
                   Klein Paradox Tunnelling and TSC Fusion of D in Pd Nano-Clusters 

Frank Dodd Tony Smith Jr - September 2015 - viXra 

 ( see for more details viXra 1501.0234 )
 

From a classical approximation point of view there are 12+1 = 13 Pd nuclei (blue) 
within which there is a 2-tetrahedral configuration of 4 D nuclei (red) and 4 D electrons 
green) 

In the Schwinger coherent quantum state (yellow) the 4 D nucei and 4 D electrons are 
smeared out all over the interior of the icosahedral TSC cell 
and 
the 4 D electrons screen out the positive charge of the 4 D nuclei 
making the Schwinger coherent quantum cloud effectively neutral with no Coulomb 
repulsion or attraction. 



Now look at the central Pd atom in the TSC cell. Its outer electron shell of 18 electrons 
 has 4 free electrons 
(14 of them being bound to the outer 12 Pd atoms and 2 forming a Dirac Fermion Band) 
which 4 free electrons pull the 4 D nuclei out of the Schwinger quantum cloud 
into the Central Pd Atom  



When the 4 D nuclei get into the small volume of the Central Pd Atom 
they “see” each other as repulsive like electrical charges 
resulting in a very high Coulomb barrier between them
but 
that is when the Dirac Fermion Band takes effect and gets them to rapidly penetrate the 
barrier 
by Klein Paradox Tunnelling 
and
then all 4  Deuerium nuclei undergo TSC Fusion to produce energy + 2 Helium nuclei 
which then pick up the left-over 4 Deuterium electrons to form 2 Helium atoms. 



How do the Palladium atoms in a cluster interact with each other ? 

The interaction is primarily through the outer shell of electrons ( N-shell for Palladium ). 

A full N-shell has s + p + d + f = 2 + 6 + 10 + 14 = 32 electrons. 

Palladium N-shell has 2 + 6 + 10 = 18 electrons and “holes” to receive 14 electrons:

Each Palladium atom has 14 N-shell electrons that every other Pd atom needs. 

Further, 
each Palladium atom has 4 N-shell electrons that can interact 
with 4 electrons of 4 Deuterium atoms absorbed into a Pd cluster, 
helping them to participate in a Schwinger coherent quantum state for TSC Fusion. 



Compare the outer shell ( L-shell ) of Carbon: 

The useful chemistry of Carbon ( graphite, diamond, buckyballs, graphene, organics ) 
is due to the fact that 
each Carbon atom has the 4 L-shell electrons that every other Carbon atom needs. 

If each Carbon atom is connected to 4 other Carbon atoms 
then the result is a 3-dim Diamond Packing with Tetrahedron Vertex Figure. 

However, Diamond is only a metastable state. Graphene is a stable state. 

P. B. Allen and B. K. Nicolic, in University of Delaware PHYS 824: Introduction to 
Nanophysics - Electronic band structure of graphene, said: “... Band structure of 
graphene ... originates from orbital hosting the fourth valence electron. The bands which 
correspond to the dispersion of bonding and antibonding molecular orbital (constructed 
from orbitals on two carbon atoms) are called pi and pi* bands ...

The honeycomb lattice of graphene ... is not a Bravais lattice. Instead, it can be viewed 
as bipartite lattice composed of two interpenetrating triangular sublattices ...
the single-particle electron states are ... two classes, called sigma and pi.
The even sigma states are derived from carbon s and px , py orbitals (i.e., their 
hybridized sp2 orbitals ...), 
while the odd pi states are derived from carbon pz orbitals ... electron and hole 
states in graphene should be interconnected, exhibiting properties analogous to the



charge-conjugation symmetry in quantum electrodynamics ... because graphene low-
energy quasiparticles have to be described by two-component wave functions ... which 
are needed to define the relative contributions of the A and B sublattices in the 
quasiparticles make-up. The two-component description for graphene is very similar to 
the [ Dirac Equation ] spinor wave functions in QED...”. 

