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Introduction

∙ Model of special relativity is built. The model shows the basic formulas of the special
relativity and their physical sense.

∙ We have built a model of the mass of the photon field, which fully reflects the inertial
and gravitational properties of matter. It is shown that the model of mass can not move
faster than light.

∙ We discuss the gravitational collapse of a photon. It is shown that when the photon gets
Planck energy, it turns into a black hole (as a result of interaction with the object to be
measured). It is shown that three-dimensional space is a consequence of energy advantage
in the formation of the Planck black holes. New uncertainty relations established on the
basis of Einstein’s equations. It is shown that the curvature of space-time is quantized.

∙ We are considering the possibility of placing the space of any length in the ”point” (ie,
in a small region of space), including the Universe at the ”point” with to the Planck size.
The problem is solved in a multidimensional space.

∙ We show that Bohr’s complementarity principle can be generalized to all the phenomena
of reality. The generalized principle of complementarity Bohr can be formulated as follows:
the rational side of reality and conjugate irrational side of reality are complementary to
each other. This raises the question of relations between science and mysticism.
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Chapter 1

Special relativity

1.1 Model of special relativity

Figure 1.1: Model of special relativity

Create different kinds of models plays an important role in scientific knowledge . Therefore,
the construction of a visual model of the special relativity is of great importance for the ex-
planation of the phenomena (length contraction, time dilation processes) inaccessible to direct
perception of human senses.

Model of special relativity (analogy model) is a system of two observers and two rods
(Fig.1.1a). Here 𝐴𝐵 and 𝐴′𝐵′ - rods with a length 𝑙0. At points 𝐷 and 𝐷′ are observers. 𝑅 -
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permanent distance, 𝑅1 - variable distance. Thus, each observer associated with a respective
rod (own reference system indicated in red or blue). From Figure 1a is easy to obtain equations
that are valid with respect to both observers

𝑙 ′ = 𝑙0

(︂
1− 𝑅1

𝑅

)︂
(1.1)

tan𝛼′ =
tan𝛼

1−𝑅1/𝑅
(1.2)

𝑅 tan𝛼 = tan𝛼′(𝑅−𝑅1) = 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 (1.3)

Suppose that the light signal travels from point 𝐴 to point 𝐵 and returns to the point 𝐴.
Then the formula (1.1), (1.2), (1.3) will have the form

𝑙′ = 𝑙0

√︂
1− 𝑣2

𝑐2
(1.4)

Δ𝑡′ =
Δ𝑡0√︁
1− 𝑣2

𝑐2

(1.5)

𝑐Δ𝑡0 = 𝑐′Δ𝑡′ = (𝑐2 − 𝑣2)
1/2

Δ𝑡′ = (𝑐2Δ𝑡′
2 −Δ𝑥′2)

1/2
= Δ𝑆 (1.6)

Here, 𝑙 ′ is a projection of the light beam on the rod 𝐴′𝐵′; Δ𝑡0 = 2 tan𝛼(𝑅/𝑐) and Δ𝑡′ =
2 tan𝛼′(𝑅/𝑐) is times of the light signal back and forth; 𝑐 is speed of light; Δ𝑆 is invariant.

Formulas (1.4), (1.5) and (1.6) are similar to the formulas of special relativity. Therefore
all the conclusions of special relativity clearly displayed in the model.

An illustrative example: observers in the aircraft and on the ground. The size of the aircraft
will be reduced and the speed of his movements is slow and vice versa.
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Chapter 2

Inertial and gravitational mass (field
model)

2.1 Field model

We consider a thought experiment. Let weightless cylinder is located in the reference frame 𝐾 ′

(axis X, Y, Z). The height of the cylinder is equal to ℎ (Fig 4.1). The top cover of the cylinder
is denoted by the letter 𝑆2, and the bottom cover is denoted by the letter 𝑆1. 𝑆1 and 𝑆2 are
mirrors.

