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Abstract 
This paper reports work-in-progress on the solution of first-order, linear, homogeneous 

differential equation systems, with non-constant coefficients, by generalization of the Padé-
approximant method for exponential matrices. 
 

1. Introduction 
A system of first-order, linear, homogeneous differential equations is of the form  

 [ ] [ ] [ ]F x D x F x′ = ,  (1) 

where F  and D  are matrix functions of a scalar argument x , [ ]D x  is a known coefficient 
matrix, and [ ]F x  is to be determined from a specified initial value (e.g. [0]F ).  (Following the 
Mathematica convention, square braces “[ ] ” are used in this paper to delimit function 
arguments, while round braces “ ( ) ” are reserved for grouping.)  Typically, methods such as 
Runge-Kutta [1] are used to calculate numerical solutions of Eq. (1).  But in the constant-
coefficient case ( x -independent D ) solutions have an exponential-matrix representation, e.g., 

 [ ] [ ] [ ] exp[ ] [0]F x D F x F x D x F′ = → = .  (2) 

The exponential matrix exp[ ]D x  can be calculated using a Padé approximation for small x  
(using a “scale-and-square” method to build up exp[ ]D x  for large x ) [2]. 

The Padé-approximant method can also be extended for the case of non-constant coefficients.  
This paper briefly outlines work-in-progress on the method, which may be generalized and 
elaborated upon in future work.  Section 2 introduces Padé approximation in the context of Eq. 
(1); section 3 summarizes standard exponential matrix approximation methods for the constant-
coefficient case; and section 4 presents several Padé-approximant formulas for the case of non-
constant coefficients.  The Appendix provides Mathematica code validating the results of section 
4. 

 

2. Application of the Padé-approximant method to Eq. (1) 
Eq. (1) is solved by a multi-step method in which an approximation of [ ]F x x+ ∆  is 

determined from a previously computed estimate of [ ]F x , for some small increment x∆ .  It will 
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be convenient to denote the integration step x∆  as 2h , and to locate the x  origin at the center of 
the integration interval.  Thus, the problem is to find an approximation to [ ]F h  given a 
predetermined estimate of [ ]F h− .  The approximation is represented as 

 1[ ] [ ] [ ] [ ]F h Q h P h F h−≈ − ,  (3) 

where [ ]P h  and [ ]Q h  are matrix-valued, polynomial functions of h  determined to minimize the 
error in Eq. (3) under the premise of Eq. (1).  Specifically, we require that 

 2 1[ ] [ ] [ ] [ ] nQ h F h P h F h O h +− − = ,  (4) 

where 2n  is the approximation order.  (The order is limited to being even, as explained below.) 

Making the substitution h h→−  in Eq. (4), we obtain the similar expression 

 2 1[ ] [ ] [ ] [ ] nP h F h Q h F h O h +− − − − = ,  (5) 

Assuming that P  and Q  are uniquely determined by some type of definition criteria, it can be 
inferred from the similarity of Eq’s. (4) and (5) that 

 [ ] [ ]P h Q h= − ,  (6) 

Thus, we seek to determine a polynomial function [ ]Q h  such that 

 2 1[ ] [ ] [ ] [ ] nQ h F h Q h F h O h +− − − = ,  (7) 

[0]Q  is set equal to the identity matrix I , 

 [0]Q = I . (8) 

Eq. (7) is an odd function of h , so a Taylor series expansion of the expression will contain 
only odd powers of h  and the error order on the right side of Eq. (7) is also an odd power of h .  
The approximation order (i.e., the error order minus one) is even. 

Due to the odd symmetry of Eq. (7), an order- n  polynomial [ ]Q h  has sufficient degrees of 
freedom to achieve order- 2n  accuracy of Eq. (7).  This is a key benefit of the Padé 
approximation, which remains true for a non-constant coefficient matrix [ ]D h , although the 
advantage is diminished in this case because the calculation of [ ]Q h−  also entails evaluation of 
an order- n  polynomial.  (For the constant- D  case, the calculation of [ ]Q h−  adds very little 
computational overhead because the even and odd parts of the polynomial [ ]Q h  can be 
computed separately and subtracted to get [ ]Q h− .)  Nevertheless, Padé approximants such as 
those outlined in section 4 can have advantages of computational efficiency and accuracy 
relative to standard techniques such as Runge-Kutta. 

