〉 =

√(
p− L

2

)
!

(
p+ L

2

)
!

(
q − L

2

)
!

(
q + L

2

)
! ×
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×
min
(

n−L
2
,n+L

2

)∑
c1=0,c2=0

(−1)c1+c2(p+q
2
− c1 − c2)!

c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

(282)

The normalization
〈ψpL|ψqL〉 = δpq (283)

tells us that
p+ q is even =⇒

=⇒
min
(

p−L
2
, p+L

2

)∑
c1=0

min
(

q−L
2
, q+L

2

)∑
c2=0

(−1)c1+c2(p+q
2
− c1 − c2)!

c1!c2!
(
p+L
2
− c1

)
!
(
p−L
2
− c1

)
!
(
q+L
2
− c2

)
!
(
q−L
2
− c2

)
!

=

=
δpq√(

p−L
2

)
!
(
p+L
2

)
!
(
q−L
2

)
!
(
q+L
2

)
!

(284)

Notably, we were using ”physics” to prove the above, which is strange, since outcome of said
”physics” is pure math. Let us, therefore, see whether or not we can derive said ”math”
without reference to ”physics. Let us define

YP1P2Q1Q2R =

min(P1,P2)∑
c=0

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!

c!d!(P1 − c)!(P2 − c)!(Q1 − d)!(Q2 − d)!
(285)

In this language, what we have just found out is

Physics =⇒ Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δpq√(
p−L
2

)
!
(
p+L
2

)
!
(
q−L
2

)
!
(
q+L
2

)
!

if p+ q is even (286)

Our goal is to prove the above result by using pure math.

Theorem 1

P1YP1P2Q1Q2R = YP1−1,P2,Q1,Q2,R − YP1−1,P2−1,Q1,Q2,R−1 (287)

Proof: We can multiply each of the summand of Eq 285 by

P1 = (P1 − c) + c (288)

and then splitting it into two terms: one containing P1 − c and the other c:

P1YP1P2Q1Q2R =

min(P1,P2)∑
c=0

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!(P1 − c)
c!d!(P1 − c)!(P2 − c)!(Q1 − d)!(Q2 − d)!

+

+

min(P1,P2)∑
c=0

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!c

c!d!(P1 − c)!(P2 − c)!(Q1 − d)!(Q2 − d)!
(289)
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Now we observe that
0

0!
=

0

1
= 0 (290)

Therefore, the summand in the first term is zero for c = P1. This means that, instead of
summing c over {0, · · · ,min(P1, P2)} we can sum it over {0, · · · ,min(P1, P2)} \ {P1}}:

min(P1,P2)∑
c=0

P1 − c
(P1 − c)!

(· · · ) =
∑

c∈{0,··· ,min(P1,P2)}\{P1}

P1 − c
(P1 − c)!

(· · · ) (291)

Now, we notice that

P1 ≤ P2 =⇒ {0, · · · ,min(P1, P2)} \ {P1} = {0, · · · , P1} \ {P1} =

= {0, · · · , P1 − 1} = {0, · · · ,min(P1 − 1, P2)} (292)

P2 ≤ P1 − 1 =⇒ {0, · · · ,min(P1, P2)} \ {P1} = {0, · · · , P2} \ {P1} =

= {0, · · · , P2} = {0, · · · ,min(P1 − 1, P2)} (293)

Now, we know that either P1 ≤ P2 or P2 < P1 must hold. Furthermore, we know that
P2 < P1 is equivalent to P2 ≤ P1 − 1. Thus, we know that either P1 ≤ P2 or P2 ≤ P1 − 1
must hold:

∀P1∀P2((P1 ≤ P2) ∨ (P2 ≤ P1 − 1)) (294)

This, in combination with Eq 292 and 293 tells us that

∀P1∀P2({0, · · · ,min(P1, P2)} \ {P1} = {0, · · · ,min(P1 − 1, P2)} (295)

Thus, Eq 291 becomes

min(P1,P2)∑
c=0

P1 − c
(P1 − c)!

(· · · ) =

min(P1−1,P2)∑
c=0

P1 − c
(P1 − c)!

(· · · ) (296)

We then observe that

c ≤ min(P1 − 1, P2) =⇒ c ≤ p1 − 1 =⇒ P1 − c ≥ 1 =⇒ P1 − c
(P1 − c)!

=
1

(P1 − 1− c)!
(297)

Thus we can rewrite Eq 296 as

min(P1,P2)∑
c=0

P1 − c
(P1 − c)!