Figure 2.1: Model of mass

Let the system of reference 𝐾 ′ (cylinder) is moving with uniform acceleration in the di-
rection of positive values of 𝑍 (acceleration 𝛾). Let from 𝑆2 to 𝑆1 emitted quantum of light - a
photon with energy 𝐸0. We consider this process in the system 𝐾0, which has no acceleration.
Assume that at the moment when the radiation energy 𝐸0 is transferred from 𝑆2 to 𝑆1, 𝐾

′

system has a speed equal to zero (with respect to system 𝐾0). Light quantum will appear in 𝑆1

after time ℎ/𝑐 (in first approximation), where 𝑐 is the velocity of light. At this time, the bottom
of the cylinder 𝑆1 has a speed 𝑣 = 𝛾ℎ/𝑐. Therefore, according to special relativity, reaching 𝑆1

radiation has an energy 𝐸1, which is equal to

𝐸 1 ≈ 𝐸 0 (1 + 𝑣/𝑐) = 𝐸 0 (1 + 𝛾ℎ/𝑐2) (2.1)
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Momentum is
𝑃 1 = 𝐸 1/𝑐 = 𝐸 0 (1 + 𝛾ℎ/𝑐2)/𝑐 (2.2)

Let the light quantum with the same energy 𝐸0 is emitted from 𝑆1 in the direction 𝑆2.
Then the energy of the radiation reaching the wall 𝑆2 and momentum are of the form

𝐸 2 ≈ 𝐸 0 (1− 𝑣/𝑐) = 𝐸 0 (1− 𝛾ℎ/𝑐2) (2.3)

𝑃 2 = 𝐸 2/𝑐 = 𝐸 0 (1− 𝛾ℎ/𝑐2)/𝑐 (2.4)

If we simultaneously send two light quanta of equal energy - one in the direction of 𝑆1 and
the second in the direction 𝑆2, the recoil momenta mutually balanced by, and will play a major
role (2.2) and (2.4). Then we get

Δ𝑃 = 𝑃1 − 𝑃2 = (2𝐸0/𝑐
2)(𝛾ℎ/𝑐) = 2𝑚Δ𝑣 (2.5)

where 2𝑚 = 2𝐸0/𝑐
2 is inert mass; coefficient 2 corresponds to two photons.

Weightless cylinder in which there is radiation, as a result of the acceleration behaves as
if it has an inertial mass 2𝑚, and the momentum Δ𝑃 this inert mass, as is easily seen from
Fig.2.1, is directed in the direction opposite the acceleration vector 𝛾. Cylinder with photons
within it resists an accelerating force. It is one of the characteristic manifestations of the physical
property, which is called ”mass”.

Model inertial mass indicates that the inertia of the material bodies is their intrinsic
property and Mach’s principle does not apply to material bodies.

Next. Let weightless cylinder (Fig.2.1) is not accelerating, and is on stand and it is in a
weak gravitational field of the Earth. Downstairs field potential is zero, at the height ℎ it equals
𝜙. Taking into account the principle of equivalence can be written 𝛾ℎ = 𝜙. Let from 𝑆2 to 𝑆1

sent a photon of energy 𝐸0. The energy and momentum of the photon will change according to
the formulas

𝐸 1 ≈ 𝐸 0 (1 + 𝜙/𝑐2) (2.6)

𝑃 1 = 𝐸 1/𝑐 = 𝐸 0 (1 + 𝜙/𝑐2)/𝑐 (2.7)

On the other hand, emitting a photon of energy 𝐸 0 from 𝑆 1 to 𝑆 2 we obtain

𝐸 2 ≈ 𝐸 0 (1− 𝜙/𝑐2) (2.8)

𝑃 2 = 𝐸 2/𝑐 = 𝐸 0 (1− 𝜙/𝑐2)/𝑐 (2.9)

As a result, the difference of 𝑃1 and 𝑃2 is equal to

Δ𝑃 = 𝑃1 − 𝑃2 = (2𝐸0/𝑐
2)(Δ𝜙/𝑐) = 2𝑚 (Δ𝜙/𝑐) (2.10)

and directed towards the center of the Earth. Here 2𝑚 = 2𝐸0/𝑐
2 - a heavy mass. Therefore,

the force acting on 𝑆1, is
𝐹𝑧 = Δ𝑃/Δ𝑡 = −2𝑚 (Δ𝜙/𝑐Δ𝑡) (2.11)

For light in the field of the Earth vertically 𝑐Δ𝑡 = Δ𝑧, then 𝐹𝑧 = −2𝑚 (Δ𝜙/Δ𝑧) or, more
generally

𝐹 (�⃗�) = −2𝑚𝑔𝑟𝑎𝑑𝜙(�⃗�) (2.12)

where 𝜙(�⃗�) = −𝐺𝑀/𝑟; 𝐺 - gravitational constant; 𝑀 - mass of the Earth.
We have received expression for the force of gravity acting on the cylinder, it follows from

Newton’s theory of gravitation.
The model implies that the free movement of the material structure in the gravitational

field is a consequence of the constant redistribution of impulses of massless quanta of energy in
relation to the body structure.
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Thus, the model adequately reflects the inertial and gravitational properties of massive
bodies.