 

3. The constant-coefficient case; exponential matrices. 
For the constant-coefficient case, Eq’s. (2) and (7) imply that 

 2 1[ ]exp[ ] [ ]exp[ ] nQ h D h Q h D h O h +− − − = ,  (9) 
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The function Q , denoted as nQ  for a particular approximation order 2n , is of the form 

 
0

(2 )! ![ ] ( 2 )
!(2 )!( )!

n
j

n
j

n j nQ h h D
j n n j=

−
= −

−∑ ,  (10) 

The polynomials can be calculated from the following recursion relations, 

 
0

1
2 2

1 1

[ ] ,
[ ] ,

[ ] [ ] [ ].
(2 1)(2 1)n n n

Q h
Q h h D

h DQ h Q h Q h
n n+ −

=
= −

= +
+ −

I
I  (11) 

The first several iterations of this recursion yield  

 2 21
2 3[ ]Q h h D h D= − +I , (12) 

 2 2 3 32 1
3 5 15[ ]Q h h D h D h D= − + −I , (13) 

 2 2 3 3 4 43 2 1
4 7 21 105[ ]Q h h D h D h D h D= − + − +I . (14) 

The accuracy advantage of the Padé approximant method is illustrated by comparing the 
accuracy error of Eq. (9) to Runge-Kutta methods.  For 2n = , the error is approximately 

5 52
45 h D , which is six times smaller than the error of the classic 4th-order Runge-Kutta method.  
For 3n = , the approximate error is 7 72

1575 h D− , which is smaller than the error of the 6th-order 
Runge-Kutta method described in [1] (top of page 192) by a factor of 3 / 200 . 

 

4. The non-constant-coefficient case: some illustrative formulas 

For non-constant [ ]D x  the first several expressions for [ ]nQ h  can be generalized by 
replacing the D  factors with linear combinations of [ ]D x  evaluated at different x ’s, 

 1[ ] [0]Q h h D= −I , (15) 

 2 21 2 1 1
2 6 3 2 3[ ] ( [ ] [0] [ ]) [ ]Q h h D h D D h h D h= − − − + + +I , (16) 

 

72 1 2 2 1
3 45 2 15 3 2 45

1 1 1 11 1
15 2 5 15 2

2 3 272 1 1 1 1 1
5 9 2 2 2 18 15

[ ] ( [ ] [0] [ ] [ ])
( [ ] [0] [ ])

( ( [ ] [0] [ ] [ ]) [ ] ).

Q h h D h D D h D h
D h D D h

h D h D D h D h h D h

= − − + + + +

− + +

− − + + −

I
 (17) 

Eq. (17) illustrates the efficiency characteristics of the Padé approximant method.  The 
calculation of 1

3 3[ ] [ ]Q h Q h− −  (i.e., the 1[ ] [ ]Q h P h−  factor in Eq. (3)) requires four matrix 
multiplies and one matrix divide, but it actually only needs three multiplies per integration step 
because the 2[ ]D h  term can be reused for the succeeding step (as 2[ ]D h− ).  The method requires 
four [ ]D x  function evaluations per integration step (not counting [ ]D h , which is the starting 
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point for the succeeding step).  The Padé approximation samples the function at uniform 
intervals, which is advantageous because interleaved data points can be added to reduce h  by a 
factor of 2 (e.g. for using Richardson extrapolation).  If the sampling does not need to be 
uniform, then an alternative Padé approximant using only three [ ]D x  samples per step can be 
used, 

 

( )
( )
( )

3 5 3 55 51 1 1
3 12 20 12 20 65 5

5 51 1 1 1
2 6 2 65 5

2 3 25 52 1 1 1 1 1
5 12 24 24 2 155 5

[ ] ( ) [ ] ( ) [ ] [ ]

( ) [ ] ( ) [ ]

( [ ] ( 5 1) [ ] ( 5 1) [ ] [ ]) [ ] .

Q h h D h D h D h

D h D h

h D h D h D h D h h D h

= − − − + + + +

− − + +

− − − − + + + −

I

 (18) 

For approximation order 8, the 4[ ]Q h  definition in Eq. (14) can be generalized for non-
constant D  by replacing each power mD  by a linear combination of product terms, each with m  
factors of the general form 

 2 1 1 2
3 2 1 0 1 2 33 3 3 3[ ] [ ] [ ] [ ] [0] [ ] [ ] [ ]L h c D h c D h c D h c D c D h c D h c D h− − −= − + − + − + + + + . (19) 

The seven coefficients 3c− , …, 3c  in each factor are initially undetermined, except that they are 
constrained so that the 4[ ]Q h  representation reduces to Eq. (14) when D  is constant.  Eq. (7) is 
expanded in an order- 2n  Taylor series, using Eq. (1) to eliminate derivatives of F .  The 
monomial coefficients in the series must vanish; this condition leads to a set of equations from 
which the coefficients can be determined.  (The equations may be underdetermined, or they may 
be overdetermined if the 4[ ]Q h  definition does not have sufficiently many summation terms.) 

