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Abstract: The main purpose of this paper is to provide a method of multi-criteria decision making that 

combines interval neutrosophic sets and TOPSIS involving the relative likelihood-based comparison 

relations of the performances of alternatives that are aggregated into interval numbers. A fuzzy cross-entropy 

approach is proposed to state the discrimination measure between alternatives and the absolute ideal 

solutions after a transformation operator has been developed to convert interval neutrosophic numbers to 

simplified neutrosophic numbers. Finally, an illustrative example is given and a comparison analysis is 

conducted between the proposed approach and other existing methods to verify the feasibility and 

effectiveness of the developed approach. 
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1. Introduction 

In practice, multi-criteria decision making (MCDM) methods are widely used to rank alternatives or 

select the optimal one with respect to several concerned criteria. However, in some cases, it is difficult for 

decision-makers to explicitly express preference in solving MCDM problems with uncertain or incomplete 

information. Under these circumstances, fuzzy sets (FSs), proposed by Zadeh [1], where each element has a 

membership degree represented by a real number in the standard interval , are regarded as a significant 

tool for solving MCDM problems [

[0,1]

2,3], fuzzy logic and approximate reasoning [4]. Sometimes, FSs cannot 

handle the cases where the membership degree is uncertain and hard to be defined by a crisp value. therefore, 

the concept of interval-valued fuzzy sets (IVFSs) was proposed [5] to capture the uncertainty of membership 

degree. Generally, if the membership degree is defined, then the non-membership degree can be calculated 

by default. In order to deal with the uncertainty of non-membership degree, Atanassov [6] introduced 

intuitionistic fuzzy sets (IFSs) which is an extension of Zadeh’s FSs, and the corresponding intuitionistic 
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nment in [26,27]. 

fuzzy logic [7] was proposed. IFSs consider both the membership degree and the non-membership degree 

simultaneously. So IFSs and intuitionistic fuzzy logic are more flexible in handling information containing 

uncertainty and incompleteness than traditional FSs. Currently, IFSs have been widely applied in solving 

MCDM problems [8- 16]. Moreover, in reality, the degree of membership and non-membership in IFSs 

may be expressed as interval numbers instead of specific numbers. Hence, interval-valued intuitionistic fuzzy 

sets (IVIFSs) [17] were proposed, which is an extension of FSs and IVFSs. In recent years, MCDM 

problems with evaluation information derived from IVFSs have attracted much attention of researchers 

[18- 24], in which averaging operators, aggregation operators, prospect score function and possibility 

degree method are involved. Furthermore, TOPSIS, proposed by Hwang and Yoon [25], was also used for 

MCDM problems under IVIFSs enviro

Although FSs and IFSs theory have been developed and generalized, they cannot deal with all sorts of 

uncertainties in real problems. Some types of uncertainties, such as the indeterminate and inconsistent 

information, cannot be handled. For example, a paper is sent to a reviewer, he or she says it is 70% 

acceptable, 60% unacceptable and the statement is 20% uncertain. This issue cannot be handled effectively 

with FSs and IFSs. Therefore, some new theories are required. 

Smarandache [28,29] coined the concept of neutrosophic logic and neutrosophic sets (NSs). Rivieccio 

[ 30 ] pointed out that a NS is a set where each element of the universe has a truth-membership, 

indeterminacy-membership and falsity-membership, respectively, and it lies in the non-standard unit interval 

. The uncertainty presented here, i.e. indeterminacy-membership, is quantified and independent of 

truth-membership and falsity-membership, which is different from the argument that the incorporated 

uncertainty is dependent on the degree of membership and non-membership of IFSs [

]0 ,  1 [ 

31]. Thus, it is practical 

and flexible to address problems containing uncertain, incomplete and inconsistent information with NSs. 

For the aforementioned example, it can be presented as  0.7,0.2,0.6x  by means of NSs. In recent years, 

the NS theory has found practical applications in various fields, such as relational database systems, semantic 

web services [32], mineral prospectivity prediction [33], image processing [34- 36], granular computing [37], 

medical diagnosis [38] and information fusion [39]. It is clear that all of those proposals, promising as they 

are, still need to be refined from a formal point of view. Without specific description, it is hard to apply NSs 

in real scientific and engineering situations. Hence, the notion of single-valued neutrosophic sets (SVNSs) 



was introduced by Wang et al. [40], which is an instance of NSs. Majumdar et al. [31] introduced similarity 

and entropy measures of SVNSs. Furthermore, the correlation and correlation coefficient of SVNSs [41] as 

well as the cross-entropy of SVNSs [42] were presented. In addition, Ye [43] also introduced the concept of 

simplified neutrosophic sets (SNSs), which can be described by three real numbers in the real unit interval 

[0,1]. Peng et al. [44] defined the novel operations and aggregation operators of SNSs and applied them in 

solving multi-criteria group decision making problems. 