I. Katsnelson, K. S. Novoselov & A. K. Geim, in Chiral tunnelling and the Klein
paradox in graphene (arXiv cond-mat/0604323), said: The ... Klein paradox - 
unimpeded penetration of relativistic particles through high and wide potential barriers 
- ... can be tested ... using electrostatic barriers in single- and bi-layer graphene. Due to 
the chiral nature of their quasiparticles, quantum tunnelling ... becomes ... qualitatively 
different from ... normal, non-relativistic electrons. ...

... Tunnelling through a potential barrier in graphene: ... (b) ... diagrams ... show the 
positions of the Fermi energy E across such a barrier. The Fermi level (dotted lines) lies 
in the conduction band outside the barrier and the valence band inside it. The blue filled 
areas indicate occupied states. The pseudospin ... is parallel (antiparallel) to the 
direction of motion of electrons (holes), which also ... keeps a fixed direction along the 
red and green branches of the electronic spectrum. (c) - Low-energy spectrum for 
quasiparticles in bilayer graphene. The spectrum is isotropic and, despite its 
parabolicity, also originates from the intersection of energy bands formed by equivalent 
sublattices, which ensures charge conjugation, similar to ... single-layer graphene. ... 
charge carriers in bilayer graphene ... are massive quasiparticles with a finite density of 
states at zero energy, similar to conventional nonrelativistic electrons. On the other 
hand, these quasiparticles are also chiral and described by spinor wavefunctions, 
similar to relativistic particles or quasiparticles in single-layer graphene ...
the origin of the unusual energy spectrum can be traced to the crystal lattice of
bilayer graphene with four equivalent sublattices. ... the relevant QED-like effects 
appear to be more pronounced in bilayer graphene ...”.  



If each Palladium atom is connected to 14 other Palladium atoms then 
the result is a 3-dim FCC Lattice with Rhombic Dodecahedron Vertex Figure 

However, it may be that the Rhombic Dodecahedron FCC Lattice is only metastable 

and 

more stable state may be based on its dual, the Cuboctahedron  

which can transform by Jitterbug Transformation into an Icosahedron. 

Just as Graphene directly uses 3 of the 4 Carbon electrons 
the Cuboctahedron / Icosahedron directly uses 12 of the 14 Palladium electrons. 

Just as the 4th Carbon valence electron in Bilayer Graphene produces a Dirac 
Fermion band with Klein Paradox Tunneling through Potential Barriers 
the 14 - 12 = 2 Palladium valence electrons produce a Dirac Fermion band which, 
using Klein Paradox Tunneling through Potential Barriers, enable TSC Fusion of 
Deuterium in Palladium Cluster structures.



The 18-14 = 4 Palladium electrons are used by the central Palladium atom 
of the Icosahedral TSC Fusion configuration to attract 4 Deuterium nuclei 
to the central TSC Fusion site. 

( blue = Pd , red = D nuclei , green = D electrons , cyan = TSC Fusion paths, orange = TSC Fusion site )

In the other Palladium atoms, the 18-14 = 4 electrons help position and guide the 
Deuterium nuclei and electrons in the TSC condensation process whereby they move to 
the icosahedron center for TSC Fusion of the 4 Deuterium nuclei. 
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Chiral tunneling and the Klein paradox in graphene

M. I. Katsnelson,1 K. S. Novoselov,2 and A. K. Geim2

1Institute for Molecules and Materials,

Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands

2Manchester Centre for Mesoscience and Nanotechnology,

University of Manchester, Manchester M13 9PL, UK

Abstract

The so-called Klein paradox - unimpeded penetration of relativistic particles

through high and wide potential barriers - is one of the most exotic and counterintu-

itive consequences of quantum electrodynamics (QED). The phenomenon is discussed

in many contexts in particle, nuclear and astro- physics but direct tests of the Klein

paradox using elementary particles have so far proved impossible. Here we show

that the effect can be tested in a conceptually simple condensed-matter experiment

by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral

nature of their quasiparticles, quantum tunneling in these materials becomes highly

anisotropic, qualitatively different from the case of normal, nonrelativistic electrons.