(· · · ) =

min(P1−1,P2)∑
c=0

1

(P1 − 1− c)!
(· · · ) (298)

On the other hand, if we apply
0

0!
=

0

1
= 0 (299)

to the second term on the right hand side of Eq 289, then we will exclude c = 0 term:

min(P1,P2)∑
c=0

c

c!
(· · · ) =

∑
c∈{0,··· ,min(P1,P2)}\{0}

c

c!
(· · · ) =

min(P1,P2)∑
c=1

c

c!
(· · · ) (300)
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By noticing that

c ≥ 1 =⇒ c

c!
=

1

(c− 1)!
(301)

we can rewrite Eq 300 as

min(P1,P2)∑
c=0

c

c!
(· · · ) =

min(P1,P2)∑
c=1

1

(c− 1)!
(· · · ) (302)

By applying Eq 298 and 302 to Eq 289, we obtain

P1YP1P2Q1Q2R =

min(P1−1,P2)∑
c=0

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!

c!d!(P1 − 1− c)!(P2 − c)!(Q1 − d)!(Q2 − d)!
+

+

min(P1,P2)∑
c=1

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!

(c− 1)!d!(P1 − c)!(P2 − c)!(Q1 − d)!(Q2 − d)!
(303)

Now if we set
c′ = c− 1 (304)

then
(−1)c+d = −(−1)c

′+d , R− c− d = (R− 1)− c′ − d (305)

P1 − c = (P1 − 1)− c′ , P2 − c = (P2 − 1)− c′ (306)

and, furthermore,

c ∈ {1, · · · ,min(P1, P2)} =⇒ c′ ∈ {0,min(P1 − 1, P2 − 1)} (307)

By applying Eq 304, 305, 306 and 307 to the last sum in Eq 303, we obtain

P1YP1P2Q1Q2R =

min(P1−1,P2)∑
c=0

min(Q1,Q2)∑
d=0

(−1)c+d(R− c− d)!

c!d!(P1 − 1− c)!(P2 − c)!(Q1 − d)!(Q2 − d)!
−

−
min(P1−1,P2−1)∑

c′=0

min(Q1,Q2)∑
d=0

(−1)c
′+d((R− 1)− c′ − d)!

c′!d!((P1 − 1)− c′)!((P2 − 1)− c′)!(Q1 − d)!(Q2 − d)!
(308)

By comparing the right hand side to Eq 285, we can rewrite it as

P1YP1P2Q1Q2R = YP1−1,P2,Q1,Q2,R − YP1−1,P2−1,Q1,Q2,R (309)

which coincides with the claim of the Theorem. QED.

Theorem 2

Y0PQ1Q2R =
1

P !
Y00Q1Q2R (310)

Proof From Eq 285 we know that

Y0PQ1Q2R =
0∑

c1=0

min(Q1,Q2)∑
c2=0

(−1)c1+c2(R− c1 − c2)!
c1!c2!(0− c1)!(P − c1)!(Q1 − c1)!(Q2 − c2)!

(311)
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This means that we can drop the summation over c1 and replace it with

c1 = 0 (312)

leading to

Y0PQ1Q2R =

min(Q1,Q2)∑
c2=0

(−1)0+c2(R− 0− c2)!
0!c2!(0− 0)!(P − 0)!(Q1 − d)!(Q2 − d)!

=

=

min(Q1,Q2)∑
c2=0

(−1)0+c2(R− 0− c2)!
c2!P !(Q1 − d)!(Q2 − d)!

=
1

P !

min(Q1,Q2)∑
c2=0

(−1)0+c2(R− 0− c2)!
c2!P !(Q1 − d)!(Q2 − d)!

(313)

By plugging in P = 0, we obtain

Y00Q1Q2R =

min(Q1,Q2)∑
c2=0

(−1)0+c2(R− 0− c2)!
c2!P !(Q1 − d)!(Q2 − d)!

(314)

And by comparing Eq 313 with Eq 314 we have

Y0PQ1Q2R =
1

P !
Y00Q1Q2R (315)

Lemma 1
Y0,0,Q1,Q2,max(Q1,Q2) = δ

min(Q1,Q2)
0 (316)

Proof By inspecting Eq 285 for P1 = P2 = 0 we see that c is being summed from 0
to 0. In other words, we can ”get rid” of sum over c and, instead, replace all of c-s with
0. Furthermore, again by noticing P1 = P2 = 0, we also know that P1 − c = 0 − 0 = 0
and P2 − c = 0 − 0 = 0. Thus, we can replace c!(P1 − c)!(P2 − c)! with 1. Therefore, the
summation becomes

Y0,0,Q1,Q2,max(Q1,Q2) =

min(Q1,Q2)∑
d=0

(−1)d(max(Q1, Q2)− d)!

d!(Q1 − d)!(Q2 − d)!
(317)