Actually, the degree of truth, falsity and indeterminacy about a certain statement are denoted by several 

possible interval numbers instead of three real numbers in SNSs in some real situations. For example, an 

expert is asked to give the opinion about a certain statement, he or she may provide his or her own 

evaluations based on surveys as well as his or her knowledge and experience, and the evaluations are 

gathered in the form of interval numbers. The possibility that the statement is true is between 0.5 and 0.7 and 

that the statement is false is between 0.2 and 0.4 and the degree that he or she is not sure is between 0.1 and 

0.3. That is beyond the scope of SNSs. So the concept of interval neutrosophic sets (INSs) was proposed by 

Wang et al. [32], which is a particular instance of NSs. For the aforementioned example, it can be presented 

as       0.5,0.7 , 0.1,0.3 , 0.2,0.4x   by means of INSs. Subsequently, the studies of INSs had been 

conducted in various aspects, which concentrated mainly on defining and amending operational laws [45,46], 

correlation coefficients [47], similarity measures [48] and distances [49] to aggregate opinions of experts or 

decision-makers in MCDM problems, where the opinions of experts are expressed by INSs. Nevertheless, it 

is complex to directly process the assessment information with INSs. Furthermore, most of current studies 

coping with MCDM problems with INSs by means of aggregating interval numbers into real numbers, which 

may bring some drawbacks in operations and lead to great information loss [27,50].  

As an important topic in the theory of FSs, entropy measure of FSs mentioned by Zadeh [1], is an useful 

tool to measure uncertain information. Burillo and Bustince [51] introduced the notion that entropy of IFSs 

and IVIFSs can be used to assess the degree of intuition of an IFS or IVIFS. In the course of determining 

criterion weights under intuitionistic fuzzy environment, Chen and Li [52] utilized the intuitionistic fuzzy 

entropy measure to estimate the objective criteria weights. Despite the existing research effort, dealing with 

MCDM problems with completely unknown criteria weights in the framework of IVIFS remains an open 

problem [53,54]. The starting point for the cross-entropy method is information theory as developed by 

Shannon [55]. Cross-entropy is applied to measure the discrimination information, according to Shannon’s 
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inequality [56]. Then Shang and Jiang [57] proposed a fuzzy cross-entropy and a symmetric discrimination 

information measure between two FSs. Furthermore, the concepts of intuitionistic fuzzy cross-entropy and 

discrimination for IFSs were introduced by Vlachos and Sergiadis [ 58 ]. A fuzzy cross-entropy on 

interval-valued intuitionistic fuzzy numbers was proposed by analogy with the intuitionistic fuzzy 

cross-entropy [59]. A series of mathematical programming models based on cross-entropy were constructed 

to determine the weights of criteria under IVIFSs environment [27]. Other applications with the fuzzy 

cross-entropy include portfolio selection [60], the divergence of uncertain variables [61], MCDM problems 

[62- 64] and so on. 

However, compared with fuzzy cross-entropy that is widely applied in FSs and IFSs, there exists few 

studies on the application of entropy theory under interval neutrosophic environment and attention paid to 

avoid information loss is not enough in the process of information aggregation. What’s more, TOPSIS which 

is one of popular decision making methods has been applied effectively and availably in practice to address 

problems in various fields. For this purpose, a MCDM method on the basis of cross-entropy is proposed, in 

which a transformation operator is defined to convert each interval neutrosophic number (INN) to a 

simplified neutrosophic number (SNN). It can effectively avoid artificially setting parameter values of the 

transformation operator in IVIFSs and IFSs [54,65] and to some degree, lower the computational complexity 

in directly processing evaluation information with INSs at the same time. In addition, a TOPSIS method 

associated with possibility degree method is proposed to rank the performances of alternatives in the form of 

interval numbers, which can decrease the loss of assessment information and guarantee the reasonability of 

the ultimate ranking results. 

The rest of the paper is organized as follows. In Section 2, interval numbers as well as the concepts and 

operations of NSs, SNSs and INSs are briefly reviewed. In Section 3, an operator is put forward, which can 

transform each INN into a SNN, together with a cross-entropy for SNNs and some useful properties. 

Subsequently, TOPSIS for MCDM problems with INSs is developed in Section 4. In Section 5, an 

illustrative example is given and a comparison analysis is conducted between the proposed approach and 

other existing methods to verify the feasibility and effectiveness of the developed approach. Some summary 

remarks are given in Section 6. 

 



2. Preliminaries 

In this section, some basic concepts and definitions related to INSs, including interval numbers, 

definitions and operational laws of NSs, SNSs and INSs are introduced, which will be utilized in the latter 

analysis. 

2.1 Interval numbers 

Interval numbers and their operations are of utmost significance to explore the operations for INSs. In 

the following, some definitions and operational laws of interval numbers are given. 

Definition 1 [66,67]. Let , then  is called an interval number. Especially, 

 will be degenerated to a real number if 

[ , ] { | }L U L Ua a a x a x a    a

[ , ]L Ua a a L Ua a . 

Consider any two nonnegative interval numbers  and , where , 

. Then their operations are defined as follows [66

[ ,L Ua a a ]

U

[ , ]L Ub b b 0 L Ua x a  

0 Lb x b   ]: 

(1) , ;L L U Ua b a b a b     

(2) [ , ];L L U Ua b a b a b     

(3) [ , ];L U U La b a b a b     

(4) [ , ], 0.L Ua a a      

Definition 2 [68,69]. For any two interval numbers  and , the possibility of  

is formulated by 

[ , ]L Ua a a [ , ]L Ub b b a b 

( ) max 1 max ,0 ,0
( )b

  
 

   ( )

U Lb a
p a b

L a L

   





L
( ) UL a a, where a   and ( )L b bU Lb  . 

