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Abstract

After reviewing the basic ideas behind Born’s Reciprocal Relativity
theory, the geometry of the (co) tangent bundle of spacetime is stud-
ied via the introduction of nonlinear connections associated with certain
nonholonomic modifications of Riemann—Cartan gravity within the con-
text of Finsler geometry. The curvature tensors in the (co) tangent bundle
of spacetime are explicitly constructed leading to the analog of the Ein-
stein vacuum field equations. The geometry of Hamilton Spaces associated
with curved phase spaces follows. An explicit construction of a gauge the-
ory of gravity in the 8D co-tangent bundle T* M of spacetime is provided,
and based on the gauge group SO(6,2) x, R® which acts on the tangent
space to the cotangent bundle T, ,y7*M at each point (x,p). Several
gravitational actions associated with the geometry of curved phase spaces
are presented. We conclude with a discussion about the geometrization
of matter, QFT in accelerated frames, T-duality, double field theory, and
generalized geometry.

1 Introduction : Born’s Reciprocal Relativity in
Phase Space

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A mazimal speed limit (speed of light)
must be accompanied with a maaximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
acceleration boosts (rotations) transformations of the 8D Phase space, where



XU T,E,P%i=1,2,3 are all boosted (rotated) into each-other, were given by
[2] based on the group U(1,3) and which is the Born version of the Lorentz
group SO(1,3).

The U(1,3) = SU(1,3) @ U(1) group transformations leave invariant the
symplectic 2-form Q = — dtAdpo+d;;dz’ Adp’; i, j = 1,2,3 and also the following
Born-Green line interval in the 8D phase-space (in natural units i = ¢ = 1)

(do)? = (dt)* = (dz)* — (dy)* — (dZ)QerL2 ((AE)? — (dps)* — (dp,)* — (dp:)?)
(1.1)

the rotations, velocity and force (acceleration) boosts leaving invariant the sym-

plectic 2-form and the line interval in the 8D phase-space are rather elaborate,

see [2] for details.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the z-direction and leave the
transverse directions y, z,py,p, intact. There is now a subgroup U(1,1) =
SU(1,1) @ U(1) C U(1,3) which leaves invariant the following line interval

(dE)* — (dP)* _
= e

(dr)? (1 | ldB/dr)” — (dP/dr)” ) = (dr)? (1 _ ) (1.2)

(dw)? = (dT)? — (dX)* +

b2 F?

max

where one has factored out the proper time infinitesimal (d7)? = dT? — dX? in
(2.2). The proper force interval (dE/dr)* — (dP/dr)? = —F? < 0 is "spacelike”
when the proper velocity interval (dT/d7)? — (dX/dr)? > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(2.2) involves the ratios of two
proper forces.

If (in natural units i = ¢ = 1) one sets the maximal proper-force to be given
by b = mpAnas, where mp = (1/Lp) is the Planck mass and Ayqp = (1/Ly),
then b = (1/Lp)? may also be interpreted as the maximal string tension. The
units of b would be of (mass)?. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, ¢, i as follows

[ h [hc [T b T
)\t = %, )\l = T, Ap = 7, )\e = hbc (13)

The gravitational constant can be written as G = ag c¢*/b where ag is a di-
mensionless parameter to be determined experimentally. If ag = 1, then the
four scales (2.3) coincide with the Planck time, length, momentum and energy,
respectively.

The U(1, 1) group transformation laws of the phase-space coordinates X, T, P, E
which leave the interval (2.2) invariant are [2]

€ X £, P sinhé

T/:Tcosh§+(c2 + b2) ¢

(1.4a)



sinhé&

E' = E coshf + (=& X + &P) ¢ (1.4b)
X" = X coshé + (& T — %)QE) sizhf (1.4c)
P' = P coshé + (5”02]3 + & T) Sizhg (1.4d)

&, is the velocity-boost rapidity parameter and the &, is the force (acceleration)
boost rapidity parameter of the primed-reference frame. These parameters are
defined respectively in terms of the velocity v = dX/dT and force f = dP/dT
(related to acceleration) as

fv)zﬁ; tanh(f—a) = F:aac

c c b
It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval ¢?(dT)? — (dX)? + ((dE)? — ¢*(dP)?)/b? but do not
leave separately invariant the proper time interval (d7)? = dT? — dX?2, nor the
interval in energy-momentum space 7% [(dE)? — c*(dP)?]. Only the combination

tanh( (1.5)

(do)? = (dr)? (1 - ng ) (1.6)

max

is truly left invariant under force (acceleration) boosts (1.4). They also leave
invariant the symplectic 2-form (phase space areas) Q = — dT' A E+ dX A dP.