Massless Dirac fermions in graphene allow a close realization of Klein’s gedanken

experiment whereas massive chiral fermions in bilayer graphene offer an interesting

complementary system that elucidates the basic physics involved.
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The term Klein paradox1,2,3,4,5,6,7 usually refers to a counterintuitive relativistic process

in which an incoming electron starts penetrating through a potential barrier if its height

V0 exceeds twice the electron’s rest energy mc2 (where m is the electron mass and c the

speed of light). In this case, the transmission probability T depends only weakly on the

barrier height, approaching the perfect transparency for very high barriers, in stark contrast

to the conventional, nonrelativistic tunneling where T exponentially decays with increasing

V0. This relativistic effect can be attributed to the fact that a sufficiently strong potential,

being repulsive for electrons, is attractive for positrons and results in positron states inside

the barrier, which align in energy with the electron continuum outside4,5,6. Matching be-

tween electron and positron wavefunctions across the barrier leads to the high-probability

tunneling described by the Klein paradox7. The essential feature of QED responsible for

the effect is the fact that states at positive and negative energies (electrons and positrons)

are intimately linked (conjugated), being described by different components of the same

spinor wavefunction. This fundamental property of the Dirac equation is often referred to

as the charge-conjugation symmetry. Although Klein’s gedanken experiment is now well

understood, the notion of paradox is still used widely2,3,4,5,6,7, perhaps because the effect has

never been observed experimentally. Indeed, its observation requires a potential drop ≈ mc2

over the Compton length ~/mc, which yields enormous electric fields2,3(E > 1016V/cm) and

makes the effect relevant only for such exotic situations as, for example, positron production

around super-heavy nuclei2,3 with charge Z ≥ 170 or evaporation of black holes through

generation of particle-antiparticle pairs near the event horizon8. The purpose of this pa-

per is to show that graphene - a recently found allotrope of carbon9 - provides an effective

medium (”vacuum”) where relativistic quantum tunneling described by the Klein paradox

and other relevant QED phenomena could be tested experimentally.

DIRAC-LIKE QUASIPARTICLES IN GRAPHENE

Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice, or it

can be viewed as an individual atomic plane pulled out of bulk graphite. From the point

of view of its electronic properties, graphene is a two-dimensional zero-gap semiconductor

with the energy spectrum shown in Fig. 1a and its low-energy quasiparticles are formally

described by the Dirac-like Hamiltonian10,11,12

Ĥ0 = −i~vFσ∇ (1)
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where vF ≈ 106 ms−1 is the Fermi velocity, and σ =(σx, σy) are the Pauli matrices. Ne-

glecting many-body effects, this description is accurate theoretically10,11,12 and has also been

proven experimentally13,14 by measuring the energy-dependent cyclotron mass in graphene

(which yields its linear energy spectrum) and, most clearly, by the observation of a relativistic

analogue of the integer quantum Hall effect.

The fact that charge carriers in graphene are described by the Dirac-like equation (1)

rather than the usual Schrödinger equation can be seen as a consequence of graphene’s crystal

structure, which consists of two equivalent carbon sublattices A and B10,11,12. Quantum

mechanical hopping between the sublattices leads to the formation of two cosine-like energy

bands, and their intersection near the edges of the Brillouin zone (shown in red and green in

Fig. 1a) yields the conical energy spectrum. As a result, quasiparticles in graphene exhibit

the linear dispersion relation E = ~kvF , as if they were massless relativistic particles (for

example, photons) but the role of the speed of light is played here by the Fermi velocity

vF ≈ c/300. Due to the linear spectrum, one can expect that graphene’s quasiparticles

behave differently from those in conventional metals and semiconductors where the energy

spectrum can be approximated by a parabolic (free-electron-like) dispersion relation.