Next. The system of two coupled photons, as we have shown above, has inertial properties
and will therefore move with a speed less than the speed of light, or rest. The velocity of light
for such a system would be at maximum speed. If the body is made of light, it can not move
faster than light.

Thus massless form of matter is primary and fundamental. The massive form of matter is
secondary, derivative form.
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Chapter 3

To the quantum theory of gravity

3.1 The collapse of the photon and the Planck length

The Planck length ℓP is defined as ℓP =
√︁

~𝐺
𝑐3

≈ 1.616 199(97)× 10−35 m, where 𝑐 is the speed

of light in a vacuum, 𝐺 is the gravitational constant, and ~ is the reduced Planck constant.
Simple dimensional analysis shows that the measurement of the position of physical objects

with precision to the Planck length is problematic. Indeed, we will discuss the following thought
experiment. Suppose we want to determine the position of an object using electromagnetic
radiation, i.e., photons. The greater the energy of photons, the shorter their wavelength and
the more accurate the measurement. If the photon has enough energy to measure objects the
size of the Planck length, it would collapse into a black hole and the measurement would be
impossible (as a result of interaction with the object to be measured). Thus, the Planck length
sets the fundamental limits on the accuracy of length measurement [1].

According to general relativity, any form of energy, including collision energy of a photon
with the target, should generate a gravitational field. The higher the energy of the photon, the
more powerful gravitational field is generated. We know that the photon has a kinetic energy
𝐸𝑘𝑖𝑛 = 𝑃 𝑐, where 𝑃 is the photon momentum, and 𝑐 its speed. This energy is positive. But
the photon has, according to general relativity, gravitational (potential) energy. This energy is
negative. We find its formula from the analogy with the potential energy of massive particles.
For a homogeneous sphere of radius 𝑟 and mass 𝑀 , its gravitational energy has the form

𝐸𝑝𝑜𝑡 ≈ −𝐺𝑀2/𝑟

where 𝐺 is the gravitational constant, 𝑀 is the mass of the ball, and 𝑟 its radius. But a photon
has no mass 𝑀 . Therefore 𝑀 is replaced by the 𝑀 → 𝑃/𝑐, where 𝑃 is the photon momentum
and 𝑐 is the speed of light in a vacuum. Then the gravitational energy of the photon has the
form

𝐸𝑝𝑜𝑡 ≈ −𝐺𝑃 2/𝑐2𝑟

where 𝑟 is necessary to compare with the photon’s wavelength 𝜆. The total energy of the
interaction of photons with the target is the sum of kinetic and potential energies and has the
following form

𝐸 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 ≈ 𝑃 𝑐− 𝐺𝑃 2

𝑐2 𝜆
= 𝑃 𝑐

(︂
1− 𝐺𝑃

𝑐3 𝜆

)︂
= 𝑃 𝑐

(︂
1− 𝜆𝑠

𝜆

)︂
(3.1)

(here photon spin is not considered, but it is not essential), 𝜆𝑠 = (𝐺/𝑐3)𝑃 is an analogue of the
gravitational radius for a massive particle 𝑟𝑠 ≈ (𝐺/𝑐3)𝑚𝑐.

Consider equation (3.1) from the quantum point of view. We assume that 𝑃 𝜆 ≈ ~, where
~ is the Dirac constant. Using this relation (substituting 𝑃 ≈ ~/𝜆), we find the function 𝐸(𝜆)
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from the equation (3.1)

𝐸(𝜆) =
~𝑐
𝜆

(︂
1− ℓ2𝑃

𝜆2

)︂
(3.2)

where ℓ𝑃 =
√︀

~𝐺/𝑐3 is the fundamental Planck length, which appears here automatically.

Figure 3.1: Graphs 𝐸(𝜆) of the collapse of the photon

When we construct a graph of the function 𝐸(𝜆), we can see that as the photon wavelength
decreases, its energy increases, see Fig.3.1. The maximum total energy 𝐸(𝜆) is approximately
equal to the Planck energy, where the photon wavelength is approximately equal to the Planck
length. However, if the photon momentum continues to increase, its total energy begins to
decrease due to the increase of the gravitational energy of the photon. When the wavelength
of the photon is equal to the Planck length, its total energy is zero; The photon collapses and
turns into a microscopic black hole, the hypothetical Planck particle (for example, a collision
with the target).