To show the consistency of eqs-(1.4, 1.5, 1.6) let us describe the follow-
ing scenario. A massive free particle does not experience any force, thus the
momentum is conserved so that ‘%ﬁl = 0 and the flat phase space interval is
(do)? = (d7)?. In an accelerated frame of reference the massive particle expe-
riences a pseudo-force which implies that flﬁ :} # 0. Upon choosing an infinite
rapidity parameter £, = oo in eqs-(1.5), the value of the pseudo-force reaches
its maximal proper value Fj,., = b. Also, (d7')? = oo when the acceleration
rapidity parameter is 0o, as one can verify from eqs-(1.4) by simple inspection.
Since the interval in flat phase space (1.6) , in an inertial frame and accelerated
frame of reference, respectively, remains invariant under the transformations
(1.4) one has that (do)? = (dr)? = (dr')*(1 — F?/F2,,) = co x 0 # 0. If
(dr)? were zero, in the inertial non-accelerated frame of reference , this would
mean that the massive free particle would have followed a null geodesic, which
it cannot do since only massless photons can.

We explored in [5] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, siz specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation of




photon trajectories due to the aberration of light; invariance of areas-cells in
phase-space and modified dispersion relations.

The 8D tangent bundle of spacetime and the physics of a limiting value
of the proper acceleration in spacetime [4] has been studied by Brandt [3] .
Generalized 8D gravitational equations reduce to ordinary Einstein-Riemannian
gravitational equations in the infinite acceleration limit. The purpose of this
work is to analyze in further detail the geometry of the (co) tangent bundle of
spacetime via the introduction of nonlinear connections associated with certain
nonholonomic modifications of Riemann—Cartan gravity within the context of
Finsler geometry. The procedure provided in section 2 dif fers from the one
taken by Brandt [3]. The curvature tensors in the (co) tangent bundle of space-
time are explicitly constructed in section 2 leading to the analog of the Einstein
vacuum field equations.

In section 3 the geometry of Hamilton Spaces associated with curved phase
spaces is analyzed within the context of the maximal proper force principle in
Born’s reciprocal relativity. In section 4 a gauge theory of gravity in the 8D co-
tangent bundle T* M of spacetime is constructed. Several gravitational actions
associated with the geometry of curved phase spaces are presented. It should be
emphasized that our results described in section 4 are quite different than those
obtained earlier by us in [12] and by [3]. We conclude with a discussion about
the geometrization of matter, QFT in accelerated frames, T-duality, double field
theory, and generalized geometry.

2  Geometry of the (Co) Tangent Bundle of
Spacetime

In this section we shall present the essentials behind the geometry of the tangent
and cotangent space. We will follow closely the description by authors [9],
[10], where one may study also in detail the geometry of Lagrange-Finsler and
Hamilton-Cartan Spaces and their higher order generalizations. The metric
associated with the tangent space TMy can be written in the in the following
block diagonal form

(ds)2 = g,;j(xk,ya) dz'd 7 + hab(xi,y“) Sy oyt (2.1)

(4,j,k=1,2,3,....d; a,b,c=1,2,3,....d) if instead of the standard coordinate-
basis one introduces the anholonomic frames (non-coordinate basis) defined as

5 = 0; — Nl(z,y) 0 = 0/0z' — N}(z,y) Op; 0a =

(2.2)

and its dual basis is

6% = du® = (6 = da’, 6% = dy® + Nf(z,y) dz*) (2.3)



where the N—coeflicients define a nonlinear connection, N—connection structure,
see details in [9], [10]. As a very particular case one recovers the ordinary linear
connections if N (x,y) = T'¢ (z) y°.