The above process leads to an enormously complex system of equations, but the equations 
can be greatly simplified by representing [ ]L h  alternatively in terms of its undetermined 
derivatives at 0h = , 

 

1
0 2 4 64

9 1
1 2 3 4 5 616 3

9 1
1 2 3 4 5 616 3

9 2
1 2 3 4 5 640 3

9 2
1 2 3 4 5 640 3

1
180

[ ] (4 49 126 81 ) [0]
(4 12 13 39 9 27 ) [ ]
( 4 12 13 39 9 27 ) [ ]
( 2 3 20 30 18 27 ) [ ]
(2 3 20 30 18 27 ) [ ]
(4

L h d d d d D
d d d d d d D h

d d d d d d D h
d d d d d d D h

d d d d d d D h
d

= − + −

+ + − − + +

+ − + + − − + −

+ − − + + − −

+ − − + + − −

+ 2 3 4 5 6

1
1 2 3 4 5 680

4 45 45 81 81 ) [ ]
( 4 4 45 45 81 81 ) [ ].

d d d d d D h
d d d d d d D h
+ − − + +

+ − + + − − + −

 (20) 

The seven undetermined constants 0d , …, 6d  are coefficients in the Taylor series expansion of 
[ ]L h , 

 
2 3 [3]1 1

0 1 2 32 6
4 [4] 5 [5] 6 [6] 71 1 1

4 5 624 120 720

[ ] [0] [0] [0] [0]

[0] [0] [0] .

L h d D d h D d h D d h D

d h D d h D d h D O h

′ ′′= + + +

+ + + +
 (21) 
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Following is a 4[ ]Q h  definition, which was has been formulated to minimize the number of 
matrix multiplies: 

 
( )

2 3121 2
4 1 2 3 4 5315 315

2 3 4 22 4 1
6 2 645 45 105

[ ] [ ] [ ]( [ ] [ ] [ ])

[ ] [ ]( [ ] [ ] ) [ ],

Q h h L h L h h L h h L h L h

h L h L h h L h h D h D h

= − + −

+ + − +

I
 (22) 

where 

 

403 279 99 34 333 1719 12372 1 1 2
1 16800 2800 3 800 3 105 5600 3 2800 3 16800

57 243 1269 3 891 272 1 1 2 41
2 1120 560 3 1120 3 4 1120 3 112 3 1120

20
3

[ ] [ ] [ ] [ ] [0] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [0] [ ] [ ] [ ]
[ ]

L h D h D h D h D D h D h D h
L h D h D h D h D D h D h D h
L h

= − − − + − + − + +

= − − − + − − + + −

= − 67 6021 5805 1863 5697 10341 7272 1 1 2
9680 4840 3 1936 3 484 1936 3 4840 3 9680

63 1809 2295 801 2133 297 2332 1 1 2
4 16 40 3 16 3 4 16 3 8 3 80

123
5 160

[ ] [ ] [ ] [0] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [0] [ ] [ ] [ ]
[ ] [

D h D h D h D D h D h D h
L h D h D h D h D D h D h D h
L h D h

− + − − − + − + −

= − − − + − − + − +

= − 135 2295 3861 1917 1492 1 1 2
8 3 32 3 32 3 40 3 32

6 27 1053 57 621 729 2772 1 1 2
6 35 10 3 112 3 4 56 3 140 3 560

] [ ] [ ] 132 [0] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [0] [ ] [ ] [ ]

D h D h D D h D h D h
L h D h D h D h D D h D h D h

− − + − − + − +

= − − + − − − + − + −

 

  (23) 
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Appendix:  Approximation orders of Eq’s. (15)-(18), (22) 
The calculations underlying Eq’s. (15)-(18) and (22) require non-commutative symbolic 

algebra.  The following results are obtained using the NCAlgebra package for Mathematica, 
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/).  The Mathematica 
code loads the NCAlgebra package, adds some additional functionality, and verifies Eq. (9) with 

[ ]Q x  defined by any of Eq’s. (15)-(18), (22). 

 

http://math.ucsd.edu/~ncalg/


(* Load NCAlgebra package (http://math.ucsd.edu/~ncalg/) *)
<< NC`
<< NCAlgebra`

(* Make all variables commutative by default.