To be more accurate, we must proceed from Hamilton-Jacobi equation [2]

𝑔𝑖𝑘𝜕2𝑆/𝜕𝑥𝑖𝜕𝑥𝑘 = 𝑚2 𝑐2 (3.3)

with metric coefficients 𝑔𝑖𝑘, taken from Schwarzschild solution, where 𝑆 is the action and 𝑚
is the particle mass. It is a generalization of the equation between energy and momentum in
special relativity 𝐸2 − p2𝑐2 = 𝑚2𝑐4. Equation (3.3) is generally covariant (physical content of
equations does not depend on the choice of coordinate system). This Hamilton-Jacobi equation
has the form (︁

1− 𝑟𝑠
𝑟

)︁−1
(︂
𝜕𝑆

𝑐𝜕𝑡

)︂2

−
(︁
1− 𝑟𝑠

𝑟

)︁(︂
𝜕𝑆

𝜕𝑟

)︂2

− 1

𝑟2

(︂
𝜕𝑆

𝜕𝜙

)︂2

−𝑚2𝑐2 = 0 (3.4)

It can be rewritten as follows

𝐸2 =
(︁
1− 𝑟𝑠

𝑟

)︁2

𝑃 2𝑐2 +
(︁
1− 𝑟𝑠

𝑟

)︁ 𝑁2𝑐2

𝑟2
+
(︁
1− 𝑟𝑠

𝑟

)︁
𝑚2𝑐4 (3.5)

where 𝑁 is the angular momentum of a particle and 𝑟𝑠 is the gravitational radius of the central
attracting body.

The following assumptions are necessary for the approach above: 1) the mass of the particle
𝑚 is zero, 2) angular momentum (spin of the photon) 𝑁 can be neglected, 3) the Heisenberg
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uncertainty principle is simplified to 𝑃 𝑟 ≈ ~. We then obtain an approximate equation for the
total energy

𝐸 ≈
(︁
1− 𝑟𝑠

𝑟

)︁
𝑃 𝑐 =

(︂
1− 2𝐺𝑀

𝑐2𝑟

)︂
𝑃 𝑐 ≈

(︂
1− 2ℓ2𝑃

𝜆2

)︂
~𝑐
𝜆

(3.6)

where 𝑟 = 𝜆 is the wavelength of a photon and 𝑟𝑠 = 2𝐺𝑀/𝑐2 is the gravitational radius. Mass
𝑀 should be replaced by 𝑃/𝑐; 𝑃 = 𝑃 ≈ ~/𝜆 is the momentum of a photon. The resulting
equation (3.6) agrees with the equation (3.2) for the total energy to within a factor of 2.

Figure 3.2: Graphs of the collapse of a photon with angular momentum

To account for the angular momentum of the photon in the above equation (3.5) it is
necessary to substitute 𝑁2 with ~2𝑙(𝑙+1), where 𝑙 is the quantum number of the total angular
momentum of the photon (see Fig. 3.2). The angular momentum of a photon leads to the
formation of internal event horizon in Planck black hole (𝑙 = 1, point 2).

Analysis of the Hamilton-Jacobi equation for the photon in spaces of different dimensions
𝑛 indicates a preference (energy gain) for three-dimensional space for the emergence of the
Planck black holes - both real and virtual (quantum foam).

Indeed, according to Ehrenfest [3], expressions for the potential energy in spaces of various
dimensions are of the form

𝐸
(𝑛≥3)
𝑝𝑜𝑡 ≈ − 𝑘𝑀2

(𝑛− 2)𝑟𝑛−2
; 𝑛 ≥ 3 (3.7)

𝐸
(2)
𝑝𝑜𝑡 ≈ 𝑘𝑀2 ln 𝑟; 𝑛 = 2 (3.8)

𝐸
(1)
𝑝𝑜𝑡 ≈ 𝑘𝑀2 𝑟; 𝑛 = 1 (3.9)

where 𝑘 - the interaction constant in 𝑛-dimensional space. With the usual Newton’s constant
it is linked through cross-linking potentials for 3-dimensional space and the corresponding 𝑛-
dimensional space.