The N—connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations dads — dgde = W z0,, with nontrivial an-
holonomy coefficients

Wz’l; = 0 ij =0 Wi =0; Wh =0, W5 =0
Wy - o Wh - —aNn WA - AN ()
where

Qf = §;NI — &NY (2.5)

is the nonlinear connection curvature (N—curvature). This is the same object as
Fy, described in the previous section when Nf «» Af.

A metric of type given by eq-(2.1) with arbitrary coefficients g;;(z*,y*) and
hap(x®,y?) defined with respect to a N-elongated basis is called a distinguished
metric. A linear connection Ds ds = I'% (2,y)ds associated to an operator
of covariant derivation D is compatible with a metric g,g and N-connection
structure on a pseudo-Riemannian spacetime if D,gs, = 0. The linear distin-
guished connection is parametrized by irreducible (horizontal, vertical ) h—v—

components, 'Y = (Lijk,L“bk,Cijc,C'“bc) such that [9], [10].

L', = 29 (OkGnj + 059nk — OnGijk)

1
Labk = 8bN;€1 + ihac (5khbc — hdcﬁbN,f — hdbacNg)

) 1 ., 1
Cljc = iglkﬁcgjk; Cabc = §had (8chdb + Ophge — 8dhbc) . (2.6)
This defines a canonical linear connection (distinguished by a N—connection)
which is similar to the metric connection introduced by Christoffel symbols in
the case of holonomic bases. The anholonomic coefficients w”, 5 and N-elongated
derivatives give nontrivial coefficients for the torsion tensor, T'(0,,d5) = T} da-

One arrives at
By = %y — I%s + wh,, (2.7)

and at the curvature tensor, R(d-,d,)0s = Rg*, da

Rﬂa’YT = 67—1‘0(6'7 — 671‘0%7 + FUB’YFQUT — FO‘ TFO(UW + Faﬁo.wo;/ (28)

T

One should note the key presence of the last term in (2.8) due to the non-
vanishing anholonomic coefficients w”
The torsion distinguished tensor has the following irreducible, nonvanishing,

h-v-components, 7%, = (Tijk, C? “bC,T“ij,T‘zi) given by

jas

ik = Lj = Liys Tje = Cios Ty = = O,

Ja’



T;a =0 Tl?c = Sl?c = Cl?c - gb
Ti(; = =Q; Ty = N — Ly; Ty = — Ty (2.9)

YR
and where Qf; = §; N — §; N5 can be interpreted as the "field strength” asso-
ciated with the nonlinear connection N/.
The curvature distinguished tensor has the following irreducible, non-vanishing,

h—v-components Rg" = (szk, Ry, P;ka, P& o S’;bm Sl‘fcd) given by [9], [10],

Rij. = OxLy; — 6Ly + LiLi, — LinLh.: — ChLQ%, (2.10a)
Ry = owly; — 6Ly, + LyjLg, — LyppLe; — Cp.Qy (2.100)
e = Oally + CLTY, — (0:C), + L Ch, — L%.Cl, — LECl.) (2.10c)

Pfa = 0Ly, + Coy T — (01C5, + LGCf, — LECS, — LE4.CEy) (2.10d)
e = 0.Ch — &Cl, + ChCi. — Chol, (2.10¢)

Spea = 0aCype — 0:Cpq + CpcCoq — CraCe, (2.10f)

Having reviewed the geometry of the tangent bundle T'M we proceed with
the cotangent bundle case T*M (phase space). In the case of the cotangent
space of a d-dim manifold T M, the metric can be equivalently rewritten in the
block diagonal form [9] as

(ds)® = gij(z¥,pa) da'd 27 + h(z",p.) 6pa Spy (2.11)

i,5,k=1,2,3,....d, a,b,c = 1,2,3,.....d, if instead of the standard coordinate
basis one introduces the following anholonomic frames (non-coordinate basis)
0

5 = 662" = 0y + Nig 0 = 0y + Nig 0p,; 0° = 0, = Sy (212

One should note the key position of the indices that allows us to distinguish

between derivatives with respect to z* and those with respect to p,. The dual
basis of (§; = 6/dz"; 0% = 0/0pa) is

dzt, op, = dp, — Njq dz’ (2.13)

where the N—coeflicients define a nonlinear connection, N—connection structure.
An N-linear connection D on T*M can be uniquely represented in the adapted
basis in the following form