(Override the default noncommutativity of single-letter lowercase variables.) *)

Remove[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]

(* Dfn, F, and Q represent matrices. ("1" represents the identity matrix.) *)

SetNonCommutative[Dfn, F, Q];

(* Series and O (e.g. O[h]^n) do not work with NC types

(e.g.: try Dfn[h]**F[h]+O[h]^2 or Series[Dfn[h]**F[h],{h,0,1}]). Define a variant that does. *)

NCSeries[f_, {x_, x0_, n_}] := NCExpand[Sum[(D[f, {x, j}]/j! /. x → x0) (x - x0)^j, {j, 0, n}]] + O[x - x0]^(n + 1);

(* substD is a substitution rule for reducing derivatives of F using the relation F'[h]⩵Dfn[h]**F[h].

Use "//. substD" to eliminate all F derivatives.
(Use ":>" here, not "->"; otherwise the substitutions will not work when x or n has a preassigned value.) *)

substD = Derivative[n_][F][x_] :> Derivative[n - 1][Dfn[#] ** F[#] &][x];

(* Eq 15 *)

Q[h_] := 1 - h Dfn[0];

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 2}]] //. substD]

0

(* Eq 16 *)

Q[h_] := 1 - h -

1

6
Dfn[-h] +

2

3
Dfn[0] +

1

2
Dfn[h] +

1

3
h2 Dfn[h] ** Dfn[h];

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 4}]] //. substD]

0

(* Eq 17 *)

Q[h_] := 1 - h
2

45
Dfn-

h

2
 +

2

15
Dfn[0] +

2

3
Dfn

h

2
 +

7

45
Dfn[h] +

1

15
Dfn-

h

2
 +

1

5
Dfn[0] +

11

15
Dfn

h

2
 **

2

5
h2

1

9
Dfn-

h

2
 -

1

2
Dfn[0] + Dfn

h

2
 +

7

18
Dfn[h] -

1

15
h3 Dfn[h] ** Dfn[h] ;

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD]

0

(* Eq 18 *)

Q[h_] :=

1 - h
5

12
-

3 5

20
Dfn-

h

5

 +

5

12
+

3 5

20
Dfn

h

5

 +

1

6
Dfn[h] +

1

2
-

5

6
Dfn-

h

5

 +

1

2
+

5

6
Dfn

h

5

 **

2

5
h2

1

12
Dfn[-h] -

5

24
 5 - 1 Dfn-

h

5

 +

5

24
 5 + 1 Dfn

h

5

 +

1

2
Dfn[h] -

1

15
h3 Dfn[h] ** Dfn[h] ;

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD]

0



(* Eq 22 *)

L1[h_] :=
403

16 800
Dfn[-h] -

279

2800
Dfn-

2 h

3
 +

99

800
Dfn-

h

3
 +

34

105
Dfn[0] -

333

5600
Dfn

h

3
 +

1719

2800
Dfn

2 h

3
 +

1237

16 800
Dfn[h];

L2[h_] :=
57

1120
Dfn[-h] -

243

560
Dfn-

2 h

3
 +

1269

1120
Dfn-

h

3
 -

3

4
Dfn[0] +

891

1120
Dfn

h

3
 +

27

112
Dfn

2 h

3
 -

41

1120
Dfn[h];

L3[h_] := -

2067

9680
Dfn[-h] +

6021

4840
Dfn-

2 h

3
 -

5805

1936
Dfn-

h

3
 +

1863

484
Dfn[0] -

5697

1936
Dfn

h

3
 +

10 341

4840
Dfn

2 h

3
 -

727

9680
Dfn[h];

L4[h_] :=
63

16
Dfn[-h] -

1809

40
Dfn-

2 h

3
 +

2295

16
Dfn-

h

3
 -

801

4
Dfn[0] +

2133

16
Dfn

h

3
 -

297

8
Dfn

2 h

3
 +

233

80
Dfn[h];

L5[h_] :=
123

160
Dfn[-h] -

135

8
Dfn-

2 h

3
 +

2295

32
Dfn-

h

3
 - 132 Dfn[0] +

3861

32
Dfn

h

3
 -

1917

40
Dfn

2 h

3
 +

149

32
Dfn[h];

L6[h_] := -

6

35
Dfn[-h] +

27

10
Dfn-

2 h

3
 -

1053

112
Dfn-

h

3
 +

57

4
Dfn[0] -

621

56
Dfn

h

3
 +

729

140
Dfn

2 h

3
 -

277

560
Dfn[h];

Q[h_] := 1 - h L1[h] + L2[h] **

121

315
h^2 L3[h] -

2

315
h^3 L4[h] ** L5[h] +

2

45
h^2 L6[h] + L2[h] ** -

4

45
h^3 L6[h] +

1

105
h^4 Dfn[h] ** Dfn[h] ** Dfn[h];

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 8}]] //. substD]

0
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