Now, it is easy to see that

(Q1 − d)!(Q2 − d)! = (min(Q1, Q2)− d)!(max(Q1, Q2)− d)! (318)

By doing this substitution, we obtain

Y0,0,Q1,Q2,max(Q1,Q2) =

min(Q1,Q2)∑
d=0

(−1)d(max(Q1, Q2)− d)!

d!(min(Q1, Q2)− d)!(max(Q1, Q2)− d)!
(319)

Thus, (max(Q1, Q2)− d)! on numerator and denominator cancels out, leading to

Y0,0,Q1,Q2,max(Q1,Q2) =

min(Q1,Q2)∑
d=0

(−1)d

d!(min(Q1, Q2)− d)!
(320)
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The above matches binomial expression of (−1 + 1)min(Q1,Q2). We have to be careful though
since 0n = 0 holds only for n ≥ 1 while the value of 00 is ”controversial”. Thus we do
binomial formula in former case and brute force summing in latter case:

min(Q1, Q2) ≥ 1 =⇒ Y0,0,Q1,Q2,max(Q1,Q2) = (−1 + 1)min(Q1,Q2) = 0 (321)

min(Q1, Q2) = 0 =⇒ Y0,0,Q1,Q2,max(Q1,Q2) =
0∑
d=0

(−1)d

d!(0− d)!
=

(−1)0

0!(0− 0)!
= 1 (322)

These two results imply
Y00Q1Q2 max(Q1,Q2) = δ

min(Q1,Q2)
0 (323)

as claimed. QED

Lemma 2 
k ≥ 0
Q1 ≥ k + 1
Q2 ≥ k + 1

 =⇒ Y0,0,Q1,Q2,k+max(Q1,Q2) = 0 (324)

Proof Let us define set S as follows:

S = {k ≥ 0|∀Q1 ≥ k + 1 ∀Q2 ≥ k + 1 (Y0,0,Q1,Q2,k+max(Q1,Q2) = 0)} (325)

Now, by using Eq 309 with Q1 playing the role of P1, we see that
k ∈ S
Q1 ≥ k + 1
Q2 ≥ k + 1

 =⇒ Y0,0,Q1,Q2,k+max(Q1,Q2) = 0 =⇒

=⇒ Y0,0,Q1−1,Q2,k+max(Q1,Q2) − Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1) = 0 =⇒
=⇒ Y0,0,Q1−1,Q2,k+max(Q1,Q2) = Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1) (326)

We therefore observe that
k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒


k ∈ S
Q1 ≥ k + 1
Q2 ≥ k + 1

 =⇒

=⇒ Y0,0,Q1−1,Q2,k+max(Q1,Q2) = Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1) (327)

and, on the other hand,
k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒


k ∈ S
Q1 − 1 ≥ k + 1
Q2 − 1 ≥ k + 1

 =⇒ Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1) = 0 (328)

Pulling those two results together we have
k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒
{
Y0,0,Q1−1,Q2,k+max(Q1,Q2) = Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1)
Y0,0,Q1−1,Q2−1,k+max(Q1−1,Q2−1) = 0

}
=⇒
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=⇒ Y0,0,Q1−1,Q2,k+max(Q1,Q2) = 0 (329)

Now, we will utilize Eq 309 with Q2 playing the role of P1, thus making the following
argument: 

k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒ Y0,0,Q1−1,Q2,k+max(Q1,Q2) = 0 =⇒

=⇒ Y0,0,Q1−1,Q2−1,k+max(Q1,Q2) − Y0,0,Q1−2,Q2−1,k+max(Q1−1,Q2−1) = 0 =⇒

=⇒ Y0,0,Q1−1,Q2−1,k+max(Q1,Q2) = Y0,0,Q1−2,Q2−1,k+max(Q1−1,Q2−1) (330)

Now if we re-label Q1 and Q2 by replacing them with Q1 + 1 and Q2 + 1, respectively, we
obtain 

k ∈ S
Q1 + 1 ≥ k + 2
Q2 + 1 ≥ k + 2

 =⇒

=⇒ Y0,0,(Q1+1)−1,(Q2+1)−1,k+max(Q1+1,Q2+1) = Y0,0,(Q1+1)−2,(Q2+1)−1,k+max((Q1+1)−1,(Q2+1)−1) =⇒

=⇒ Y0,0,Q1,Q2,(k+1)+max(Q1,Q2) = Y0,0,Q1−1,Q2,k+max(Q1,Q2) (331)

And, therefore, 
k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒


k ∈ S
Q1 + 1 ≥ k + 2
Q2 + 1 ≥ k + 2

 =⇒

=⇒ Y0,0,Q1,Q2,(k+1)+max(Q1,Q2) = Y0,0,Q1−1,Q2,k+max(Q1,Q2) (332)