Ds,(6;) = HJ; 6, D5, (0%) = — Hy; 0% (2.14a)
Dga(d;) = CF 8 Dpa(db) = — CP* 9° (2.14b)

where Hz-kj(w,p),H{fj(x,p),C’f“(x,p),C’é’“(Jc,p) are the connection coefficients.
For any N-linear connection D with the above coefficients the torsion 2-forms
are

. 1 . , , A
O = LTh ded Adet 4 Ol did A p, (2.15a)
1 ; k b ' L qpe
Qo = 5 Rjka da’ Ada® + Py dal Nopy, + 5S5° 0py A Ope (2.15b)
and the curvature 2-forms are

. 1 . ) 1 .
2 = 5 Rjkm da® Ndx™ + Pl da® Adp. + 5S;.ab opa Adpy,  (2.16)

1 1
QG = SR dz® A dx™ + PE da® A dp. + 5sgcd 6pe Nopa  (2.17)

where one must recall that the dual basis of §; = 6/dx%, 9% = §/9p, is given by
dz', dp, = dpg, — Njada?.
The distinguished torsion tensors are of the form [9]

o= Hjy — Hy 82" = €2 — CI% By = Hyy — 0" Np
ON; ON;
Riio = Ja o 2.18
J oxt dad ( )

The distinguished tensors of the curvature are of the form

Ri, = owHy;, — 6;H}, + Hy; Hj, — Hj, Hj;, — Ci* Rjna  (2.19)

Py = 9" HY + C Py — (5; C& + HY € + HY €2 — HE Cqb)
(2.20)

Py = 9 Hf + CH T — (5; CfF + HY CYF + Hf O — HY CfF)
(2.21)

Sabe = 9° C% — 9 Cy° + CP 0 — C5° CW; ete.. (2.22)



where we have omitted the other components and once again we have for our
notation 9% = 9/dp, and 6 /6x* = 0, + N, 0%. Equipped with these curvature
tensors one can perform suitable contractions involving g;;, A" to obtain two
curvature scalars of the R, S type

R = & Rij g S = 6f S5 hae (2.23)

and construct a 2d-dim gravitational phase space action involving a linear com-
bination of the curvature scalars

1
. / dlz d'p \/|det g] /Jdet B] (1 R + ¢ S) (2.24)

where ¢y, co are real-valued numerical coefficients and k2 is the gravitational
coupling constant. In this case, the vacuum field equations associated with the
geometry of the cotangent bundle are

) 4S 4S

=0, — =0, — =0 2.25
6gij 5hab (SNZ ( )
The generalized (vacuum) field equations corresponding to gravity in the curved
2d-dimensional (co) tangent bundle, and which are obtained from a direct vari-
ation of the tangent space/phase space actions with respect to the respective
fields

gij(xkaya)a hab(l‘kaya)v Nza(mkaya)a gij(xkapa)? hab(xk7pa)7 Nl (mkapa)

(2.26)
needs to be investigated further. Field equations of the form
1 1
Rij = 5(R+8) gi5 =05 S = 5(R+8) hap =0 (2.27)
I(R+S)
TN 2.2
SNg 0 (2.28)

were studied by Vacaru [10].
Wheni,j =1,2,...,d,and a,b =1,2,...,d the number of field equations is

2d(2d + 1)
2
which match the number of independent degrees of freedom of a metric gpn
in 2d-dimensions. One should emphasize however, that a careful analysis [12]
reveals that there is no mathematical equivalence among the above eqs-(2.25)
in the (co) tangent bundle, with the ordinary Einstein vacuum field equations

in a Riemannian spacetime in 2d-dimensions

1 1
Fdd+1) + dd+1) + d? = (2.29)

1
RMN(X> — 5 gMN(X> R(X) :07 M,N: 1,2,3, ....... ,2d (230)



To finalize it is very important to remark that in section 1 we discussed
Quaplectic transformations (like eqs-(1.4)) in flat phase spaces which leave
invariant the Born-Green line interval (1.1) and the symplectic two form Q =
—dtAdpo+dztAdp;. In the (co) tangent space description analyzed in this section
one has covariance under a more restricted set of coordinate transformations of
the form [9]