The possibility degree of  has the following properties [68a b  ]: 

(1) 0 ( ) 1;p a b    

(2) ( ) ( ) 0.5p a b p b a       if ( ) ( );p a b p b a      

(3) ( ) ( ) 1;p a b p b a       

(4) ( ) 0p a b   if ,  if  U La b ( ) 1p a b  ;L Ua b
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(5) For any interval numbers ,  and c ,  if  and ; 

 if and only if . 

a

)b 

b

(p 

( ) 0.5p a c  

0.5

( ) 0.5p a b  ( ) 0.5p b c  

( ) 0.p a c   ( )p a b c  

 

2.2 NSs and SNSs 

Definition 3 [28]. Let X  be a space of points (objects) with a generic element in X , denoted by x . A NS 

 in A X  is characterized by a truth-membership function , an indeterminacy-membership function 

 and a falsity-membership function 

( )At x

( )i xA ( )Af x . ,  and (At )x (Ai )x (A )f x  are real standard or 

nonstandard subsets of ] , that is, 0 ,  1 [  ( )At x : ]X 0 ,  1 [ 

A

 , , and 

. There is no restriction on the sum of t x ,  and 

( ) :i x

Ai x

]0 ,  1X  

( ) A

[

( )

A

( )( )f x : X ]0 ,  1 [ A f x , so 

. 0 sup ( ) supA At x  ( )x sup 3i ( )Af x 

Definition 4 [28]. A NS A  is contained in the other NS B , denoted by  if and only if 

, , , , 

A B

)x infinf ( ) inf ( )A Bt x t x sup ( sup ( )A Bt x t x)  inf ( ) inf ( )A Bi x i x sup ( ) sup (A Bi x i ( ) inf ( )A Bf x f x  

and sup ( ) supA ( )Bf x  f x , for any x X . 

Since it is hard to apply NSs to practical problems, Ye [43] reduced NSs of nonstandard interval 

numbers into a kind of SNSs of standard interval numbers. 

Definition 5 [30,43]. Let X  be a space of points (objects) with a generic element in X , denoted by x . A 

NS  in A X  is characterized by ,  and ( )At x ( )Ai x ( )Af x

[0X 

, which are single subintervals/subsets in the 

real standard , that is, , , and . And the sum of 

,  and 

[0,1] ( )At x : [X  0,1] ( ) : ,1]Ai x ( ) : [Af x X  0,1]

(At )x (Ai )x ( )Af x  satisfies the condition 0 ( )A Ai x( )t x ( ) 3A xf    . Then a simplification of  

is denoted by 

A

  , (A x ),t x ( ), ( )A A Ai x f x x X , which is called a SNS. It is a subclass of NSs. If =1X , a 

SNS will be degenerated to a SNN, denoted by  , ,A A Ai fA t . 

Definition 6 [30,43]. A SNS A  is contained in the other SNS B , denoted by  if and only if 

,  and 

A B

( ) ( )A Bt x t x ( ) ( )A Bi x i x ( ) ( )A Bf x f x , for any x X . Especially,  if  and A= B A B B A . 



The complement set of , denoted by  is defined as A cA   , ( ), ( ), ( )A A A
c x f x i tA x x x X  . If  is a 

SNN, then 

A

  , ,c
Af iA t A A . 

 

2.3 INSs 

In the actual applications, sometimes, it is not easy to express the truth-membership, 

indeterminacy-membership and falsity-membership by crisp values, and they may be easily described by 

interval numbers. Wang et al. [32] further defined INSs. 
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Definition 7 [30,32]. Let X  be a space of points (objects) with generic elements in X , denoted by x . An 

INS  in A X  is characterized by a truth-membership function , an indeterminacy-membership 

function  and a falsity-membership function 

( )
A

t x

( )
A

i x ( )
A

f x . For each point x  in X , we have that 

, , , and 

. We only consider the subunitary interval of . An INS is the subclass of a 

NS. Therefore, all INSs are clearly NSs. Especially, an INS will be reduced to a SNS if , 

 and 

( ) [t x

( )i x

( ), ( )]L U
A

x t x

) ( )U U U
A A A

i x f   

( )U
A

x

A A
t 

 

i



0 (t x

L
A



( ) [ ( )]L U
A A A

i x i x  

( )U
A

( ), 1]f x x

0,1]

) [ (
A A

f 

[

(L Uf )]
A

x [0,( ),i x 

3( )x

( )L
A

( ) ( )t x xL U
A A

t 

f x f x . In addition, if =1 X , an INS will be degenerated to an INN, denoted by 

 [ ,A t ],[ , ],[ , ]L U L
A A A

t i i f  
L U
A A 

U
A

f  . 

Definition 8 [30,32]. An INS A  is contained in the other INS B

)
B

, denoted by  if and only if 

, , , ,

A B 

( )L L
BA

t x t  ( )x ( ) )U U
A

t x x  (
B

t (
A

i x)L L
B

i  ( )x ( ) ( )U U
BA

i x i x  ( (L L
A

)f x f x   and ( )U ( )U
BA

f x f x , for any 

x X . Especially, A B  if BA   and B A  . The complement set of A , denoted by cA  is defined as 

  ,[A x



( ), (c L
A A

f x f  )],[U x ( ),L
A

x

 

( )],U
A

i i [ (x t ),L
A

x ( )]U
A

t x  x X . If is an INN, then A

[ , ],[ ,
A A A
L U L U Lf f i i t   ],[

A A ,
A

]Ut 
cA 

 . 