Now, if we combine Eq 329 and Eq 332, we get
k ∈ S
Q1 ≥ k + 2
Q2 ≥ k + 2

 =⇒
{
Y0,0,Q1−1,Q2,k+max(Q1,Q2) = 0
Y0,0,Q1,Q2,(k+1)+max(Q1,Q2) = Y0,0,Q1−1,Q2,k+max(Q1,Q2)

}
=⇒

=⇒ Y0,0,Q1,Q2,(k+1)+max(Q1,Q2) = 0 (333)

Now, we can rewrite it as

k ∈ S =⇒ [∀Q1 ≥ k + 2 ∀Q2 ∈ k + 2 (Y0,0,Q1,Q2,(k+1)+max(Q1,Q2) = 0)] (334)

By comparing it to the definition of S given in Eq 325, we can rewrite the above as

k ∈ S =⇒ k + 1 ∈ S (335)

Furthermore, we know from previous Lemma that

0 ∈ S (336)

Thus, by induction,
S = N (337)
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This, in combination with Eq 325, implies

∀k ∈ N ∀Q1 ≥ k + 1 ∀Q2 ≥ k + 1 (Y0,0,Q1,Q2,k+max(Q1,Q2) = 0) (338)

as claimed. QED

Lemma 3
max(Q1, Q2) ≤ R ≤ Q1 +Q2 − 1 =⇒ Y0,0,Q1,Q2,R = 0 (339)

Proof Let us define
k = R−max(Q1, Q2) (340)

Thus,
max(Q1, Q2) ≤ R⇐⇒ R−max(Q1, Q2) ≥ 0⇐⇒ k ≥ 0⇐⇒ k ∈ N (341)

R ≤ Q1 +Q2 − 1⇐⇒ R ≤ max(Q1, Q2) + min(Q1, Q2)− 1⇐⇒

⇐⇒ R−max(Q1, Q2) ≤ min(Q1, Q2)− 1⇐⇒ k ≤ min(Q1, Q2)− 1⇐⇒

⇐⇒
{
k ≤ Q1 − 1
k ≤ Q2 − 1

}
⇐⇒

{
k + 1 ≤ Q1

k + 1 ≤ Q2

}
⇐⇒

{
Q1 ≥ k + 1
Q2 ≥ k + 1

}
(342)

By taking Eq 341 and Eq 342 together, we get

max(Q1, Q2) ≤ R ≤ Q1 +Q2 − 1⇐⇒


k ∈ N
Q1 ≥ k + 1
Q2 ≥ k + 1

 (343)

But, we know from previous Lemma, that
k ∈ N
Q1 ≥ k + 1
Q2 ≥ k + 1

 =⇒ Y0,0,Q1,Q2,k+max(Q1,Q2) = 0 =⇒ Y0,0,Q1,Q2,R = 0 (344)

Thus, the last two statements taken together imply

max(Q1, Q2) ≤ R ≤ Q1 +Q2 − 1 =⇒ Y0,0,Q1,Q2,R = 0 (345)

as claimed. QED

Lemma 4
Y0,0,Q1,Q2,Q1+Q2 = 1 (346)

Proof We notice that

min(Q1, Q2) ≥ 1 =⇒ Q1 +Q2 = min(Q1, Q2) + max(Q1, Q2) ≥

≥ 1 + max(Q1, Q2) = max(Q1 + 1, Q2 + 1) ≥ max(Q1 + 1, Q2) =⇒

=⇒ max(Q1 + 1, Q2) ≤ Q1 +Q2 = (Q1 + 1) +Q2 − 1 =⇒

=⇒ max(Q1 + 1, Q2) ≤ Q1 +Q2 ≤ (Q1 + 1) +Q2 − 1 =⇒ Y0,0,Q1+1,Q2,Q1+Q2 = 0 (347)
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But, we know from Theorem 1 that

(Q1 +Q2)Y0,0,Q1+1,Q2,Q1+Q2 = Y0,0,Q1,Q2,Q1+Q2 − Y0,0,Q1,Q2−1,Q1+Q2−1 (348)

Thus, combining it with statement 347, we have

min(Q1, Q2) ≥ 1 =⇒ Y0,0,Q1,Q2,Q1+Q2 − Y0,0,Q1,Q2−1,Q1+Q2−1 = 0 =⇒

=⇒ Y0,0,Q1,Q2,Q1+Q2 = Y0,0,Q1,Q2−1,Q1+Q2−1 (349)

Now let us define the set U as

U = {u|Q1 +Q2 = U =⇒ Y0,0,Q1,Q2,Q1+Q2 = 1} (350)