1%
= at), =y O (2:31)
_ o O
"t = 2"(27), pi = p; 873:” (2.32)

whereas Quaplectic transformations in flat phase space, in general, are of the
form 2 = /" (z7,p;),p}(x?, p;). Thus one cannot accommodate the Quaplectic
transformations to curved phase spaces (the cotangent bundle T*M) in the
manner described in eq-(2.32). The geometry of phase space was extensively
studied in the lengthy monograph by [6].

3 Hamilton Spaces and Maximal Proper Force
in the Cotangent Bundle

Having studied the geometry of the (co) tangent bundle, let us begin with the
8D cotangent space (phase-space) infinitesimal interval given by

h®(z, p)

e (dpa — Nac dz€) (dpy — Npg dxd) (3.1)

(do)* = gij(w,p) dz’ dz’ +
after defining g;;(z,p)dz’dz? = (dr)?, the interval can be rewritten as

ht  dp, dx€. d dz?
b Po Npg 5y (dr)? (3.2)

2 — R
"+ 3 U w3 Car dr

furthermore, the interval also be recast as

(do)? = (dr)? <1 — Flf ); F2 = b? (3.3)

and given in terms of a generalized (spacelike) proper force squared F? defined
as

dpy, dxz?

dp, dx®
—) (E — Npg ﬁ) (3.4)

—F? = h% (=2 — N,,
( dr dr

After writing



0pa _ dpg dz¢

dr — dr U dr (3:5)
eq-(3.4) becomes
5pa 5pb
_F? = pob (PPey (020 .
() (o) (3.

furthermore, we may express eq-(3.6) in terms of the Hamiltonian after using
the Born reciprocally invariant Hamilton’s equations of motion

dpg OH  dx*® OH
= —9,H = - —, — = 0°H = )
dr % Oz’ dr ? Opq (3.7)
such that J
Pa
— = — J,H
I 0. H =
0Pa dpq dx® 0OH 0H
_ = = - Na —_ = - 5QH = - Na .
dr dr b dr (833a + b@pb) (3.8)

and the generalized proper force squared, finally, can be recast as

6pa 5Pb
2 _ a — ab — ab
F* = F°F, = 7 ( ) ( ) = 7 (6 H) (0pH) (3.9)

A particle moving along the autoparallel trajectories associated with the Hamil-
ton space is described by ‘Z’% = J,H = 0 leading to a zero generalized force as
expected. This is consistent with the fact that the Hamilton equations of mo-
tion become the autoparallel equations associated to the (nonlinear) connection
Nap(x,p). It was shown in [7] that homogeneous Hamiltonians H(x, A\p) =
A H(x,p) lead to §,H = 0, and consequently, to a zero generalized force.
Hamiltonians which are not homogeneous furnish force-like terms that drag
the particles away from the autoparallel motion [7].

Given a Hamiltonian H (z,p) associated with a Hamilton space, the gener-
alized proper force squared displayed in egs-(3.4, 3.9) is given in terms of the
metric and Nonlinear connection which are defined, respectively, as follows [9]

1 9*°H
(H) _ - ab _ (H) ab 1
Gab = 5 Fragps’ h g (3.10)
1
Nap(z,p) = 7 ({9ab(2,): H} — gacOp0°H — g5c0.0°H ) (3.11)
given 0, = %, o° = B(ZC’ the Poisson bracket is
{9gav, H} = (0cgap) (0°H) — (9°gap) (0-H) =
0 0 0 0
— —H) — (— H 12
(axcgab) (8176 ) (apcgab) (axc ) (3 )

10



Therefore, in Hamilton spaces the metric and nonlinear connection are de-
termined by the Hamiltonian H(z,p). The nonlinear connection in Hamilton
spaces is symmetric Ny, = Ny, and has zero nonmetricity : the metric is co-
variantly constant V) g,;, = 0, see [7], [9] for references.