Definition 9 [46]. Let  [ , ],[ , ]L U L U
A A A A A

A t t f f   , ],[L U
A

i i   and  [ , ],[ , ],[ , ]L U L U L U
B B B B B B

B t t i i f f      
  be two INNs, 

where 0  . The operations for INNs are defined as below. 



 (1) [1 (1 ) ,1 (1 ) ],[( ) ,( ) ],[( ) ,( ) ] ;L U L U L U
A A A A A A

A t t i i f f               
 

 

 (2) [( ) ,( ) ], 1 (1 ) ,1 (1 ) ], 1 (1 ) ,1 (1 ) ][ [L U L U L U
A A A A A A

A t t i i f f                   
 ;

 

 (3) [ , ], , ], ,[ ][ ;L L L L U U U U L L U U L L U U
B B B B B B B BA A A A A A A A

A B t t t t t t t t i i i i f f f f                          
 

 

 (4) [ , ], , ], ,[ [L L U U L L L L U U U U L L L L U U U U
B B B B B B B B B BA A A A A A A A A A

A B t t t t i i i i i i i i f f f f f f f f                                  
  ] .

 

Example 1. Assume two INNs  and  [0.7,0.8],[0,0.1],[0.1,0.2]A   [0.4,0.5],[0.2,0.3],[0.3,0.4]B  , and 

2  . Then the following results can be calculated. 

 (1) 2 [0.91,0.96],[0,0.01],[0.01,0.04] ;A 
 

 2 [0(2) [0.49,0.64], ,0.19], 0.19,0. 6 ;[ 3A  ]

;

 

 [(3) [0.82,0.90], 0,0.05], 0.03, .[ 0 08]A B  
 

 (4) [0.28,0.40], 0.20,0.37], 0.37,0.52] .[ [A B    

Bustince and Burillo [70] put forward an operator , which can transform each IVFS into an IFS. 

As an improved extension of , an operator  is defined to convert each INN to a SNN. 

,p qH

,p qH , ,p q rH

Definition 10. Let  , , 0,1p q r  be three fixed numbers, any INN can be transformed into a SNN through 

the operator . , ,p q rH

 , , ( ) , ,
A A

L L L
p q r t i fA A A

H A t p W i q W f r W      
   


A

L
A

, 

where , 
A

U L
t A A

W t t 
  

A

U
i A

W i i 
  

L
A

 and 
A

U
f A

W f f 
   . Obviously, , , ( )p q rH A is a SNN and can be 

determined with respect to p ,  and r . That is, q , ,p q r ( )H A  is well defined in all value ranges of p ,  

and . 

q

r

Example 2. Use the data of Example 1. Then the following transformation results can be obtained utilizing 

the operator . , ,p q rH

 , ,(1) ( ) 0.7 0.1,0 0.1,0.1 0.1 ;p q rH A p q r        

 , ,(2) ( ) 0.4 0.1,0.2 0.1,0.3 0.1 .p q rH B p q r        
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It is shown that , , ( )p q rH A  and , , ( )p q rH B  will be two specific SNNs if the values of p ,  and  

are given. And the method to determine the parameter values will be discussed in detail in Section 4. 

q r

3. Cross-entropy for SNNs 

In an analogous manner to the proposals of Ye [42] and Vlachos and Sergiadis [58], the following 

definition of fuzzy cross-entropy for SNNs is proposed. 

Definition 11. Let A and  B  be two SNNs. Then the cross-entropy between A  nd a B  an be defined as: c

2 2 2
( ) ln ln lnA A

NS A A A
A B A B A B

t i
I A,B t i f

t t i i f f
Af  

  
  

.                  (1) 

Eq. (1) can indicate the degree of discrimination of  fromA  B . It is obvious that  is not 

sym odified sy

)

( )NSI A,B

ion informetric with respect to its arguments. Therefore, a m mmetric discriminat mation 

measure based on ( )NSI A,B  can be defined as: 

( )D A,B ( ) (NS NS NSI A,B I B,A  .                           (2) 

The larger is, the larger the difference between an( )NSD A,B  A  d B  will be, and vice versa. 

Prop t  anderty 1. Le  A B  be two SNNs. Define the degree of discrimination of A  from B  as 

( )NSD A,B . Then the following properties hold.  

( ) ( ),A,B D B,A  (1) NS NSD

(2) ( ) ( ),c c
NS NSD A,B D A ,B  where  and cA cB  are the complement sets of  and A B , respectively, 

defined in Definition 6. 

0 if and only if  

Proof. Obviously, it c sily verified that (1) and (2) hold. In the following, the proof of (3) is shown as 

w consider the function 

(3) ( ) 0NSD A,B   and ( )NSD A,B   A= B .

an be ea

below. 

No
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( ) lnf x x x , where  0,1x . Then ( ) 1 lnf x x    and 
1

( ) 0f x
x

   , 

where  0,1x . Accordingly, ( ) lnf x x x  is a c unction. or any

x x  y 

onvex f  Therefore, f  two points 

, the inequalit , 0,11 2
1 2 1 2( )

( )
( )

2 2

f x x x
 holds. 

f x
f






  1 2

10 
 

Utilize ( ) lnf x x x  in the above inequality and 1 1lnx x 2 2 1 2ln ln 0
2

x x
x x x x


     can be got, 

where the equality nly if 1 2 holds o x x . Similarly, the fo

   

llowing equation can be obtained. 