We observe that

Q1 +Q2 = 0 =⇒ Q1 = Q2 = 0 =⇒ Y0,0,Q1,Q2,Q1+Q2 = Y0,0,0,0,0 = 1 (351)

and, therefore
0 ∈ U (352)

Now, notice that
u ∈ U
min(Q1, Q2) ≥ 1
Q1 +Q2 = u+ 1

 =⇒apply 349 to 2−nd line


u ∈ U
Y0,0,Q1,Q2,Q1+Q2 = Y0,0,Q1,Q2−1,Q1+Q2−1
Q1 + (Q2 − 1) = u

 =⇒

=⇒Apply 1−st line to 3−rd line


u ∈ U
Y0,0,Q1,Q2,Q1+Q2 = Y0,0,Q1,Q2−1,Q1+Q2−1
Y0,0,Q1,Q2−1,Q1+Q2−1 = 1

 =⇒

=⇒apply 3−rd line to 2−nd line Y0,0,Q1,Q2,Q1+Q2 = 1 (353)

On the other hand, from Lemma 1 we know that

Q1 = 0 =⇒ Y0,0,Q1,Q2,Q1+Q2 = Y0,0,0,Q2,Q2 = Y0,0,0,Q2,max(0,Q2) =Lemma 1 δ00 = 1 (354)

and, by symmetry between Q1 and Q2, we automatically know that

Q2 = 0 =⇒ Y0,0,Q1,Q2,Q1+Q2 = 1 (355)

and, therefore,
min(Q1, Q2) = 0 =⇒ Y0,0,Q1,Q2,Q1+Q2 = 1 (356)

On the other hand, we know from 354 that
u ∈ U
min(Q1, Q2) ≥ 1
Q1 +Q2 = u+ 1

 =⇒ Y0,0,Q1,Q2,Q1+Q2 = 1 (357)
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Thus, we can use 356 to enable ourselves to ”drop” the requirement min(Q1, Q2) ≥ 1 from
left hand side of 357, thus obtaining{

u ∈ U
Q1 +Q2 = u+ 1

}
=⇒ Y0,0,Q1,Q2,Q1+Q2 = 1 (358)

This can be rewritten as

∀u ∈ U∀Q1 ∈ N∀Q2 ∈ N(Q1 +Q2 = u+ 1 =⇒ Y0,0,Q1,Q2,Q1+Q2 = 1) (359)

Now, everything to the right of ”∀u ∈ U” matches the definition of a statement u + 1 ∈ U .
Thus, we have

∀u ∈ U(u+ 1 ∈ U) (360)

And, together with 0 ∈ U that we read off from 352, we obtain

U = N (361)

Therefore,
∀Q1∀Q2(Q1 +Q2 ∈ U) (362)

and, therefore
∀Q1∀Q2(Y0,0,Q1,Q2,Q1+Q2 = 1) (363)

which completes the proof. QED.

Lemma 5

max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ Y0,0,Q1,Q2,R = δRQ1+Q2
(364)

Proof: This is direct consequence of combining Lemma 3 with Lemma 4. QED.

Lemma 6

max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ Y0,P,Q1,Q2,R =
δRQ1+Q2

P !
(365)

Proof: From Theorem 2 we know that

Y0,P,Q1,Q2,R =
1

P !
Y0,0,Q1,Q2,R (366)

and from Lemma 5 we know that

max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ Y0,0,Q1,Q2,R = δRQ1+Q2
(367)

The combination of the above two statements tells us

max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ Y0,P,Q1,Q2,R =
δRQ1+Q2

P !
(368)
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which completes the proof. QED.

Theorem

min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ YP1,P2,Q1,Q2,RQ1+Q2 =
1

Q1!Q2!
(369)

Proof We note that

min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒

=⇒ min(P1 − 1, P2 − 1) + max(Q1, Q2) ≤ R− 1 ≤ Q1 +Q2 − 1 =⇒
=⇒ YP1−1,P2−1,Q1,Q2,R−1 = 0 =⇒

=⇒ P1YP1P2Q1Q2R = YP1−1,P2,Q1,Q2,R − YP1−1,P2−1,Q1,Q2,R−1 = YP1−1,P2,Q1,Q2,R (370)

Now, for any given values of P2, Q1 and Q2, let us define the set VP2Q1Q2 to be

VP2Q1Q2 =

{
P1

∣∣∣∣∀R ∈ N(P1 + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒

=⇒
(
YP1P2Q1Q2R =

δRQ1+Q2

P1!P2!

)}
(371)

We then argue that{
P1 − 1 ∈ VP2Q1Q2

P1 + max(Q1, Q2) ≤ R ≤ Q1 +Q2

}
=⇒apply 370 to 2−nd line (372)

=⇒
{
P1 − 1 ∈ VP2Q1Q2

P1YP1P2Q1Q2R = YP1−1,P2,Q1,Q2,R

}
=⇒apply 371 to 1−st line (373)

=⇒
{
YP1−1,P2,Q1,Q2,R = 1

(P1−1)!P2!

