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Abstract

The present paper pertains to the formulation and generation of a signal based frequency controlled chaos based on the
Heart Curves, an assortment of parametric functions so named due to their ability to generate cardoid (heart-shaped)
curves. Specifically, the variable in two parametric functions is taken as an additively coupled sum of sinusoids with
competing frequencies. By adapting the x and y components of these functions into signals, the time derivatives are
computed and used to form the iterative maps and phase portraits. It is seen that the four phase portraits display to
varying degrees, ornamental patterns, characteristic of quasiperiodicity and chaos. Using these, bifurcation diagrams are
plotted in order to investigate the chaotic behavior. It is seen that the nature of chaos in the generated signals depend
on the frequency ratio of the driving signals, thus pertaining to a case of signal based chaos, which has the key advantage
of easy tunability, forming the novelty of the present work.
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1. Introduction

The flagship child of Nonlinear Dynamics, termed Chaos Theory, with its characteristic ‘sensitive dependence on
initial conditions’, has emerged as one of the defining highlights of twentieth century science, with applications in diverse
fields including biology, astrophysics, engineering and mechanics [1]-[16]. The development of various techniques to
characterize and study nonlinear dynamics and chaotic behavior such as Bifurcation Plots and Iterative Maps, stemming
from the development of computation and visualization technologies have enabled observations of complex and intricate
patterns pertaining to long term evolution [1, 2].

In the electrical engineering domain, development has occurred in leaps and bounds following the ability to generate
chaotic signals using op-amp based realizations of nonlinear differential equations, examples if which are the Chua
Circuits, and this is eventually translated into real-time applications such as secure communications and cryptography
[17]-[21]. However, such implementations use system-based parameters such as resistors and capacitors as the initial
conditions, with a clear disadvantage of difficulty in tuning when implemented at high frequencies as Integrated Circuits
(IC) [22, 23].

In the present work, this issue is addressed in a radical and innovative way using the concept of signal based chaos,
where the initial conditions are not physical parameters, but rather the signal based properties (amplitude, frequency
and phase) of the inputs in a driven chaotic system. With this motivation, the present work focuses on the romantically
popular ‘Heart Curves’, an assortment of parametric equations involving trigonometric, exponential and logarithmic
functions, known so because of their ability to generate cardoid curves, shapes that look like the symbol of love.[24].
Specifically, two such parametric equations are considered, each containing an x and a y function, and for each of the
four forms denoted by a generalized L(q), the variable q is set to an additively coupled sinusoidal signal with competing
frequencies, becoming the ‘driving signal’ of the system, where the frequency ratio between the input signals acting
as the control parameter r. The phase portrait is plotted for an r value of π, wherein the presence of ornamental
patterns indicate quasi-periodicity and chaos in the system. Following this, the iterative map is formed by computing
the derivative of E(q) and expressing it as a difference equation. Using the iterative map, the Bifurcation plots are then
plotted, which indicate the regions of order and chaos in these signal forms.

The results discussed in the present work indicate that for specific values of r in signals derived from the heart
curves, chaotic behavior is observed, thus pertaining to the case of signal based chaos, which is physically realized using
Field Programmable Gate Arrays (FPGA), with much simpler circuitry and easier tunability than conventional chaos
generator circuits, and this forms the novelty of the present work.



2. Phase Portrait Analysis of The Heart Curves

The present work considers two parametric equations of the heart curves, L1 and L2, each containing the x and y
components, denoted as L1x(q), L1y(q), L2x(q) and L2y(q), denoted for generality as L(q) [24]. Based on this notation,
the following procedure is used for the investigation of nonlinear dynamics in the heart curves:

1. The variable q is denoted as an additively coupled signal of two sinusoids of frequencies f1 and f2 = rf1, as

q = sin(2πf1t) + sin(2πrf1t) (1)

with r denoting the ratio between the frequencies, and acting as the key control parameter.

2. Using this substitution, L(q) is rewritten as a time-varying signal L(t), and its time derivative L′(t) is computed.

3. The dynamics of L(x) are studied using the Phase Portrait, which is a plot of L′(t) in terms of L(t) for a given r,
illustrating the phase space dynamics and qualitatively serving as a tool to assess sensitivity and ergodicity. Since
r denotes the frequency ratio of the driving signals, an irrational number such as π is set as the value of r, in order
to maximize the frequency and phase mismatches between the driving signals. The detection of ornamental and
rich patterns in a phase portrait is a clear indicator of the presence of chaos.