   

   

( , ) ( ( , ) ln ln ln A B
NS NS NS A A B B A B

t t
D A B I I B A t t t t t t, )

2

ln ln ln
2

ln ln ln
2

T

A B
A A B B A B

I

A B
A A B B A B

F

A B

i i
i i i i i i

f f
f f f f f f


   


  






.


      

 

 

Because  and , 0  holds.  0T  , 0I  0F  ( )NSD A,B  ( ) 0NSD A,B   holds only if A Bt t , 

Ai  Bi  and A Bf f , namely A= B . 

ple 3. A  two SNN  Exam ssume s  and 0.8,0.1,0.2A   0.5,0.3,0.4B  . Then the following result can be 

 (2). obtained by applying Eqs. (1) and

(NSD A ) ( ) ( )=0.1212NS NS,B I A,B I B,A  . 

4. MCDM approach based on cross-entropy and TOPSIS 

with INSs by means of the cross-entropy and 

TOP

a MCDM problem, let 

This section presents an approach for MCDM problems 

SIS. 

For  1 2, , , mA a a a   be a set consisted of  alternatives and let m

 1 2, , , nc c c  be a set consis ria. Assume that the weight of the criterion 

given by the decision-maker,  

C 

( 1,2, , )jc j n  , 

ting of n  crite

 is jw , where  0,1w   and 1
n

w  . And the weight j
1

j
j

vector of criteria can be expressed as  1 2, ,w , nw w w . Let 

 , , , , ,L U L U L U
ij ij ij ij ij ij ijm n m n

B b t t i i f f
 

                  
  be the decision matrix , U

iji   and , wh    , er ,L U
ij ijt te L

iji

,L U
ij ijf f    

and falsity

are interval numbers and represent the degrees of truth-membership, inde rship 

-membership of each alternative ( 1, 2, , )ia i m

terminacy-membe

   on the criterion jc  with respect to the 
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 of criterion called maximizing criteria and minimizing criteria. In order 

to un

concept “excellent”, respectively.  

In general, there are two types

iform criterion types, minimizing criteria need to be transformed into maximizing criteria. Suppose 

the standardized matrix is expressed as ij m n
R r


   

  . The original decision matrix ij m
B b

n
   
  can be 

converted to ij m n
R r


   

   based on the prim rmation principle of Ref. [ary transfo 71], wh



ere 


 

,
, , , , , , for minimizing criterion 

ij
c L U L U L U
ij ij ij ij ij ij ij j

r
b f f i i t t  c

 
           




, , , , , , for maximizing criterion L U L U L U
ij ij ij ij ij ij ij jb t t i i f f  c            


             (3) 

in which is the complement set of , defined in Definition 8. 

negative ideal solution (NIS) of INSs 

resp

c
ijb  ijb

The absolute positive ideal solution (PIS) and the absolute 

ectively denoted by a  and a , and can be expressed as follows [49  ]: 

       , ,0 ,L U L U L U
ij  , , , , 1,1 , 0,0 , 0ij ij ij ij ija t t i i f f            

        , , , , , 0,0 , 1,1 , 1,1 .L U L U L U
ij ij ij ij ij ija t t i i f f              

In order to get the cross-entropy or degree of discrimination between )( 1,2, ,ia i m   

r . Let , ,ij ij ijp q r 

and the ideal 

solutions, each INN is transformed into a SNN based on the operator , ,p qH  0,1  be three 

crisp numbers and any INN, denoted by  , , , , ,L U L U L U
ij ij ij ij ij ijt t i i f f            ollowing 

form: 

can be transformed into the f

   , , , ,
ij ij ij

L L L
p q r ij ij ij t ij ij i ij ij fH r t p W i q W f r W       ,                    (4) 

where ij , j and 
ij

U L
t ijW t t 

ij

U L
i ij iW i i   

ij

U L
f ij ijW f f  . 

ing Eqs. (1 d (4), the degree of discri nation of )Us ), (2) an mi  ( 1,2, ,ia i m   from  or  on a _a

(jc j 1,2, , )n   can be obtained as follows: 

2(
( ) ln

L
ij ijL

ij ij ij t

t p
t p W


  

) 2
ln

( 1) ( 1)

( ) ln 2 ( ) ln 2,

ij

ij

ij ij

ij ij

t

L L
ij ij t ij ij t

L L
ij ij i ij ij f

W
D

t p W t p W

i q W f r W


 

     

    

                       (5) 



2( ) 2
( ) ln 2 ( ) ln ln

( 1) (

2( ) 2
( ) ln ln .

( 1) ( 1)

ij

ij ij

ij ij

ij

ij

ij ij

L
ij ij iL L

ij ij ij t ij ij i L L
ij ij i ij ij i

L
ij ij fL

ij ij f L L
ij ij f ij ij f

i q W
D t p W i q W

i q W i q W

f r W
f r W

f r W f r W


 

      
     

 
  

     

1)


         (6) 

Using Eqs. (5) and (6),  can be obtained, which expresses the performance of the 

alternative . In other words, the larger  is, the better the alternative  will be. 