Although the linear spectrum is important, it is not the only essential feature that under-

pins the description of quantum transport in graphene by the Dirac equation. Above zero

energy, the current carrying states in graphene are, as usual, electron-like and negatively

charged. At negative energies, if the valence band is not full, its unoccupied electronic states

behave as positively charged quasiparticles (holes), which are often viewed as a condensed-

matter equivalent of positrons. Note however that electrons and holes in condensed matter

physics are normally described by separate Schrödinger equations, which are not in any way

connected (as a consequence of the Seitz sum rule15, the equations should also involve differ-

ent effective masses). In contrast, electron and hole states in graphene are interconnected,

exhibiting properties analogous to the charge-conjugation symmetry in QED10,11,12. For the

case of graphene, the latter symmetry is a consequence of its crystal symmetry because

graphene’s quasiparticles have to be described by two-component wavefunctions, which is

needed to define relative contributions of sublattices A and B in quasiparticles’ make-up.

The two-component description for graphene is very similar to the one by spinor wavefunc-

tions in QED but the ’spin’ index for graphene indicates sublattices rather than the real

spin of electrons and is usually referred to as pseudospin σ.

3
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FIG. 1: Tunneling through a potential barrier in graphene. (a)- Schematic diagrams of the spec-

trum of quasiparticles in single-layer graphene. The spectrum is linear at low Fermi energies (<1

eV). The red and green curves emphasize the origin of the linear spectrum, which is the crossing

between the energy bands associated with crystal sublattices A and B. The three diagrams illus-

trate schematically the positions of the Fermi energy E across the potential barrier of height V0 and

width D shown in (b). The Fermi level (dotted lines) lies in the conduction band outside the barrier

and the valence band inside it. The blue filling indicates occupied states. The pseudospin denoted

by vector σ is parallel (antiparallel) to the direction of motion of electrons (holes), which also

means that σ keeps a fixed direction along the red and green branches of the electronic spectrum.

(c) - Low-energy spectrum for quasiparticles in bilayer graphene. The spectrum is isotropic and,

despite its parabolicity, also originates from the intersection of energy bands formed by equivalent

sublattices, which ensures charge conjugation, similar to the case of single-layer graphene.

There are further analogies with QED. The conical spectrum of graphene is the result

of intersection of the energy bands originating from sublattices A and B (see Fig. 1a) and,

accordingly, an electron with energy E propagating in the positive direction originates from

4



the same branch of the electronic spectrum (shown in red) as the hole with energy −E

propagating in the opposite direction. This yields that electrons and holes belonging to

the same branch have pseudospin σ pointing in the same direction, which is parallel to

the momentum for electrons and antiparallel for holes (see Fig. 1a). This allows one to

introduce chirality12, that is formally a projection of pseudospin on the direction of motion,

which is positive and negative for electrons and holes, respectively. The term chirality is

often used to refer to the additional built-in symmetry between electron and hole parts

of graphene’s spectrum (as indicated by color in Fig. 1) and is analogous (although not

completely identical11,16) to the chirality in three-dimensional QED.

KLEIN PARADOX REFORMULATED FOR SINGLE-LAYER GRAPHENE

Because quasiparticles in graphene accurately mimic Dirac fermions in QED, this con-

densed matter system makes it possible to set up a tunneling experiment similar to that

analyzed by Klein. The general scheme of such an experiment is shown in Fig. 1, where we

consider the potential barrier that has a rectangular shape and is infinite along the y-axis:

V (x) =





V0, 0 < x < D,

0 otherwise.
(2)

This local potential barrier inverts charge carriers underneath it, creating holes playing the

role of positrons, or vice versa. For simplicity, we assume in (2) infinitely sharp edges,

which allows a direct link to the case usually considered in QED1,2,3,4,5,6,7. The sharp-edge

assumption is justified if the Fermi wavelength λ of quasiparticles is much larger than the

characteristic width of the edge smearing, which in turn should be larger than the lattice

constant (to disallow Umklapp scattering between different valleys in graphene)17. Such a

barrier can be created by the electric field effect using a thin insulator or by local chemical

doping9,13,14. Importantly, Dirac fermions in graphene are massless and, therefore, there

is no formal theoretical requirement for the minimal electric field E to form positron-like

states under the barrier. To create a well-defined barrier in realistic graphene samples with

a disorder, fields E ≈ 105V/cm routinely used in experiments9,14 should be sufficient, which

is eleven orders of magnitude lower than the fields necessary for the observation of the Klein

paradox for elementary particles.