P1YP1P2Q1Q2R = YP1−1,P2,Q1,Q2,R

}
=⇒substitute 1−st line into 2−nd line (374)

=⇒ P1YP1P2Q1Q2R =
1

(P1 − 1)!P2!
=⇒move P1 to the right (375)

=⇒ YP1P2Q1Q2R =
1

P1

1

(P1 − 1)!P2!
=

1

P1!P2!
(376)

We can rewrite the above as

∀P1

[
P1 − 1 ∈ VP2Q1Q2 =⇒

=⇒ ∀R
(
P1 + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒ YP1P2Q1Q2R =

1

P1!P2!

)]
(377)

Now, the second line of the above matches the definition fo a statement P1 ∈ VP2Q1Q2 . Thus,
we can rewrite the above as

∀P1(P1 − 1 ∈ VP2Q1Q2 −→ P1 ∈ VP2Q1Q2) (378)

49



Furthermore, the statement of Lemma 6 can be rewritten as

0 ∈ V (P2Q1Q2) (379)

And, therefore, we conclude by induction that

VP2Q1Q2 = N (380)

At first, this might appear odd: after all, if it happens that min(P1, P2) > min(Q1, Q2), then
the condition min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 can’t possibly hold. However, from
the formal logical point of view, this doesn’t pose any obstacles with regards to ”truthfulness”
of the statement. After all, any statement pertaining to ”all elements of empty set” is always
true by default. In other words, the ”non-trivial” part of our statement pertains to the
domain min(P1, P2) ≤ min(Q1, Q2); but we are always free to ”add” a ”trivial” statement
pertaining to domain min(P1, P2) > min(Q1, Q2) (the latter being trivial due to its reference
to ”all elements of empty set”). So, if we combine non-trivial together with trivial statements,
we would indeed have a statement pertaining to all P1, P2, Q1 and Q2.

In any case, to continue with our proof, since the Eq 380 was derived for arbitrary P2,
Q1 and Q2, we can rewrite it as

∀P2∀Q1∀Q2(VP2Q1Q2 = N) (381)

and, by substituting the definition of V given in Eq 371, we have

∀P2∀Q1∀Q2∀P1∀R
(
P1+max(Q1, Q2) ≤ R ≤ Q1+Q2 =⇒

(
YP1P2Q1Q2R =

δRQ1+Q2

P1!P2!

))
(382)

This statement is true both for P1 ≤ P2 and P2 ≤ P1. Thus, we have separately proven two
things:

min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒
(
YP1P2Q1Q2R =

δRQ1+Q2

P1!P2!

)
(383)

and

max(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒
(
YP1P2Q1Q2R =

δRQ1+Q2

P1!P2!

)
(384)

However, the first statement is stronger than the second. Thus, we will only have the first
statement as our final answer:

min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 =⇒
(
YP1P2Q1Q2R =

δRQ1+Q2

P1!P2!

)
(385)

which is what we wanted to show. QED.

Theorem

Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δpq√(
p−L
2

)
!
(
p+L
2

)
!
(
q−L
2

)
!
(
q+L
2

)
!

if p+ q is even (386)
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Proof We introduce the following notation:

P1 =
p− L

2
, P2 =

p+ L

2
, Q1 =

q − L
2

, Q2 =
q + L

2
, R =

p+ q

2
(387)

Thus, we have

min(P1, P2) =
p− |L|

2
, max(P1, P2) =

p+ |L|
2

(388)

min(Q1, Q2) =
q − |L|

2
, max(Q1, Q2) =

q + |L|
2

(389)

and, therefore,

min(P1, P2) + max(Q1, Q2) =
p− |L|

2
+
q + |L|

2
=
p+ q

2
= R (390)

On the other hand,

Q1 +Q2 =
q − L

2
+
q + L

2
= q (391)

and, therefore,

R ≤ Q1 +Q2 ⇐⇒
p+ q

2
≤ q ⇐⇒ 0 ≤ q − p+ q

2
=
q − p

2
⇐⇒ p ≤ q (392)

In light of Eq 390 we know that min(P1, P2)+max(Q1, Q2) ≤ R is always true and, therefore,
can be either included or dropped at will. Therefore,

min(P1, P2) + max(Q1, Q2) ≤ R ≤ Q1 +Q2 ⇐⇒ R ≤ Q1 +Q2 ⇐⇒ p ≤ q (393)

Thus, the statement of the previous theorem becomes

p ≤ q =⇒ Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δ
p+q
2

q

p−L
2

!p+L
2

!
(394)