( 1,2, , )iD i m 

)( 1,2, ,ia i m  iD ia

1 1

n n
ij

i j ij j
j j ij ij

D
D w D w

D D



 
 

 
  ,                             (7) 

where ij
ij

ij ij

D
D

D D




   denotes the performance of the alternative ( 1, 2, , )ia i m   on  

and  represents the weight of 

( 1,2, , )jc j n 

( 1,2, , )jw j n  jc . 

In view of the fact that an INS is characterized by a truth-membership function, a 

indeterminacy-membership function and a falsity-membership function, whose values are intervals rather 

than specific numbers. It is unreasonable to designate a SNN for the given INN by artificially choose only a 

certain ijp ,  and  in Eq. (4) to indicate the evaluation information. Because it may lead to distortion 

or loss of original information [27

ijq ijr

]. Thus, ijD  may take different values as numerical variations ijp ,  

and  change. In order to avoid information loss, an interval 

ijq

ijr ,L U
ij ij ijD D D   


1,2, , )n

 is applied to represent the 

performance of  the alternative  on ( 1 ,ia i m , 2, ) (jc j   , where  and  are the 

lower and upper bounds, respectively.  

L
ijD U

ijD

The values of  and  are determined as below. L
ijD U

ijD

As it is shown in Eqs. (5) and (6), both ijD  and ijD  are multivariate continuous functions with 

respect to ijp ,  and , respectively. They also can reach the maximum and minimum in the domain 

. Calculate the partial derivative of 

ijq

1

ijr

0,, ,ij ij ijp q r  ijD  and ijD  with respect to ijp ,  and , 

respectively. 

ijq ijr
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2( )
ln .

( 1
ij

ij

ij

L
ij ij tij

t L
ij ij ij t

t p WD
W

p t p W

  


   )
 

Since , 2( ) 1
ij ij

L L
ij ij t ij ij tt p W t p W      0.ij

ij

D

p





 

ln 2 0
ij

ij
i

ij

D
W

q


 


, and ln 2 0.

ij

ij
f

ij

D
W

r


 


 

Similarly, ln 2 0
ij

ij
t

ij

D
W

p


 


, 

2( )
ln 0

( 1
ij

ij

ij

L
ij ij iij

i L
ij ij ij i

i q WD
W

q i q W

  

)
 

   
, 

and 
2( )

ln 0.
( 1

ij

ij

ij

L
ij ij fij

f L
ij ij ij f

f r WD
W

r f r W

  
 

    )
 

The analysis above indicates that ijD  can reach its maximum and ijD  reaches the minimum if 

 and . Likewise,  reaches its minimum and 0ijp  1ij ijq r  ijD
ijD  reaches the maximum if 1ijp   

and . As a result, it easy to understand that 0ij ijq r ij
ij

ij ij

D
D

D



D 


 can have a minimum when 0ijp   

and  and a maximum when 1ij ijq r 1ijp   and 0ij ijq r  . Then the lower and upper bounds of  

can be obtained, respectively. 

ijD

2 2 2 2
ln 2 ln ln ln ln

( 1) ( 1) ( 1) ( 1)

2 2 2 2 2 2
( ) ln 2 ln ln ln ln ln ln

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

,

U U

ij ijL U U

ij ij ijU U U U

ij ij ij ijL

ij L U U

ij ij ijL U U L U U

ij ij ij ij ij ijL U U L U U

ij ij ij ij ij ij

i f
t i f

i f i f
D

t i f
t i f t i f

t i f t i f

 
   

   


  
       

     

     (8) 

2 2 2 2
ln 2 ln ln ln ln

( 1) ( 1) ( 1) ( 1)
.

2 2 2 2 2 2
( ) ln 2 ln ln ln ln ln ln

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

L L
ij ijU L L

ij ij ijL L L L
ij ij ij ijU

ij U L L
ij ij ijU L L U L L

ij ij ij ij ij ijU L L U L L
ij ij ij ij ij ij

i f
t i f

i f i f
D

t i f
t i f t i f

t i f t i f

 
   

   


  
       

     

(9) 

Based on the analysis above, Eq. (7) can be rewritten using operational laws of interval numbers given 

in Definition 1.  

1 1 1 1

, ,
n n n n

L U L U
i j ij j ij ij j ij j ij

j j j j

D w D w D D w D w D
   

 
      

 
     .               (10) 

iD D 
j ) means that  is not inferior to ( 1, 2, ,ia i m  ( 1,2, , )ja j m  . Then the likelihood 
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matrix  can constructed as below. P

 
11 12 1

21 22 2

1 2

m

m
ij m m

m m mm

p p p

p p p
P p

p p p



 
 
  
 
 
 




   


,                         (11) 

where ( ) ( ) max 1 max ,0 ,
( ) ( )

U L
j i 0i j i j

i j

D D
p p a a p D D

L D L D

  

14 
 

ij

          


   
 

  i, and . ( ) U L
i iL D D D 

According to [69], the ranking vector of the likelihood matrix can be defined as follows: 

    
 

1

1
2

, 1,2, ,
1

m

ij
j

i

m
p

i
m m

 

 
 




 m

m

.                           (12) 

Consequently, the ranking of all alternatives is determined according to the descending order of 

( 1,2i , , )i   . That is, the larger i  is, the better the alternative  will be. ia

In a word, the main procedure of the above MCDM approach is listed as below. 