In the special case when one has a quadratic Hamiltonian given by

a b

p-p

H = gap(7) + V(z) (3.13)

one will have

h(x) = ¢®(x); Ni(z,p) = p° Ii(x);

dma a d a

o = %; e = 57 +m~t T pb pe (3.14)
therefore, in this special case the connection N (z, p) is linear in the momentum
and proportional to the Levi-Civita connection I'f, (z). Hence, F® is now the
physical proper force experienced by a particle of mass m moving in a Rieman-
nian spacetime, with metric g,5(2) and whose infinitesimal proper time interval
is gup(z)dz®da® = (dr)%. For a timelike trajectory the force (acceleration) is
spacelike.

To finalize this section we shall discuss the consistency of the vacuum field
equations (2.27,2.28) in the case of Hamiltonian spaces. Given a solution gy (x, p)
to the vacuum field equations (2.27), one can always associate a Hamiltonian
function given by

H(e.p) = <2 [ sutan) ap* dpb) LA p" + V(@) (3.15)

where Aq(x), V() are arbitrary functions. The nonlinear connection coefficients
are provided in eg-(3.11). The key question remains whether or not the nonlinear
connection coefficients described by the expression in eq-(3.11), in terms of the
above Hamiltonian (3.15) and the solutions gx;(x, p) to the metric vacuum field
equations (2.27), are in fact also solutions to the nonlinear connection vacuum
field equations (2.28).

Setting A,(x) = 0,V (x) = 0, a class of solutions for the Hamiltonian can be
chosen to be

I
(1=
)
2
=)
[¥)
Q
3
®
~—
hS]
g
hS]
Q
[¥)
i)
£

H(z,p) (z) p™ p* ... (3.16)

leading to a metric

n=1

11



and to a nonlinear connection NN;; given in eq-(3.11). One must verify whether or
not the functions Gu,a,....a, (x),n =1,2,..., N allows us to construct nontrivial
solutions to the vacuum field equations (2.27,2.28) for the metric g5, h% = g%
and nonlinear connection Ng,. This is a very difficult consistency problem that
needs to be investigated further.

4 Gauge Theories of Gravity in the Cotangent
Bundle

In this section we will construct a gauge theory of gravity in the 8D cotan-
gent bundle T M based on the gauge group given by the semidirect product
S0(6,2) x, R®. Let us begin with a Lie group G; its associated Lie algebra
is spanned by the generators L£4,A4 = 1,2,..., dim G, and whose structure
constants are f§5. The Lie algebra commutator is [L4,Lp] = f{zLc. The
components of the gauge field strength in the 8D cotangent bundle 7% M, and
corresponding to the Lie-algebra valued gauge fields A2 L4, AL 4, are

T o= 6AY — §AN + [ AL A =

0 0 0 0
— 4+ bNy —) A — (== + bNy —) A4
(al’l + b apb) J (858] + Jb apb) 1 +
AP AS fhe (4.1)
A 9 a 9 a B 4C A
]:ab = apa‘Ab - aipb'Aa + 'Aa Ab fBC (42)
Fia = 6 AL — 0.A1 + AP AT fiic (4.3)
Fi = 0.4 — AL + AP AP fhe (4.4)
there is anti-symmetry in the indices 77} = —F7 and the particular Lie-algebra-
valued two-form field strength is F/2dz’ A §p® where da? A 6p® = — 5p® A dx'.

We shall choose the gauge group to be the semidirect product SO(6,2) X
R?® which is the extension of the 4D Poincare group SO(3,1) x, R* given by
the semidirect product of the Lorentz group with the translations. The flat
metric in the tangent space to the cotangent bundle T, ,)7* M, at the point
(z,p), is nap = diag (—,+,+,+,—,+,+,+). There are two timelike directions
corresponding to the temporal coordinate z° and the energy p°.