It is straightforward to solve the tunneling problem sketched in Fig. 1b. We assume that

the incident electron wave propagates at an angle φ with respect to the x axis and then try
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the components of the Dirac spinor ψ1 and ψ2 for the Hamiltonian H = H0 + V (x) in the

following form:

ψ1 (x, y) =






(
eikxx + re−ikxx

)
eikyy, x < 0,

(aeiqxx + be−iqxx) eikyy, 0 < x < D,

teikxx+ikyy, x > D,

ψ2 (x, y) =






s
(
eikxx+iφ − re−ikxx−iφ

)
eikyy, x < 0,

s′
(
aeiqxx+iθ − be−iqxx−iθ

)
eikyy, 0 < x < D,

steikxx+ikyy+iφ, x > D,

(3)

where kF = 2π/λ is the Fermi wavevector, kx = kF cosφ and ky = kF sinφ are the wavevec-

tor components outside the barrier, qx =
√

(E − V0)
2 /~2v2

F − k2
y , θ = tan−1 (ky/qx) is the

refraction angle, s = signE, s′ = sign (E − V0). Requiring the continuity of the wavefunc-

tion by matching up coefficients a, b, t, r, we find the following expression for the reflection

coefficient r

r = 2ieiφ sin (qxD)
sinφ− ss′ sin θ

ss′ [e−iqxD cos (φ+ θ) + eiqxD cos (φ− θ)] − 2i sin (qxD)
. (4)

Fig. 2a shows examples of the angular dependence of transmission probability T = |t|2 =

1 − |r|2 calculated using the above expression. In the limit of high barriers |V0| ≫ |E|, the

expression for T can be simplified to

T =
cos2 φ

1 − cos2 (qxD) sin2 φ
. (5)

Equations (4,5) yield that under resonance conditions qxD = πN , N = 0,±1, . . . the

barrier becomes transparent (T = 1). More significantly, however, the barrier remains

always perfectly transparent for angles close to the normal incidence φ = 0. The latter is

the feature unique to massless Dirac fermions and directly related to the Klein paradox in

QED. One can understand this perfect tunneling in terms of the conservation of pseudospin.

Indeed, in the absence of pseudospin-flip processes (such processes are rare as they require a

short-range potential, which would act differently on A and B sites of the graphene lattice),

an electron moving to the right can be scattered only to a right-moving electron state or

left-moving hole state. This is illustrated in Fig. 1a, where charge carriers from the ”red”

branch of the band diagram can be scattered into states within the same ”red” branch but

cannot be transformed into any state on the ”green” branch. The latter scattering event

6
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FIG. 2: Klein-like quantum tunneling in graphene systems. Transmission probability T through a

100-nm-wide barrier as a function of the incident angle for (a) single- and (b) bi-layer graphene.

The electron concentration n outside the barrier is chosen 0.5× 1012 cm−2 for all cases. Inside the

barrier, hole concentrations p are 1× 1012 and 3× 1012 cm−2 for red and blue curves, respectively

(such concentrations are most typical in experiments with graphene). This corresponds to the Fermi

energy E of incident electrons ≈ 80 and 17 meV for single- and bi-layer graphene, respectively, and

λ ≈ 50 nm. The barrier heights V0 are (a) 200 and (b) 50 meV (red curves) and (a) 285 and (b)

100 meV (blue curves).

would require the pseudospin to be flipped. The matching between directions of pseudospin

σ for quasiparticles inside and outside the barrier results in perfect tunneling. In the strictly

one-dimensional case, such perfect transmission of Dirac fermions has been discussed in the

context of electron transport in carbon nanotubes17,18 (see also ref. [19]). Our analysis

extends this tunneling problem to the two-dimensional (2D) case of graphene.