For the potential energy of the photon, equations (3.7), (3.8), (3.9) have the form (given
that 𝑀 → 𝑃/𝑐 ; 𝑃 ≈ ~/𝜆; 𝑟 = 𝜆)

𝐸
(𝑛≥3)
𝑝𝑜𝑡 ≈ − 𝑘 (𝑃/𝑐)2

(𝑛− 2)𝑟𝑛−2
= − 𝑘 (~/𝜆 𝑐)2

(𝑛− 2)𝜆𝑛−2
; 𝑛 ≥ 3 (3.10)
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𝐸
(2)
𝑝𝑜𝑡 ≈ 𝑘 (𝑃/𝑐)2 ln 𝑟 = 𝑘 (~/𝜆 𝑐)2 ln𝜆; 𝑛 = 2 (3.11)

𝐸
(1)
𝑝𝑜𝑡 ≈ 𝑘 (𝑃/𝑐)2 𝑟 = 𝑘 (~/𝜆 𝑐)2 𝜆; 𝑛 = 1 (3.12)

Then the total energy of the photon is approximately equal to

𝐸(𝑛)(𝜆) ≈ 𝐸𝑘𝑖𝑛 + 𝐸
(𝑛)
𝑝𝑜𝑡

where 𝐸𝑘𝑖𝑛 = 𝑃 𝑐 = ~ 𝑐/𝜆 on the space dimension is independent.

Figure 3.3: Graphs 𝐸(𝑛)(𝜆) of the collapse of the photon in the spaces of different dimensions

Graphics functions 𝐸(𝑛)(𝜆) are shown in Fig. 3.3 (here 𝑘 = ~ = 𝑐 = 1 ). Thus gain in
energy, apparently, predetermined three-dimensionality of the observed space, given that the
Planck virtual black holes form the so-called quantum foam, which is the foundation of the
”fabric” of the Universe.

3.2 Heisenberg uncertainty principle at the Planck scale.

There is currently no proven physical significance of the Planck length; it is, however,
a topic of theoretical research. Physical meaning of the Planck length can be determined as
follows:

A particle of mass 𝑚 has a reduced Compton wavelength

𝜆𝐶 =
𝜆𝐶

2𝜋
=

~
𝑚𝑐

Schwarzschild radius of the particle is

𝑟𝑠 =
2𝐺𝑚

𝑐2
=

2𝐺

𝑐3
𝑚𝑐

The product of these values is always constant and equal to

𝑟𝑠𝜆𝐶 =
2𝐺~
𝑐3

= 2ℓ2𝑃
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Accordingly, the uncertainty relation between the Schwarzschild radius of the particle and
Compton wavelength of the particle will have the form

Δ𝑟𝑠Δ𝜆𝐶 ≥ 𝐺~
𝑐3

= ℓ2𝑃

which is another form of Heisenberg’s uncertainty principle at the Planck scale. Indeed, substi-
tuting the expression for the Schwarzschild radius, we obtain

Δ

(︂
2𝐺𝑚

𝑐2

)︂
Δ𝜆𝐶 ≥ 𝐺~

𝑐3

Reducing the same characters, we come to the Heisenberg uncertainty relation

Δ (𝑚𝑐)Δ𝜆𝐶 ≥ ~
2

Uncertainty relation between the gravitational radius and the Compton wavelength of the
particle is a special case of the general Heisenberg’s uncertainty principle at the Planck scale

Δ𝑅𝜇Δ𝑥𝜇 ≥ ℓ2𝑃 (3.13)

where 𝑅𝜇 is the radius of curvature of space-time small domain; 𝑥𝜇 is the coordinate small
domain.

Indeed, these uncertainty relations can be obtained on the basis of Einstein’s equations

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 =
8𝜋𝐺

𝑐4
𝑇𝜇𝜈 (3.14)

where 𝐺𝜇𝜈 = 𝑅𝜇𝜈−(1/2)𝑔𝜇𝜈 𝑅 is the Einstein tensor, which combines the Ricci tensor, the scalar
curvature and the metric tensor, Λ is the cosmological constant, 𝑇𝜇𝜈 is energy-momentum tensor
of matter, 𝜋 is the number, 𝑐 is the speed of light, 𝐺 is Newton’s gravitational constant.

In the derivation of his equations, Einstein suggested that physical spacetime is Rieman-
nian, ie curved. A small domain of it is approximately flat spacetime.

For any tensor field 𝑁𝜇𝜈... value 𝑁𝜇𝜈...

√
−𝑔 we may call a tensor density, where 𝑔 is the

determinant of the metric tensor 𝑔𝜇𝜈 . The integral
∫︀
𝑁𝜇𝜈...

√
−𝑔 𝑑4𝑥 is a tensor if the domain of

integration is small. It is not a tensor if the domain of integration is not small, because it then
consists of a sum of tensors located at different points and it does not transform in any simple
way under a transformation of coordinates [4]. Here we consider only small domains. This is
also true for the integration over the three-dimensional hypersurface 𝑆𝜈 .