Step 1. Establish the original decision matrix ij m n
B b


   
 according to the evaluation information given 

in the form of INNs. Then use Eq. (3) to transform ij m n
B b


   
  into . ij m n

R r


   
 

Step 2. Use Eq. (8) and (9) to derive  and  and establish the matrix L
ijD U

ijD   ,L U
ij ij ijm n m n

D D D
 

   
 . 

Step 3. Use Eq. (10) to calculate the performance of each alternative ( 1,2, , )iD i m  . 

Step 4. Construct the likelihood matrix  by using Eq. (11) and obtain the ranking vector P

 1 2, , , m       based on Eq. (12). 

Step 5. Determine the ranking of all alternatives according to the descending order of ( 1,2, , )i i m   . 

5. Illustrative example 

In this section, an investment appraisal project is used to demonstrate the application of proposed 

decision making approach, as well as the validity and effectiveness of the proposed approach. 

The example on the investment appraisal project of a company adapted from Ref. [48] is employed here. 

ABC company intends to invest a sum of money in the best option. There is a panel with four possible 



alternatives to invest the money: (1) 1a  is a car company; (2)  is a food company; (3)  is a computer 

company; (4)  is an arms company. This company must make a decision according to the three criteria: 

(1)  is the risk; (2)  is the growth prospects; (3)  is the environmental impact, where  and  

are maximizing criteria, and  is a minimizing criterion. The weight vector of the criteria is 

. The four possible alternatives are to be assessed under three criteria using INSs, and the 

evaluation information is shown in the following interval neutrosophic decision matrix . 

2a 3a

ijB b 

4a

5,0.4

1c

0.

2c



3c 1c

m n

2c

3c

 35,0.2w 

  


      
      
      
      

      
      
      
      

 0.4,0.5 , 0.2,0.3 , 0.3,0.4 0.4,0.6 , 0.1,0.3 , 0.2,0.4 0.7,0.9 , 0.2,0

0.6,0.7 , 0.1,0.2 , 0.2,0.3 0.6,0.7 , 0.1,0.2 , 0.2,0.3

0.3,0.6 , 0.2,0.3 , 0.3,0.4 0.5,0.6 , 0.2,0.3 , 0.3,0.4

0.7,0.8 , 0.0,0.1 , 0.1,0.2 0.6,0.7 , 0.1,0.2 , 0.1,0.3

B 

    
      
     
      

.3 , 0.4,0.5

0.3,0.6 , 0.3,0.5 , 0.8,0.9

0.4,0.5 , 0.2,0.4 , 0.7,0.9

0.6,0.7 , 0.3,0.4 , 0.8,0.9

 
 
 
 
 
 
  


. 

5.1 Procedures of decision making based on INSs 

In the following, the main procedures of obtaining the optimal ranking of alternatives are presented. 

Step 1. Use Eq. (3) to transform minimizing the criterion  into a maximizing criterion and obtain 

. 

3c

ij m n
R r


   

 

      
      
      
      

      
      
      
      

 0.4,0.5 , 0.2,0.3 , 0.3,0.4 0.4,0.6 , 0.1,0.3 , 0.2,0.4 0.4,0.5 , 0.2,0

0.6,0.7 , 0.1,0.2 , 0.2,0.3 0.6,0.7 , 0.1,0.2 , 0.2,0.3

0.3,0.6 , 0.2,0.3 , 0.3,0.4 0.5,0.6 , 0.2,0.3 , 0.3,0.4

0.7,0.8 , 0.0,0.1 , 0.1,0.2 0.6,0.7 , 0.1,0.2 , 0.1,0.3

R 

    
      
     
      

.3 , 0.7,0.9

0.8,0.9 , 0.3,0.5 , 0.3,0.6

0.7,0.9 , 0.2,0.4 , 0.4,0.5

0.8,0.9 , 0.3,0.4 , 0.6,0.7

 
 
 
 
 
 
  


. 

Step 2. Use Eqs. (8) and (9) to derive  and  and establish the matrix L
ijD U

ijD  
4 3 4 3

,L U
ij ij ijD D D

 
   

 . 

 

  
  
  
  

  
  
  
  

  
  
  
  

4 3 4 3

0.4963,0.6597 0.4963,0.8144 0.3317,0.4838

0.6954,0.8369 0.6952,0.8369 0.4714,0.7094
,

0.4410,0.6952 0.5433,0.6952 0.5194,0.7146

0.8369,0.9542 0.6952,0.8902 0.4800,0.5823

L U
ij ij ijD D D

 

 
 
 

       
 
  

 . 

Step 3. Use Eq. (10) to calculate the performance of each alternative . ( 1,2,3,4)iD i 
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 1 0.4305,0.6280D  ,  2 0.6057,0.7859D  , 

 3 0.4979,0.7030D  ,  4 0.6587,0.7894D  . 

Step 4. Construct the likelihood matrix  using Eq. (11) and obtain the ranking vector P

 1 2 3 4, , ,       based on Eq. (12). 

 
4 4

0.5 0.0593 0.3231 0

0.9407 0.5 0.7474 0.4091

0.6769 0.2526 0.5 0.1317

1 0.5909 0.8683 0.5

ijP p


 
 
  
 
 
 

, 

1 0.1569  , 2 0.2998  , 3 0.2134  , and 4 0.3299  . 