4. In order to form the iterative map, L(t) and L′(t) are discretized into L(i) and L′(i) respectively and a difference
equation of the form L′(i) = L(i+1)−L(i) is formed. This difference equation is rearranged to give the expression
of ‘next’ sample L(i + 1) in terms of ‘current’ samples L(i), as L(i + 1) = L(i) + L′(i), this equation termed
the ‘Iterative Map’ due to its recurrence nature. For systems depicting phase portraits indicative of chaos, the
bifurcation diagram, plotting the output L as a function of r is obtained. This diagram clearly illustrates for what
values of r, the system exhibits chaotic and non-chaotic behavior.

The four Heart Curve Function components are given as follows, with the heart curves generated by these functions
illustrated in Fig. (1):

L1x(q) = sin(q)cos(q)ln(|q|) (2)

L1y(q) = |q|0.3(cos(q))0.5 (3)

L2x(q) = 16sin3(q) (4)

L2y(q) = 13cos(q)− 5cos(2q)− 2cos(3q)− cos(4q) (5)
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Figure 1: Heart Curves Generated by L1(q) and L2(q)

By substituting x with the additive sum of sinusoids as mentioned above, we obtain the ‘Heart Curve Signals’ L(t).
Using this, the time derivative L′(t) is computed, and is plotted for an r value of π in Fig. (2) and Fig. (3).

As seen from the phase portraits, it can be observed that all the four forms show, to varying degrees, ornamental
patterns characteristic of either quasi-periodic or chaotic behavior, where to distinguish between these two, further
bifurcation analysis is required. It is noteworthy that the phase portrait of L2y(t) shows the most characteristic signatures
of quasiperiodicity among the four, whereas phase portraits of L1x(t) and L1y(t) are more indicative of chaos.
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Figure 2: Phase Portraits of L1x(t) (left) and L1y(t) (bottom right)
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Figure 3: Phase Portraits of L2x(t) (left) and L2y(t) (bottom right)

3. Bifurcation Analysis

In this section, the bifurcation analysis for L(t) is explored. It must be noted that, on account of the coupled
frequency formation of x, these forms do not give rise to bifurcations in the traditional sense; rather they exhibit a
quasi-periodic route to chaos, as typically seen in other coupled phase based chaotic systems such as the standard circle
map [25, 26, 27, 28, 29].

The time derivatives of the four heart curves are given as follows:

z = sin(2πf1t) + sin(2πrf1t) (6)

z′ = 2πf1cos(2πf1t) + 2πrf1cos(2πrf1t) (7)

L1x
′(t) =

zz′sin(z)cos(z)

|z|2
+ z′cos2(z)log(|z|)− z′sin2(z)log(|z|) (8)

L1y
′(t) =

0.3zz′cos0.5(z)

|z|1.7
−

z′|z|0.3sin(z)

2cos0.5(z)
(9)

L2x
′(t) = 48z′sin2(z)cos(z) (10)

L2y
′(t) = −13z′sin(z) + 10z′sin(2z) + 6z′sin(3z) + 4z′sin(4z) (11)

Thus, we obtain the following difference equation by discretizing the above equations and setting L′(i) = L(i+1)−L(i).

L(i+ 1) = L(i) + L′(i) (12)

The above equation is termed the ‘iterative map’, and the corresponding bifurcation diagrams are plotted for L as a
function of r in Fig. (4) and Fig. (5).

From the bifurcation plots, it is seen that while the four forms display largely non-chaotic quasiperiodic behavior as
well as chaotic behavioral trends with dense ‘grassy’ patches characteristic of chaotic behavior.
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Figure 4: Bifurcation Plots of L1 forms for x (top) and y (bottom) components
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Figure 5: Bifurcation Plots of L2 forms for x (top) and y (bottom) components
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4. Conclusion

Motivated by issues of tunability in system based chaos generation circuits, the present work proposes a radical and
innovative solution using signal based chaos, and to achieve this, four forms of two parametric equations of heart curves
are considered. These forms are adapted into signals by substituting the variable x as an additively coupled sinusoidal
signal, viewing the output as a representative of a driven nonlinear coupled system. Following this, the derivative of
the output is computed and used to form a difference equation, which yields the iterative map of the proposed system.
This iterative map is studied using phase portraits exhibiting varying degrees of ornamental patterns characteristic of
quasiperiodic or chaotic behavior. Hence, the bifurcation analysis of these forms are presented describing the nature of
quasiperiodic and chaotic behavior in the four forms.

Finally, it is noteworthy that since the behavior of the output signal depends on frequency ratio r, this ratio serves
as a secure ‘key’, enabling the use of the Heart Curve based ‘Frequency Controlled Chaos’ in secure communication and
encryption systems. The signal oriented approach to generating chaos from mathematical functions, coupled with the
easy tunability hence obtained forms the novelty of the present work.
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