Thus, Einstein’s equations (3.14) for small spacetime domain can be integrated by the
three-dimensional hypersurface 𝑆𝜈 . Have

1

4𝜋

∫︁
(𝐺𝜇𝜈 + Λ𝑔𝜇𝜈)

√
−𝑔 𝑑𝑆𝜈 =

2𝐺

𝑐4

∫︁
𝑇𝜇𝜈

√
−𝑔 𝑑𝑆𝜈 (3.15)

Since integrable spacetime ”domain” is small, we obtain the tensor equation

𝑅𝜇 =
2𝐺

𝑐3
𝑃𝜇 (3.16)

where 𝑃𝜇 = 1
𝑐

∫︀
𝑇𝜇𝜈

√
−𝑔 𝑑𝑆𝜈 is the 4-momentum of matter, 𝑅𝜇 = 1

4𝜋

∫︀
(𝐺𝜇𝜈 + Λ𝑔𝜇𝜈)

√
−𝑔 𝑑𝑆𝜈

is the radius of curvature domain.
The resulting tensor equation can be rewritten in another form. Since 𝑃𝜇 = 𝑚𝑐𝑈𝜇 then

𝑅𝜇 =
2𝐺

𝑐3
𝑚𝑐𝑈𝜇 = 𝑟𝑠 𝑈𝜇 (3.17)
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where 𝑟𝑠 is the Schwarzschild radius, 𝑈𝜇 is the 4-speed, 𝑚 is the gravitational mass. This record
reveals the physical meaning of 𝑅𝜇. There is a similarity between the obtained tensor equation
and the expression for the gravitational radius of the body (the Schwarzschild radius). Indeed,
for static spherically symmetric field and static distribution of matter have 𝑈0 = 1, 𝑈𝑖 = 0 (𝑖 =
1, 2, 3). In this case we obtain

𝑅0 =
2𝐺

𝑐3
𝑚𝑐𝑈0 =

2𝐺𝑚

𝑐2
= 𝑟𝑠 (3.18)

In a small area of spacetime is almost flat and this equation can be written in the operator
form

�̂�𝜇 =
2𝐺

𝑐3
𝑃𝜇 =

2𝐺

𝑐3
(−𝑖~)

𝑑

𝑑𝑥𝜇
= −2𝑖 ℓ2𝑃

𝑑

𝑑𝑥𝜇
(3.19)

where ~ is the Dirac constant. Then commutator operators �̂�𝜇 and �̂�𝜇 is

[�̂�𝜇, �̂�𝜇] = −2𝑖ℓ2𝑃 (3.20)

From here follow the specified uncertainty relations (3.13)

Δ𝑅𝜇Δ𝑥𝜇 ≥ ℓ2𝑃

Substituting the values of 𝑅𝜇 = 2𝐺
𝑐3
𝑚𝑐𝑈𝜇 and ℓ2𝑃 = ~𝐺

𝑐3
and cutting right and left of the

same symbols, we obtain the Heisenberg uncertainty principle

Δ𝑃𝜇Δ𝑥𝜇 = Δ(𝑚𝑐𝑈𝜇)Δ𝑥𝜇 ≥ ~
2

(3.21)

Note that now, according to the equation 𝑅𝜇 = (2𝐺/𝑐3)𝑃𝜇, together with the expressions
for the energy-momentum quantum 𝑃𝜇 = ~ 𝑘𝜇 valid expressions for the quantum space-time
curvature 𝑅𝜇 = ℓ2𝑃 𝑘𝜇 (but not quantum space-time), where 𝑘𝜇 - the wave 4-vector. That is, the
curvature of space-time is quantized, but the quantization step is extremely small. This can
serve as a basis for building a quantum theory of gravity

In the particular case of a static spherically symmetric field and static distribution of
matter 𝑈0 = 1, 𝑈𝑖 = 0 (𝑖 = 1, 2, 3) and have remained

Δ𝑅0Δ𝑥0 = Δ𝑟𝑠Δ𝑟 ≥ ℓ2𝑃 (3.22)

where 𝑟𝑠 is the Schwarzschild radius, 𝑟 is radial coordinate.
Last uncertainty relation (3.22) allows make us some estimates of the equations of general

relativity at the Planck scale. For example, the equation for the invariant interval 𝑑𝑆 in the
Schwarzschild solution has the form

𝑑𝑆2 =
(︁
1− 𝑟𝑠

𝑟

)︁
𝑐2𝑑𝑡2 − 𝑑𝑟2

1− 𝑟𝑠/𝑟
− 𝑟2(𝑑Ω2 + sin2Ω𝑑𝜙2) (3.23)