The SO(6,2) Lie algebra generators £4p obey the commutation relations

[Lag, Lep] = (MBcLap —nacLep —nepLac +napLpe). (4.5)

The other commutators associated with the translation generators P4 are

12



[La, Pc] = (nBc Pa — nac Pe); [Pa, Pl = 0 (4.6)
The metric G in the 8D cotangent bundle T*M is given by

Gun = Gun(z,p) =

9ij(x,p) + hap(z,p) Ni'(z,p) NP(2,p)  — Ni(z,p) hap(z,p)
( - N]b('r7p) hab(‘rap) hab(‘rap) ) (47)

One could also have complex (Hermitian) metrics of the form Gan = Garny +
iGpN) with an antisymmetric piece Gipyy). We refer to [11] for a study of gauge
theories of Born Reciprocal Gravity based on the Quaplectic group [2] given by
the semidirect product of the (pseudo) unitary group with the Weyl-Heisenberg
group.

The frame E3, fields are introduced such that

Gun = Ei EE nap (4.8)

where A, B =1,2,...,8 are the indices of the tangent space to the 8D cotangent
bundle T\, ,T* M, at each point (x,p). M, N =1,2,...,8 are the indices of the
cotangent bundle T*M of the 4D spacetime manifold M.

The Lie-algebra valued gauge field is

Ay = QP Lag + B4y Pa (4.9)

where Q47 (analog of the spin connection) is the field that gauges the SO(6,2)
symmetry. E4; gauges the (Abelian) translations in T(zp)T*M. Defining the
derivative operators as

0 g 0

o = (8, 9) = (== + Nyp—, — 4.10
= 000 = (G + Nagee 5) (4.10)
the Lie-algebra valued field strength is given by
Fun = éMAN - éNA]\/[ + [AM, AN] (4.11)
The curvature two-form associated with the spin connection Q4f = — QBA
is
Rith = Filk = oua? — onif + QA7 off (4.12)
and whose explicit components are
0 0 0 0
REP = FAP = (== + bNy ) QP — (—— + b Ny, —) Q8
ij ij ((r“)l'z + ib apb) j (61‘] + jb apb) i +
AC (CB
Q" O (4.13)
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RAP = Fpp = Logpp - D ogan 0L° o (4.14)

Op° Op®
RAB = FAB — (i + b Ny i) gre _ 9 QAP 4 Q4 QB (4.15)
ia ia ozt apb a 8]9 [@ a]
and FAP = —FAB. A summation over the repeated indices is implied and

[MN] denotes the anti-symmetrization of indices with weight one.
The explicit components of the torsion two-form defined as

Tin = Fiin = 0uBA — OvEf + Q)7 B, (4.16)
are
) ) ) )

A — A _ o Y ypAa (P A

iy = Fi (8xi + b Ny 8pb) Ej (333] + b Ny B -—) Ef
2 B (4.17)
TA = FA = O pa _ 9 E} + O° E (4.18)

ab ab apa b a b

A= F (L Ny - 2 + Q¢ B (4.19)

a ap
and F4 = —FA.
The frame fields allow us to construct the curvature tensor on the cotangent
bundle T*M as follows
RJMNP = RMN Eff Epp = ]'—1\131% Ef;? Epp (4.20)

where the explicit components Fia; are obtained in eqs- (4.13-4.15) . E4 is
the inverse frame field such that B4l BB = 65 and Eay EY = nap. The
contraction of indices yields the Ricci-like tensors.

Rup = 03 Rnp (4.21a)

A further contraction yields the generalized Ricci scalar
R = GMP Ryp (4.21b)

The Torsion tensors are
Tuve = Fin Bag, Tyy = Fun ES, T = 08 Tit 4.22
MNQ MN FAQs JMN MN ~A> M Q 'MN (4.22)
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A Lagrangian, linear in the curvature scalar and quadratic in torsion, can be
chosen to be

L= caR + cTung TN + 3 T TV. (4.23)
where c¢1, co, c3 are numerical coefficients. The action is

1

[ —
2K2

/ d®Y /| det Gyn | £ (4.24)
Qg

where x? is the analog of the gravitational coupling constant and the 8D measure
of integration is defined by

Y = da' Ada® Adx® Adzt ASpy A Spa A Sps Adps =

dz' Adz? Adad A dat Adpy Adps A dps A dpy (4.25)

with '
0pa = dpg, — Ng; dz* (4.26)

