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Abstract:
Smarandache’s function may be defined as follows:
S(n)= the smallest positive integer such that S(n)! is divisible by n. [1]

In this article we are going to see that the value this function takes when n is a
perfect number of the form )12(2 1   kkn  , 12  kp  being a prime number.

Lemma 1: Let pn i  2  when p is an odd prime number and i  an integer such that:
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where )!(2 pe  is the exponent of 2 in the prime number decomposition of  !p .
E(x) is the greatest integer less than or equal to x.

One has that pnS )( .

Demonstration:
Given that 1),2( pGCD i  (GCD= greatest common divisor) one has that 

.)()}(),2(max{)( ppSpSSnS i   Therefore .)( pnS 
If we prove that p! is divisible by n then one would have the equality.
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where ip  is the thi   prime of the prime number decomposition of !p . It is clear that
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From where one can deduce that:
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is a positive integer since 0)!(2  ipe .

Therefore one has that  pnS )(

Proposition: If n is a perfect number of the form )12(2 1   kkn  with k is a positive
integer, pk 12  prime, one has that pnS )( .



Proof:

 For the Lemma it is sufficient to prove that )!(1 2 pek  .
If we can prove that:    
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we will have proof of the proposition since:
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Proving (1) is the same as proving 
2
12 1  kk  at the same time, since k is integer, is

equivalent to proving 12  kk   (2).

In order to prove (2) we may consider the function: xxxf x  12)(  real number.

This function may be derived and its derivate is 12ln2)( 1  xxf .

f will be increasing when 012ln2 1 x  resolving x:
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In particular f will be increasing  2 x .

Therefore 2 x    0)2()(  fxf  that is to say  202 1  xxx .

Therefore:  22 1  kkk  integer.

And thus is proved the proposition.

EXAMPLES:                     

                                    326  S(6)=3
7228 2  S(28)=7

                           312496 4  S(496)=31
                           8128= 12726            S(8128)=127
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