Substitute according to the uncertainty relations 𝑟𝑠 ≈ ℓ2𝑃/𝑟. We obtain

𝑑𝑆2 ≈
(︂
1− ℓ2𝑃

𝑟2

)︂
𝑐2𝑑𝑡2 − 𝑑𝑟2

1− ℓ2𝑃/𝑟
2
− 𝑟2(𝑑Ω2 + sin2Ω𝑑𝜙2) (3.24)

It is seen that at the Planck scale 𝑟 = ℓ𝑃 spacetime metric is bounded below by the Planck
length, and on this scale, there are real and virtual Planckian black holes [5].

Similar estimates can be made in other equations of general relativity.
It is also seen that the spacetime metric 𝑔00 ≈ 1 − ℓ2𝑃/(Δ𝑟)2 is always fluctuates even in

the absence of an external gravitational field. This gives rise to the so-called quantum foam,
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consisting of virtual Planckian black holes. But these fluctuations Δ𝑔 ≈ ℓ2𝑃/(Δ𝑟)2 in the macro-
cosm and in the world of atoms are very small compared to 1 and become noticeable only at the
Planck scale. Fluctuations need to be considered when using the Minkowski metric of special
relativity for very small regions of space and large momenta. For example, fluctuations in the
speed of light is equal to the Planck scale Δ𝑐 = 𝑐Δ𝑔 ≈ 𝑐 ℓ2𝑃/(Δ𝑟)2.

This implies that the Planck scale is the limit below which the very notions of space and
length cease to exist. Any attempt to investigate the possible existence of shorter distances
(less than 10−35m), by performing higher-energy collisions, would inevitably result in black
hole production. Higher-energy collisions, rather than splitting matter into finer pieces, would
simply produce bigger black holes [6]. Reduction of the Compton wavelength of the particle
increases the Schwarzschild radius. The resulting uncertainty relation generates at the Planck
scale virtual black holes.

3.3 Summary

The paper shows that:

1. In the microcosm of the Planck length is the limit of distance.

2. Upon reaching the Planck scale appear Planck black holes.

3. At the Planck level vacuum consists of virtual Planckian black holes.

4. Length measurement is meaningless at the Planck scale

5. Three-dimensional space is a consequence of energy advantage in the formation of the
Planck black holes at the Planck scale.

6. The curvature of space-time is quantized. Space-time is not quantized.
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Chapter 4

Universe at point

4.1 How to place the Universe at the point.

Figure 4.1: Multi-dimensional lattice

One of the difficulties of the general theory of relativity is the problem of singularities, which
actually originated with the receipt of the non-stationary Friedman cosmological solutions of
the equations of general relativity, and even more aggravated due to the problem of relativistic
gravitational collapse. Singularity refers to a state of infinite density of matter, which indicates
the failure of the general theory of relativity. These problems are solved in a multidimensional
space.

Consider the obvious example. Take an ordinary book, 3-dimensional object. The amount
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of information in the form of letters in a book occupies a volume 𝑉 . Let this same amount of
information must be placed in the two-dimensional space, i.e. in the plane. In the form of lines
of information will occupy an area of a square with the side 𝑎(2). It is clear that a 𝑎(2) > (3),
where 𝑎(3) - side three-dimensional cube depicting book.

The same amount of information is located in a one dimensional space in the form of a
line with length 𝑎(1), and

𝑎(1) > 𝑎(2) > 𝑎(3)

Intuitively, it is clear that if we increase the number of dimensions of space to accommodate
the same amount of information (in the form of letters), we construct an 𝑛-dimensional cube
with a smaller side 𝑎(𝑛), that is

𝑎(1) > 𝑎(2) > · · · > 𝑎(𝑘) > · · · > 𝑎(𝑛)

It is not difficult to show that 𝑎(𝑛) and 𝑎(𝑘) are related as follows

𝑎(𝑛) = 𝑎(𝑘)𝑘/𝑛 (4.1)

Indeed, (4.1) is a consequence of an equal amount of information (or atoms) in one or other
n-dimensional space

𝑉 (1) = 𝑉 (2) = 𝑉 (𝑘) = · · · = 𝑉 (𝑛)

where 𝑉 (𝑛) - ≪volume≫ 𝑛-dimensional spaces, which have an equal number of units of infor-
mation (or atoms) which are located in nodes 𝑛-dimensional cubic lattices with a pitch 𝑑 in
that or another 𝑛-dimensional space (see Fig. 4.1)

So how

𝑉 (1) = 𝑎(1)1;𝑉 (2) = 𝑎(2)2; · · · ;𝑉 (𝑘) = 𝑎(𝑘)𝑘; · · · ;𝑉 (𝑛) = 𝑎(𝑛)𝑛;

Then we obtain (4.1). Here, for example, 𝑎(1) = 𝑑 · 𝑡, where 𝑡 - the number of steps of the
lattice.

