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Abstract

This paper reports work-in-progress on the solution of first-order, linear, homogeneous
differential equation systems, with non-constant coefficients, by generalization of the Padé-
approximant method for exponential matrices.

1. Introduction
A system of first-order, linear, homogeneous differential equations is of the form

F'[x]= D[x]F[x], (1)

where F' and D are matrix functions of a scalar argument x, D[x] is a known coefficient
matrix, and F[x] is to be determined from a specified initial value (e.g. F[0]). (Following the
Mathematica convention, square braces “[...]” are used in this paper to delimit function
arguments, while round braces “(...)” are reserved for grouping.) Typically, methods such as

Runge-Kutta [1] are used to calculate numerical solutions of Eq. (1). But in the constant-
coefficient case ( x -independent D) solutions have an exponential-matrix representation, e.g.,

F[x]=DF[x] — F[x]=exp[Dx]F[0]. 2)

The exponential matrix exp[D x] can be calculated using a Padé approximation for small x
(using a “scale-and-square” method to build up exp[D x] for large x) [2].

The Padé-approximant method can also be extended for the case of non-constant coefficients.
This paper briefly outlines work-in-progress on the method, which may be generalized and
elaborated upon in future work. Section 2 introduces Padé approximation in the context of Eq.
(1); section 3 summarizes standard exponential matrix approximation methods for the constant-
coefficient case; and section 4 presents several Padé-approximant formulas for the case of non-
constant coefficients. The Appendix provides Mathematica code validating the results of section
4.

2. Application of the Padé-approximant method to Eq. (1)

Eq. (1) is solved by a multi-step method in which an approximation of F[x + Ax] is
determined from a previously computed estimate of F[x], for some small increment Ax. It will
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be convenient to denote the integration step Ax as 2/, and to locate the x origin at the center of
the integration interval. Thus, the problem is to find an approximation to F[4] given a
predetermined estimate of F[—A]. The approximation is represented as

F[h]~ O[h]" PLh]F[~h], 3)

where P[h] and Q[A] are matrix-valued, polynomial functions of /# determined to minimize the
error in Eq. (3) under the premise of Eq. (1). Specifically, we require that

O[h]F[h]- P[R]F[-h]=Ohn"", 4)
where 2n is the approximation order. (The order is limited to being even, as explained below.)
Making the substitution 2 — —h in Eq. (4), we obtain the similar expression
P[~h]F[h] - O[-h]F[-h]=Oh™"", )

Assuming that P and Q are uniquely determined by some type of definition criteria, it can be
inferred from the similarity of Eq’s. (4) and (5) that

Plh]=Q[-h], (6)
Thus, we seek to determine a polynomial function Q[/] such that
O[h)F[h] - O[-h] F[~h]= Oh*""", (7)
0[0] is set equal to the identity matrix I,
o[0]=1I. (8)

Eq. (7) is an odd function of %, so a Taylor series expansion of the expression will contain
only odd powers of /4 and the error order on the right side of Eq. (7) is also an odd power of /.
The approximation order (i.e., the error order minus one) is even.

Due to the odd symmetry of Eq. (7), an order-n polynomial Q[/4] has sufficient degrees of
freedom to achieve order-2n accuracy of Eq. (7). This is a key benefit of the Padé
approximation, which remains true for a non-constant coefficient matrix D[/], although the
advantage is diminished in this case because the calculation of Q[—4] also entails evaluation of
an order-n polynomial. (For the constant- D case, the calculation of Q[—A] adds very little
computational overhead because the even and odd parts of the polynomial Q[4] can be
computed separately and subtracted to get J[—h].) Nevertheless, Padé approximants such as

those outlined in section 4 can have advantages of computational efficiency and accuracy
relative to standard techniques such as Runge-Kutta.

3. The constant-coefficient case; exponential matrices.

For the constant-coefficient case, Eq’s. (2) and (7) imply that
O[h]exp[D k]~ O[-h]exp[-D h]= Oh*"", 9)



The function Q, denoted as Q, for a particular approximation order 2n, is of the form

~ (@2n=))in!
Q”[h]_;ojuzn)!(n—j)!