CHIRAL TUNNELING IN BILAYER GRAPHENE

To elucidate which features of the anomalous tunneling in graphene are related to the

linear dispersion and which to the pseudospin and chirality of the Dirac spectrum, it is in-

structive to consider the same problem for bilayer graphene. There are both differences and

similarities between the two graphene systems. Indeed, charge carriers in bilayer graphene

have parabolic energy spectrum as shown in Fig. 1c, which means they are massive quasi-

particles with a finite density of states at zero energy, similar to conventional nonrelativistic

electrons. On the other hand, these quasiparticles are also chiral and described by spinor

wavefunctions20,21, similar to relativistic particles or quasiparticles in single-layer graphene.
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Again, the origin of the unusual energy spectrum can be traced to the crystal lattice of

bilayer graphene with four equivalent sublattices21. Although “massive chiral fermions” do

not exist in the field theory their existence in the condensed matter physics (confirmed

experimentally20) offers a unique opportunity to clarify the importance of chirality in the

relativistic tunneling problem described by the Klein paradox. In addition, the relevant

QED-like effects appear to be more pronounced in bilayer graphene and easier to test ex-

perimentally, as discussed below.

Charge carriers in bilayer graphene are described by an off-diagonal Hamiltonian20,21

Ĥ0 = −
~

2

2m



 0 (kx − iky)
2

(kx + iky)
2 0



 (6)

which yields a gapless semiconductor with chiral electrons and holes having a finite mass

m. An important formal difference between the tunneling problems for single- and bi-

layer graphene is that in the latter case there are four possible solutions for a given energy

E = ±~
2k2

F/2m. Two of them correspond to propagating waves and the other two to

evanescent ones. Accordingly, for constant potential Vi, eigenstates of Hamiltonian (6)

should be written as

ψ1 (x, y) =
(
aie

ikixx + bie
−ikixx + cie

κixx + die
−κixx

)
eikyx

ψ2 (x, y) = si

(
aie

ikixx+2iφi + bie
−ikixx−2iφi − cihie

κixx −
di

hi

e−κixx

)
eikyy (7)

where

si = sign (Vi − E) ; ~kix =
√

2m |E − Vi| cosφi; ~kiy =
√

2m |E − Vi| sinφi

κix =
√
k2

ix + 2k2
iy; hi =

(√
1 + sin2 φi − sinφi

)2

.

To find the transmission coefficient through barrier (2), one should set d1 = 0 for x < 0,

b3 = c3 = 0 for x > D and satisfy the continuity conditions for both components of

the wavefunction and their derivatives. For the case of an electron beam that is incident

normally (φ = 0) and low barriers V0 < E (over-barrier transmission), we obtain ψ1 = −ψ2

both outside and inside the barrier, and the chirality of fermions in bilayer graphene does

not manifest itself. In this case, scattering at the barrier (2) is the same as for electrons

described by the Schrödinger equation. However, for any finite φ (even in the case V0 < E),

waves localized at the barrier interfaces are essential to satisfy the boundary conditions.
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FIG. 3: Transmission probability T for normally incident electrons in single- and bi- layer graphene

(red and blue curves, respectively) and in a non-chiral zero-gap semiconductor (green curve) as

a function of width D of the tunnel barrier. Concentrations of charge carriers are chosen as

n = 0.5 × 1012 cm−2 and p = 1 × 1013 cm−2 outside and inside the barrier, respectively, for all

three cases. This yields barrier’s height of ∼ 450 meV for graphene and ∼ 240 meV for the other

two materials. Note that the transmission probability for bilayer graphene decays exponentially

with the barrier width, even though there are plenty of electronic states inside the barrier.

The most intriguing behavior is found for V0 > E, where electrons outside the barrier

transform into holes inside it, or vice versa. Examples of the angular dependence of T in

bilayer graphene are plotted in Fig. 2b. They show a dramatic difference as compared with

the case of massless Dirac fermions. There are again pronounced transmission resonances at

some incident angles, where T approaches unity. However, instead of the perfect transmission

found for normally-incident Dirac fermions (see Fig. 2a), our numerical analysis has yielded

the opposite effect: Massive chiral fermions are always perfectly reflected for angles close to

φ = 0.