Now, since Y is symmetric with respect to p ↔ q, we can drop the assumption p ≤ q, thus
obtaining a general statement

Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δ
p+q
2

q

p−L
2

!p+L
2

!
(395)

Furthermore, we observe that

p+ q

2
= q ⇐⇒ 0 = q − p+ q

2
=
q − p

2
⇐⇒ p = q (396)

and, therefore,

δ
p+q
2

q = δpq (397)

Thus, we have

Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δpq
p−L
2

!p+L
2

!
(398)
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Now, we observe that

p = q =⇒ 1
p−L
2

!p+L
2

!
=

1√
p−L
2

!p+L
2

! q−L
2

! q+L
2

!
(399)

and, therefore,
δpq

p−L
2

!p+L
2

!
=

δpq√
p−L
2

!p+L
2

! q−L
2

! q+L
2

!
(400)

Thus, we rewrite Y as

Y p−L
2
, p+L

2
, q−L

2
, q+L

2
, p+q

2
=

δpq√
p−L
2

!p+L
2

! q−L
2

! q+L
2

!
(401)

which coincides with our desired answer. QED.

11. Exercises

As one is about to see, the orthonormality is by far not the only thing that needs to be
verified. However, this one example is hopefully enough to convince the reader that just
because something looks mysterious it doesn’t mean the answer is wrong; rather, it simply
means that there are some difficult theorems to be proven. Therefore, we will leave the
verifications of other things as exercises for the reader. The following list of things to be
verified is by no means exclusive but it will inform the reader regarding the direction in
which to think:

1. Note that in Section 7 we have started from the solution in Cartesian coordinates from
which we then obtained various solutions in polar coordinates. Thus, we have never directly
used a++ and a+− in inductively obtaining such solutions from vacuum state. It would now
be interesting to do so, and verify that we would get the same answer. Since doing that is
too complicated, there is a short cut: we can take the list of explicit solutions we already
have, and check that acting on them with {a++, a+−, a−+, a−−} (which are defined in terms
of {r, ∂/∂r, θ, ∂/∂θ}) would indeed ”take” us from one solution to the other in expected
manner.

2. Write down Schrodinger’s equation in polar coordinates and verify that ψ taken from
Eq 201 and appropriately rescaled via ∂(x, y)/∂(r, θ) obeys it.

3. Write down a general superposition of all possible states derived in Cartesian coor-
dinates by means of separation of variables. After that, derive the formula for ”rotation”
of those states from (x, y) to (x′, y′) coordinate system. The rotation would take the form
(a†x′)

i(a†y′)
j|0〉 = Tijkl(θ)(a

†
x)
k(a†y)

l|0〉, where θ is the angle between the two coordinates sys-
tems. Verify that

a) Tijkl(θ1)Tijkl(θ2) = Tijkl(θ1 + θ2)

b) If we put (x′, y′) in place of (x, y) and visa versa then Tijkl(θ) will become Tijkl(−θ)
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c) Tijkl(0) = 1

d) Eigenstates of Tijkl coincide with Eq 201 converted from polar to Cartesian coordi-
nates.

4. Since the Hamiltonian is symmetric in position and momentum, one should expect
that the Fourier transform of n-th excited state should, again, be n-th excited state, with
appropriately chained coefficients.

a) Determine how the coefficients should change by mere inspection of the Hamiltonian

b) Carry out Fourier transform of Eq 155 and check that it matches Eq 155 with coeffi-
cients changed according to what was ”predicted” in part a.

5. Repeat the same thing for 2D case, replacing Eq 155 with Eq 201, n with (n, L), and
so forth.

6. Forget the wave function altogether. Instead, define x̂ as (a + a†)/
√

2mω where
[a, a†] = 1 (this has nothing to do with derivatives; indeed, derivatives do not exist and the
above commutation relation is merely an axiom). Postulate state |0〉 (which has nothing
to do with wave function; it is merely ”abstract entity” satisfying a|0〉 = 0) then define
|n〉 = Cn(a†)n|0〉 where Cn is selected in such a way that 〈n|n〉 = 0. Use induction to
derive the ”eigenstate” of x̂ given by x̂|x0〉 = x0|x0〉; such eigenstate would take the form
|x0〉 = c0|0〉+ c1|1〉+ c2|2〉+ · · · . Prove that cn = ψn(x0) where ψn is given in Eq 155.