The polynomials can be calculated from the following recursion relations,

(—2h DY, (10)

Qo[h] = Is

O[h=1-hD, (11)
hZ 2

0,.[h]=0,[h]+ AR T)

2n+1)(2n-1)

The first several iterations of this recursion yield

O,[h=1-hD+1in’D?, (12)
O,[h=1-hD+2h’ D’ -LK’ D, (13)
O,[h=1-hD+3h’D* -2k’ D’ +-Lh* D*. (14)

The accuracy advantage of the Padé approximant method is illustrated by comparing the
accuracy error of Eq. (9) to Runge-Kutta methods. For n =2, the error is approximately

Z1° D°, which is six times smaller than the error of the classic 4™ order Runge-Kutta method.

For n =3, the approximate error is —2=/" D", which is smaller than the error of the 6"-order

Runge-Kutta method described in [1] (top of page 192) by a factor of 3/200.

4. The non-constant-coefficient case: some illustrative formulas

For non-constant D[x] the first several expressions for Q [4] can be generalized by
replacing the D factors with linear combinations of D[x] evaluated at different x s,

O[h]=1-hD[0], (15)
O,[h]=1~h(~¢ D[~h]+3D[0]+ % D[h]) +5h* DAY, (16)

Oi[h] =1=h(z D[=7h]+ D[0]+3 DIz h]+ 35 Dh]) +
+D[-+h]++D[0]+ 1+ D[$h]) (17)
(2h* (A D[-1h]-1D[0]+ D[ h]+ L D[h])— L h* D[hT).
Eq. (17) illustrates the efficiency characteristics of the Padé approximant method. The
calculation of Q,[h]" Q,[~h] (i.e., the Q[h]"' P[h] factor in Eq. (3)) requires four matrix
multiplies and one matrix divide, but it actually only needs three multiplies per integration step

because the D[4]* term can be reused for the succeeding step (as D[—4]*). The method requires
four D[x] function evaluations per integration step (not counting D[/], which is the starting



point for the succeeding step). The Padé approximation samples the function at uniform
intervals, which is advantageous because interleaved data points can be added to reduce /# by a
factor of 2 (e.g. for using Richardson extrapolation). If the sampling does not need to be
uniform, then an alternative Padé approximant using only three D[x] samples per step can be
used,

O,[h) =1~ h(( =35 Dl--Lh]+ (& +55) DI-LA) + L DA +
(=) DI-Lhl+ G +L) DlLh) (18)
(28" (5 DI-h] = £ (5 =) D[~ h+ £ (N5 + 1) D[ k] + L D[R] = ° DAY’ ).

For approximation order 8, the Q,[/] definition in Eq. (14) can be generalized for non-

constant D by replacing each power D" by a linear combination of product terms, each with m
factors of the general form

L[h]=c_, D[=h]+c_, D[-3h]+c_, D[-5h]+c, D[0]+c, D[5h]+c, D[3h]+c, D[h]. (19)

The seven coefficients c ;, ..., ¢, in each factor are initially undetermined, except that they are
constrained so that the Q,[/] representation reduces to Eq. (14) when D is constant. Eq. (7) is

expanded in an order-2#n Taylor series, using Eq. (1) to eliminate derivatives of F'. The

monomial coefficients in the series must vanish; this condition leads to a set of equations from
which the coefficients can be determined. (The equations may be underdetermined, or they may
be overdetermined if the Q,[/4] definition does not have sufficiently many summation terms.)