If the space is three-dimensional, we obtain from (4.1)

𝑎(𝑛) = 𝑎(3)3/𝑛 (4.2)

From equation (4.2) should be an interesting conclusion. Suppose that we need to place
the observable universe, together with the substance in the elementary 𝑛-dimensional ”cube”
and the side of the cube is equal to 10 ℓ𝑃 . Here ℓ𝑃 = 10−33 cm - Planck length. How many
dimensions of space is needed?

The size of the observable Universe is 1028 cm., or in units of Planck length 1061ℓ𝑃 . From
(4.2) we have

101ℓ𝑃 = (1061ℓ𝑃 )
3/𝑛 (4.3)

Hence, 𝑛 = 183. Thus the observed Universe can be placed in 183-dimensional ”cube”. Rib
”cube” is 10ℓ𝑃 .

The density of matter in a ”183-cube” is equal to the density of a substance in 3-dimensional
space of the observable Universe. Indeed, the density of the matter in the 𝑛-dimensional space
is defined as follows: 𝜌(𝑛) = 𝑀/𝑉 (𝑛), where 𝑀 - mass of the substance of the observable
Universe; 𝑉 (𝑛) - volume of 𝑛-dimensional space; 𝜌(𝑛) - density of material in an 𝑛-dimensional
space. And since, by hypothesis, 𝑉 (3) = 𝑉 (183), then 𝜌(3) = 𝜌(183).

An illustrative example. The one-dimensional thread of length 𝑟1 is twisted into a flat spiral
with a diameter 𝑟2, or the three-dimensional ball with diameter 𝑟3. It is clear that 𝑟1 > 𝑟2 > 𝑟3,
but the density of the thread remains the same (atoms substance will still be located at a
distance 𝑑 from each other in the direction of each axis, see Fig. 4.1).

Based on the foregoing, it can be assumed that the singular ”point” (ie, a very small region
of space), from which emerged our Universe was multidimensional. Perhaps in the center of a
black hole the matter is squeezed into other dimensions of space.
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Chapter 5

Generalized Bohr’s principle of
complementarity

5.1 Introduction

Bohr’s complementarity principle was opened in 1927 and is an important principle of
quantum mechanics. Niels Bohr did a great job on the application of this principle in other areas
of knowledge. He considered this a very important task. Niels Bohr discovered complementarity
between the following pairs:

∙ Corpuscular and wave properties of the particles

∙ Physicochemical processes and biological processes

∙ Reductionism and vitalism

∙ Physicochemical causality or biological purposefulness

∙ Thoughts and feelings

∙ The mathematical description of the phenomenon and the physical picture of the phe-
nomenon

∙ Truth and clarity

∙ Determinism and free will.

∙ Justice and mercy

∙ Quantity and quality

∙ Logic and intuition

In the first pair of de Broglie wave is an irrational wave or ”ghost” wave (Einstein). Similarly,
in the other pairs. We see a general law in these pairs: the rational side of reality displayed
on the left side; the irrational side of reality displayed on the right side. Thus, the generalized
principle of complementarity Bohr can be formulated as follows: the rational side of reality and
conjugate irrational side of reality are complementary to each other.

Generalized Bohr’s principle of complementarity allows you to find the phenomena of
complementarity in various fields, grouping them by rational and irrational grounds. We affirm
that the complementarity relationships have the following pairs:
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∙ Discrete and continuity.

∙ Locality and nonlocality

∙ Plurality and integrity

∙ The space-time picture of the world (static) and pulse-energy picture of the world (dy-
namics, becoming).

∙ Determinism and indeterminism

∙ The real particles and virtual particles.

∙ A mixture of state and quantum superposition of states.

∙ Science and art.

∙ Phenomenon and essence

∙ Phenomena and noumena

∙ Tonal and nagual (Carlos Castaneda)

∙ Evolutionism and creationism

∙ Something (World) and nothing (God).

∙ Nominalism and Realism

And so on.

5.2 Conclusion

Generalized Bohr’s complementarity principle is:

∙ The laws of nature, World formula.

∙ Evidence of irrational side of unobservable reality.
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