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It is widely known that
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(where B,, denotes n-th Bernoulli number). Ramanujan gives the identity:
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This paper continues the sequence of infinite series with closed form in terms
of m, for example:
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Constructing the sequence
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(the formula also holds for 0: p;(0) = —5)
1.1. Then for the generating function o; holds:
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(the formula also holds for 0: py(0) = _Z_L)
2.1.Then for the generating function o, holds:
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3.1.Then for the generating function o3 holds:
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Let’s prove, that we can do it again and again. And let’s prove, that pz(25m)
has closed form in terms of 7 for every natural L and m.

Proof by induction
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there is an agreement, that the formula also holds for 0: u(0) = 50 Let’s

prove that iy, 1(s) = has closed form for 2X+1m for every natural
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That’s why
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Using the agreement for 17,(0), we finally gain
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So, if p17,(2Em) has closed form in terms of 7, pz1 (257 m) has it too. This
way we gain a new class of series with closed form in terms of 7. But for
large L and m the construction loses its beauty.

Also for o, we can gain another nontrivial result: If we take oy and change
o1(in) to oy (inz) inside po, we gain the Ramanujan’s formula
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Its analogue for o9 and ug is going to be

Z co—(;m) coth m coth mnaVi + z* coth 7m‘ coth iak) =

n=1

5

_ 8 4