Step 5. According to the descending order of ( 1,2,3,4)i i  , the ranking of all alternatives is 

 and  is the best one. 4 2 3a a a a   1 4a

5.2 Comparison analysis and discussion 

In order to further verify the feasibility and effectiveness of the proposed approach based on INSs, a 

comparison analysis is conducted using three existing methods and the analysis is based on the same 

illustrative example. 

In Ref. [48] and Ref. [49], some aggregation operators were developed to aggregate interval 

neutrosophic formation. Two methods in Ref. [48] utilized the similarity measures based on the relationship 

with distances ,where the similarity measure of Method 1 is on the basis of the Euclidean distance and the 

similarity measure of Method 2 is in view of the Hamming distance. The ranking results were got though 

calculating the similarity measures between each alternative and the PIS. The method in Ref. [49] relied on 

the Hamming distance between INSs and provided a compromise solution to rank alternatives, which 

considered the distance to both the absolute PIS and NIS. The comparison results can be found in Table 1. 
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Table 1 

Comparison with different methods 

Methods Ranking vectors Ranking results 

Method 1 of Ref. [48] 0.7370  0.9323  0.8344  0.9034 2 4 3a a a a   1  

Method 2 of Ref. [48] 0.7667  0.9542  0.8625  0.9600 4 2 3a a a a   1

1

1

 

Method of Ref. [49] 0.941   0.319   0.666   0.114 4 2 3a a a a    

The proposed approach 0.1569  0.2998  0.2134  0.3299 4 2 3a a a a    

The difference among the ranking results shown in Table 1 is the sequence of  and . (1) The 

comparison methods in Ref. [48

2a 4a

] were conducted using the similarity measures that only considered the 

relationship between each alternative and the PIS. There are some drawbacks. Firstly, it is not easy to choose 

the PIS in the assessment information given in the form of INSs. Secondly, the ideal solution is closely 

related to the number of alternatives as well as the evaluation values of alternatives. Thus it may vary as the 

original information changes. If only PIS is taken into account and NIS is ignored, the ranking of alternatives 

may be incorrectly reversed, and this may be amplified in the final results. There will be an identical ranking 

result with the proposed approach in case of replacing the PIS with the absolute one and allowing the usage 

of the absolute NIS at the same time, and utilizing the closeness coefficient (performance of each alternative) 

to determine the ranking of alternatives. The updated results are shown in Table 2. Therefore, the methods in 

Ref. [48] are not reliable enough, which can be demonstrated through the changes of the final results. (2) The 

result acquired by the fuzzy decision making method utilizing TOPSIS in Ref. [49] is consistent with the one 

obtained through Method 2 of Ref. [48] and the proposed approach, but the basis of these approaches is not 

similar. The method in Ref. [49] considered the distances to the absolute PIS and NIS based on the primary 

principle of TOPSIS. The performance of each alternative was aggregated in the form of a real number. 

However, unlike the method in Ref. [49], the proposed approach takes advantage of the merits of interval 

number and converts the performance of each alternative to an interval number, which can decrease 

information loss. Then these interval numbers are compared by establishing the relative likelihood-based 

comparison relations so as to rank all alternatives. What’s more, all methods in Ref. [48] and Ref. [49] were 

conducted by directly calculating similarity or distance measures between INSs, which are complex in 
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Table 2 

Ranking results by revising the methods in Ref. [48] 

Methods Ranking vectors Ranking results 

Method 1 of Ref. [48] 0.5025  0.6908  0.5987  0.6983 4 2 3a a a a   1  

Method 2 of Ref. [48] 0.5025  0.6900  0.5983  0.6959 4 2 3a a a a   1  

Furthermore, compared to the considered methods, the proposed approach makes good use of both 

interval numbers and TOPSIS method. It is well known that adopting interval numbers to represent 

performances in the TOPSIS method can give up various kinds of aggregation operators and score functions 

that may bring different results and effectively reduce the loss of decision information. Accordingly, the 

proposed approach is more flexible and reliable in handling MCDM problems than the compared methods in 

the interval neutrosophic environment. 

6. Conclusion 

INSs can flexibly express uncertain, imprecise, incomplete and inconsistent information that widely 

exist in scientific and engineering situations. So it is of great significance to study MCDM methods with 

INSs. In this paper, the basis definitions related to INSs are proposed and the useful operational laws and 

properties are discussed in detail. Then based on related research achievements in IFSs, a transformation 

operator and cross-entropy are defined. Thus, a MCDM method is established based on cross-entropy and 

TOPSIS, which computes the cross-entropy after transforming INNs into SNNs based on the transformation 

operator, and aggregates the performances of alternatives into interval numbers. Finally, the ranking result is 

obtained by comparing these interval numbers with a possibility degree method. 

The advantages of this study are that the approach can be both simple and convenient in computing and 

effective to decrease the loss of evaluation information. The feasibility and validity of the proposed approach 

have been verified through the illustrative example and comparison analysis. The comparison results 

demonstrate that the proposed approach can provide more reliable and precise outcomes than other methods. 

Therefore, this approach has much application potential in dealing with MCDM problems in the interval 
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neutrosophic environment, in which criterion values with respect to alternatives are evaluated by the form of 

INNs and the criterion weights are known information. 
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