7. Postulate algebraic structure given in Eq 41-45; once again, there is no coordinate sys-
tem at all. Inspired by Eq 58, define an ”object” |r, θ〉 as an eigenstate of (a++ +a−+)/

√
mω

with an eigenvalue reiθ. Clearly, said ”object” should be a linear combination of the form∑
Ckla

k
++a

l
+−|0〉 (402)

with appropriately chosen coefficients Ckl. Define |ψnL〉 as

|ψnL〉 =
1√

〈0|a(n+L)/2−− a
(n−L)/2
−+ a

(n−L)/2
+− a

(n+L)/2
++ |0〉

a
(n−L)/2
+− a

(n+L)/2
++ |0〉 (403)

where it is assumed that n and L are either both even or both odd. Show by induction that
the value of 〈r, θ|ψnL〉 coincides with the value of ψnL(r, θ) given in Eq 201, up to appropriate
rescaling via ∂(x, y)/∂(r, θ), as long as r and θ used in defining |r, θ〉 are both real.

8∗. From the ”physics” point of view, it is easy to see that

δ(x1 − x2) = 〈x1|x2〉 = 〈x1|
( ∞∑

k=0

|k〉〈k|
)( ∞∑

l=0

|l〉〈l|
)
|x2〉 =

=
∑
kl

〈x1|k〉〈k|l〉〈l|x2〉 =
∑
kl

ψx(x1)δ
k
l ψ
∗
l (x2) =

∑
k

ψk(x1)ψ
∗
k(x2) (404)

but from the ”math” point of view the idea that Eq 155 satisfies∑
k

ψk(x1)ψ
∗
k(x2) = δ(x1 − x2) (405)
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is not obvious at all. The point of this exercise is to prove the above by means of mathematics
alone, without any use of ”physics” (such as the ”physics” used in derivation of Eq 404).
This involves two steps:

a) Define the ”partial sum” to be

sn(x1, x2) =
n∑
k=0

ψk(x1)ψ
∗
k(x2) (406)

and perform numeric simulations in order to find out exactly ”in what sense” does it ap-
proach δ-function. In particular, the reader should investigate whether or not there are any
anomalies. One example of ”possible” anomaly (that I don’t claim takes place or other-
wise) is the following: suppose sn(x − y) is large for x − y ∈ (−n − 1/n2,−n + 1/n2) ∪
(−1/n, 1/n)∪ (n− 1/n2, n+ 1/n2). Thus, the ever increasing distances between these three
intervals indicate that strictly speaking sn is not ”narrow”. At the same time, it is also true
that restriction of sn onto [−X,X] is narrow for any fixed X (however large) as n → ∞.
And it is equally true that if the heights of the three peaks are comparable, then most of the
contribution to the integral comes from the peak around 0. Since our ”physics” knowledge
is based on math theorems that were only proven for compact spaces (such as [−X,X]) one
can not rule out the above scenario. Now, I am not claiming that the above anomaly takes
place: I myself don’t know what happens since I haven’t performed any simulations; and
the anomaly just described is simply one random example I have pulled out of the air. The
exercize for the reader is to do the simulations to see whether anomalies happen or not, and
what kind of anomalies if any. After that, the reader should make a guess as to what kind
of mathematically rigorous statement the numeric results fall into.

b) Provide mathematical proof that the ”guess” made in part a is in fact true for ψ
described in Eq 155. In other words, part a was done based on numeric simulations for
”large number of n-s”, while the goal of part b is to prove that the statement holds ”for all
n-s” as opposed to us simply being ”lucky”.

9∗. Repeat the above for 2D. In other words, prove that Eq 201 satisfies∑
n,L

ψ∗n,L(r1, θ1)ψn,L(r2, θ2) = δ(r1 cos θ1 − r2 cos θ2)δ(r1 sin θ1 − r2 sin θ2) (407)

given the correct definition of ”approaching δ-function” that you are supposed to provide.

12. Conclusion

We have successfully derived the expressions for general state of harmonic oscillator in 1D
and 2D. It turns out that what we did is both easy and complicated at the same time.
On the one hand, if one is interested to learn the derivation of general wavefunction in
quickest possible way, one can limit themselves to Sections 2-4 and 7-8, which is relatively
easy to follow. If, on the other hand, one is interested in verifying mathematics, one can
read sections 6 and 9-10 which are a lot more complicated and finally do the exercises
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which would make them work even harder. This means that harmonic oscillator might be an
excellent way of learning physics since, on the one hand, the reader can grasp the concepts on
how derivations work (as opposed to merely memorizing results, as is the case for hydrogen
atom) and, on the other hand, there are very difficult problems for the reader to think about.
Combination of these two factors would allow the reader to tackle through difficult problems
without relying on outside help, which is a key to truly learning the material. Some of the
challenges directly involve the rotational symmetry (see Exercize 3) which seems to suggest
that harmonic oscillator might also be a good tool to teach angular momentum (in which
case the instructor would have to alter the sequence of topics).
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