The above process leads to an enormously complex system of equations, but the equations
can be greatly simplified by representing L[4] alternatively in terms of its undetermined
derivatives at h =0,

L[h]=+(4d,—-49d, +126d,—-81d,) D[0]
+=(4d, +12d,-13d,-39d,+9d, +27d,) D[+ h]
+=(—4d, +12d,+13d,-39d,-9d, +27d,) D[-+ h]
++(-2d, -3d,+20d,+30d,-18d,-27d,) D[3 h] (20)
++5(2d,-3d,-20d,+30d,+18d, -27d,) D[—3 h]
+35(4d, +4d,-45d,-45d,+81d,+81d,) D[ h]
+35(—4d, +4d,+45d,-45d,-81d, +81d,) D[-h].
The seven undetermined constants d,, ..., d, are coefficients in the Taylor series expansion of
L{h],
L[h]=d, D[0]+d, h D'[0]++d, h* D"[0]+1d, h* D'[0]
+Ld, h* DW[0]+--d, h° DP[0]+--d, h* DI[0]+O K.
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Following is a Q,[h] definition, which was has been formulated to minimize the number of
matrix multiplies:

O,[h=1-hL[h]+ L[h](55h* L[] 555 h° L[ A1 Ly[A])

315

+(2 4 L[]+ L[ (=& L[h] + % h* D[AT)) D{A),

105

(22)

where

L [h] =322 D[—h]— 55 D[—3 h]+ w5 D[—+ h]+ 25 D[0] - 22- D[+ h]+ 522 D[ 3 h] + 125 D[ h]

105 5600 2800 16800

L,[h] = $% D[—h]—38 D[—3 h]+ 3% D[—+ h]—+ D[0]+ %55 D[4 h]+ 35 D[ h]— 155 D[ ]

1120

Ly[h] = =25 D[—h]+92L D[—2 p]— 3895 D[~ j]+ 138 D[] — 3L D[4 k] + 184 D[2 h] - 222 D[]

484 1936 4840 9680
L4[h]: %D[_h] 1809 D[ 2 h]+ 2295 D[ 1 h] 801 D[O] + 2133 2133 D[ h] 297 [lh] 4 233 233 D[h]
L,[h] =12 D[—h]— 13 D[—2 h]+ 225 D[~ h]—132 D[0] + 3L D[L h]— 142 p[2 h]+%D[h]
L [h)=— 4 D[} 3 DL-2 K] 5 D[+ )+ DIO} . DI K]+ 52 DI K] 23 DL

(23)
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Appendix: Approximation orders of Eq’s. (15)-(18), (22)

The calculations underlying Eq’s. (15)-(18) and (22) require non-commutative symbolic
algebra. The following results are obtained using the NCAlgebra package for Mathematica,
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/). The Mathematica
code loads the NCAlgebra package, adds some additional functionality, and verifies Eq. (9) with
Q[ x] defined by any of Eq’s. (15)-(18), (22).



http://math.ucsd.edu/~ncalg/

(* Load NCAlgebra package (http://math.ucsd.edu/~ncalg/) =*)
<< NC*
<< NCAlgebra“

(* Make all variables commutative by default.
(Override the default noncommutativity of single-letter lowercase variables.) x*)
Remove([a, b, c,d, e, £,g,h,4i,J,k,1,mn, 0,p,q,r,s,t,u,v,w x,y, z]

(* Dfn, F, and Q represent matrices. ("1" represents the identity matrix.) =)
SetNonCommutative [Dfn, F, Q] ;

(» Series and O (e.g. O[h]”n) do not work with NC types
(e.g.: try Dfn[h]**F[h]+0[h]*2 or Series[Dfn[h]**F[h],{h,0,1}]). Define a variant that does. )
NCSeries[f_, {x_, x0_, n_}] := NCExpand[Sum[(D[£f, {x, j}]/3j! /. x->x0) (x-x0)*3, {j, 0,n}]] +O0[x-x0]*(n+1);

(» substD is a substitution rule for reducing derivatives of F using the relation F'[h]=Dfn[h]**xF[h].
Use "//. substD" to eliminate all F derivatives.
(Use ":>" here, not "->"; otherwise the substitutions will not work when x or n has a preassigned value.) %)

substD = Derivative[n_][F][x_] :> Derivative[n - 1] [Dfn[#] »x F[#] &] [x];
(*» Eq 15 x)
QO[h_] :=1-hD£n[0];