Accordingly, we have analyzed this case in more detail and found the following analytical

solution for the transmission coefficient t:

t =
4ik1k2

(k2 + ik1)
2 e−k2D − (k2 − ik1)

2 ek2D
, (8)

where subscripts 1,2 label the regions outside and inside the barrier, respectively. Par-

ticularly interesting is the case of a potential step, which corresponds to a single p − n
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junction. Eq (8) shows that such a junction should completely reflect a normally-incident

beam (T = 0). This is highly unusual because the continuum of electronic states at the

other side of the step is normally expected to allow some tunneling. Furthermore, for a

single p − n junction with V0 ≫ E, the following analytical solution for any φ has been

found:

T =
E

V0

sin2(2φ) (9)

which again yields T = 0 for φ = 0. This behavior is in obvious contrast to single-layer

graphene, where normally-incident electrons are always perfectly transmitted.

The perfect reflection (instead of the perfect transmission) can be viewed as another

incarnation of the Klein paradox, because the effect is again due to the charge-conjugation

symmetry (fermions in single- and bi-layer graphene exhibit chiralities that resemble those

associated with spin 1/2 and 1, respectively)20,21. For single-layer graphene, an electron

wavefunction at the barrier interface matches perfectly the corresponding wavefunction for

a hole with the same direction of pseudospin (see Fig. 1a), yielding T = 1. In contrast, for

bilayer graphene, the charge conjugation requires a propagating electron with wavevector k

to transform into a hole with wavevector ik (rather than −k), which is an evanescent wave

inside a barrier.

COMPARISON WITH TUNNELING OF NONCHIRAL PARTICLES

For completeness, we compare the obtained results with the case of normal electrons. If

a tunnel barrier contains no electronic states, the difference is obvious: the transmission

probability in this case is well known to decay exponentially with increasing barrier’s width

and height22 so that the tunnel barriers discussed above would reflect electrons completely.

However, both graphene systems are gapless, and it is more appropriate to compare them

with gapless semiconductors having nonchiral charge carriers (such a situation can be realized

in certain heterostructures23,24). In this case, one finds

t =
4kxqx

(qx + kx)
2 e−iqxD − (qx − kx)

2 eiqxD
, (10)

where kx and qx are x-components of the wave vector outside and inside the barrier, re-

spectively. Again, similarly to the case of single- and bi-layer graphene, there are resonance

conditions qxD = πN, N = 0,±1, ... at which the barrier is transparent. For the case of

normal incidence (φ = 0) the tunneling coefficient is then an oscillating function of tun-

neling parameters and can exhibit any value from 0 to 1 (see Fig. 3). This is in contrast

10
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FIG. 4: The chiral nature of quasiparticles in graphene strongly affects its transport properties. (a)

A diffusive conductor of a size smaller than the phase-coherence length is connected to two parallel

one-dimensional leads. For normal electrons, transmission probability T through such a system

depends strongly on the distribution of scatterers. In contrast, for massless Dirac fermions, T is

always equal to unity due to the additional memory about the initial direction of pseudospin (see

text). (b) Schematic diagram of one of the possible tunneling experiments in graphene. Graphene

(light-blue) has two local gates (dark-blue) that create potential barriers of a variable height. The

voltage drop across the barriers is measured by using potential contacts shown in orange.

to graphene, where T is always 1, and bilayer graphene, where T = 0 for sufficiently wide

barriers D > λ. This makes it clear that the drastic difference between the three cases is

essentially due to different chiralities or pseudospins of the quasiparticles involved rather

than any other feature of their energy spectra.