NCExpand [Normal [NCSeries[Q[h] #* F[h] - Q[-h] ** F[-h], {h, 0, 2}]] //. substD]

0

(» Eq 16 =)
1 2 1 1

Q[h_] :=1-h|-—Dfn[-h] + —D£n[0] + —Dfn[h]| + — h?Dfn[h] #* Dfn[h];
6 3 2 3

NCExpand [Normal [NCSeries[Q[h] #* F[h] - Q[-h] ** F[-h], {h, 0, 4}]] //. substD]

0
(» Eq 17 =)
h., 2 2 h
o[h_]:=1-h —Dfn[-—] + — DEn[0] + —Dfn[—] + —Dfn[h]| +
45 2° 15 3 2' a5

1 h, 1 11 h 2 1 h, 1 h 7 1
—Dfn[-—] + —Dfn[0] + —Dfn[—]] - [—hz [—Dfn[-—] - —Dfn[0] +Dfn[—] + —Dfn[h]] — — h3Dfn[h] % DEn[h] |;
15 2' s 15 2 5 9 2¢ 2 2 18 15
NCExpand [Normal [NCSeries[Q[h] #* F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD]

0

(*» Eq 18 x)
o[h_] :=
5 345 h 5 345 h 1 1 s h 1 Vs h
1-h||— - Dfn[——]+ — + Dfn[—]+—Dfn[h] + - — Dfn[——]+ -+ Dfn[ ] *k
12 20 Nes 12 20 N 2 6 NeS 2 6 NeS
2 1 5 h 5 h 1 1
—h?|—Dfn[-h] - — (w/s_ - 1) Dfn[-—] . — («/? + 1) Dfn[—] + —Dfn[h] | - — h®Dfn[h] #* DEn[h] |;
5 12 24 Ne? V5 2 15

NCExpand [Normal [NCSeries[Q[h] ** F[h] - Q[-h] **x F[-h], {h, 0, 6}]] //. substD]
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2 | Appendix.nb

(*» Eq 22 *)
403 279 99 h, 34 333 1719 2h 1237
Lifh_] := Dfn[-h] - —Dfn[ —] -—] + —Dfn[ ] + Dfn[h];
16800 2800 00 3' 105 5600 2800 3 16800
57 243 2h 1259 h., 3 891 27 41
L2[h_] := Dfn[-h] - —Dfn[ ] + Dfn[——] - —Dfn[O] + Dfn[—] + - —  Dfn[h];
1120 560 1120 1120 112 1120
2067 6021 5805 1863 5697 10 341 727
L3[h_] := -——— Dfn[-h] + Dfn[ —] —Dfn[ ] —Dfn[ ] Dfn[—] - —— Dfn[h];
9680 4840 1936 484 1936 4840 9680
63 1809 2h_ 2295 801 2133 297 233
L4[h_] := — Dfn[-h] - —Dfn[ —] -—] - — Dfn[0] + Dfn[ ] —Dfn[—]
16 16 3 4 16 8
123 135 2h_ 2295 h 3861 h. 1917 2h 149
L5[h_] := — Dfn[-h] - —Dfn[-—] + —] - 132D£n[0] + Dfn[ ] —Dfn[—]
160 8 32 32 40 32
6 27 1053 57 621 729 277
L6[h_] := -— Dfn[-h] + —Dfn[ —] —Dfn[ —] + — D£n[0] - —Dfn[ ] - — Dfn[h];
35 10 112 4 6 140 560
121 2
Q[h_] :=1-hLl[h] + L2[h] ** [—h"Z L3[h] - — hA3L4[h] #* L5[h]]
315 315
2 4 1
— hA2L6[h] + L2[h] ** [——h"BLG[h] + h*4Dfn[h] % DEn[h] || * DEn[h];
45 45 105

NCExpand [Normal [NCSeries[Q[h] ## F[h] - Q[-h] #% F[-h], {h, 0, 8}]] //. substD]

0
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