IMPLICATIONS FOR EXPERIMENT

The found tunneling anomalies in the two graphene systems are expected to play an

important role in their transport properties, especially in the regime of low carrier con-

centrations where disorder induces significant potential barriers and the systems are likely

to split into a random distribution of p-n junctions. In conventional 2D systems, strong

enough disorder results in electronic states that are separated by barriers with exponentially

small transparency25,26. This is known to lead to the Anderson localization. In contrast,

in both graphene materials all potential barriers are relatively transparent (T ≈ 1 at least
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for some angles) which does not allow charge carriers to be confined by potential barriers

that are smooth on atomic scale. Therefore, different electron and hole “puddles” induced

by disorder are not isolated but effectively percolate, thereby suppressing localization. This

consideration can be important for the understanding of the minimal conductivity ≈ e2/h

observed experimentally in both single-layer13 and bilayer20 graphene.

To elucidate further the dramatic difference between quantum transport of Dirac fermions

in graphene and normal 2D electrons, Fig. 4a suggests a gedanken experiment where a diffu-

sive conductor is attached to ballistic one-dimensional leads, as in the Landauer formalism.

For conventional 2D systems, transmission and reflection coefficients through such a con-

ductor are sensitive to detailed distribution of impurities and a shift of a single impurity

by a distance of the order of λ can completely change the coefficients27. In contrast, the

conservation of pseudospin in graphene strictly forbids backscattering and makes the disor-

dered region in Fig. 4a always completely transparent, independent of disorder (as long as

it is smooth on the scale of the lattice constant17). This extension of the Klein problem to

the case of a random scalar potential has been proven by using the Lippmann-Schwinger

equation (see the Supplementary Information). Unfortunately, this particular experiment

is probably impossible to realize in practice because scattering at graphene’s edges does

not conserve the pseudospin17,28. Nevertheless, the above consideration shows that impu-

rity scattering in the bulk of graphene should be suppressed as compared to the normal

conductors.

The above analysis shows that the Klein paradox and associated relativistic-like phenom-

ena can be tested experimentally using graphene devices. The basic principle behind such

experiments would be to employ local gates and collimators similar to those used in electron

optics in 2D gases29,30. One possible experimental setup is shown schematically in Fig. 4b.

Here, local gates simply cross the whole graphene sample at different angles (for example,

90o and 45o). Intrinsic concentrations of charge carriers are usually low (∼ 1011 cm−2),

whereas concentrations up to 1 × 1013 cm−2 can be induced under the gated regions by the

bipolar electric field effect9. This allows potential barriers with heights up to V0 ≈ 0.4 eV

and ≈ 0.23 eV for single- and double-layer samples, respectively. By measuring the volt-

age drop across the barriers as a function of applied gate voltage, one can analyze their

transparency for different V0. Our results in Fig. 2 show that for graphene the 90o barrier

should exhibit low resistance and no significant changes in it with changing gate voltage. In

12



comparison, the 45o barrier is expected to have much higher resistance and show a number

of tunneling resonances as a function of gate voltage. The situation should be qualitatively

different for bilayer graphene, where local barriers should result in a high resistance for the

perpendicular barrier and pronounced resonances for the 45o barrier.

Furthermore, the fact that a barrier (or even a single p − n junction) incorporated in a

bilayer graphene device should lead to exponentially small tunneling current can be exploited

in developing graphene-based field effect transistors (FET). Such transistors are particularly

tempting because of their high mobility and ballistic transport at submicron distances9,13,14.

However, the fundamental problem along this route is that the conducting channel in single-

layer graphene cannot be pinched off (because of the minimal conductivity), which severely

limits achievable on-off ratios for such FETs9 and, therefore, the scope for their applications.

A bilayer FET with a local gate inverting the sign of charge carriers should yield much higher

on-off ratios.

OUTLOOK

We have shown that the recently found two carbon allotropes provide an effective medium

for mimicking relativistic quantum effects. On the one hand, this allows one to set up

such exotic experiments as the one described by the Klein paradox and could be useful for

analysis of other relevant QED problems. On the other hand, our work also shows that

the known QED problems and their solutions can be applied to graphene to achieve better

understanding of transport properties of this unique material that is interesting from the

view point of both fundamental physics and applications.
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