The curvature (4.13-4.15) depends on the geometric quantities gi;, hap, Nia
that describe the metric (4.7) and Q47. The number of degrees of freedom
d(2d + 1) (found in eq-(2.29)) associated with g;;, hap, Nig is the same as the
number of degrees of freedom of a metric Gsn in 2d dimensions. Therefore, the
net number of degrees of freedom correspond to those of Gp;ny and fo as it
occurs in Poincare gauge theories of gravity. Furthermore, if the torsion (4.16)
is set to zero one can solve Q47 in terms of E4}. To sum up, in the absence of
torsion, the action (4.24) represents a Poincare-like gauge theory of gravity in
(2d — 2,2) dimensions, written in a nonholonomic coordinate basis, and where
the gauge group is SO(6,2) x, RS.

Bars [13] has proposed a gauge symmetry in phase space. One of the con-
sequences of this gauge symmetry is a new formulation of physics in spacetime.
Instead of one time there must be two times, while phenomena described by
one-time physics in 3 + 1 dimensions appear as various shadows of the same
phenomena that occur in 4 4+ 2 dimensions with one extra space and one extra
time dimensions (more generally, d + 2). Problems of ghosts and causality are
resolved automatically by the Sp(2, R) gauge symmetry in phase space.

The ordinary 4D Einstein-Hilbert action can be written in terms of the
vielbeins e¢ and spin connection w@® as

167G
The natural extension of (4.27) to the 8D cotangent bundle T*M is

1 ,
S = / ey N eg A REH Wi, e?) €qpeq €74 (4.27)

1 A A A A A A A7 A
1 2 3 4 5 6 7Ag MiMs...Mg
53 | Eri AEAE AB AE AENEABE ARG €4, 4,4 €

(4.28)
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A pending project (when the Torsion is constrained to zero) is to compare the
field equations (2.24, 2.25) with the field equations obtained from a variation of
the action (4.24).

One could also introduce Lanczos-Lovelock-like Lagrangians in D-dimensions,
written in terms of the generalized Kronecker deltas,

1
HiVi...fnVn Hiv 1Y% nVn
Oorfn. amfn = 77 Ofarfr Oaaps *** Onpn] (4.29)
as
D/2] .
L= 3 anRW, RW = Zgpgeien T Rl (4.30)
n=0

where |D/2| is the integer part of D/2; a,, are coupling constants of dimensions
(length)?"=P. In the 8D cotangent bundle case T*M the range of indices is
a,Bf =1,2,...,8; u,v,...,8. The first four indices correspond to the four-
dim spacetime, and the last four indices to the momentum space. Despite the
product of curvatures, the advantage of Lanczos-Lovelock Lagrangians is that
they lead to field equations containing only derivatives of the metric up to second
order, and in arbitrary number of dimensions.

The introduction of matter sources in the right hand side of the field equa-
tions (2.24, 2.25) has been discussed by Vacaru [10]. In particular, he has
introduced Clifford/spinor structures in Lagrange-Finsler and Hamilton-Cartan
spaces. A study of gauge gravity over spinor bundles can be found in the mono-
graph [10]. An analysis of gauge gravity and conservation laws in higher order
anisotropic spaces was investigated in [8].

A discussion of Mach’s principle within the context of Born Reciprocal Grav-
ity in Phase Spaces was described in [17]. The Machian postulate states that the
rest mass of a particle is determined via the gravitational potential energy due
to the other masses in the universe. It is also consistent with equating the max-
imal proper force m pianck (¢?/Lpianck) t0 Muniverse(¢?/ Riupbie) and reflecting
a maximal/minimal acceleration duality. By invoking Born’s reciprocity be-
tween coordinates and momenta, a minimal Planck scale should correspond to
a minimum momentum, and consequently to an upper scale given by the Hubble
radius. Further details can be found in [17].

5 Conclusions : Towards the Geometrization of
Matter and T-Duality

The results of this work leads us to believe that a geometrization of matter is
of paramount importance in the quantization program of gravity based on the
geometry of cotangent spaces (phase spaces). For instance, in 4D Riemannian
spacetimes, one finds that Einstein’s field equations, in units of 87G = ¢ = 1,
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1
Ruv = 5w R = T 6.1

exhibit a geometry /matter reciprocity symmetry, because after replacing

Ry < Tu, R=g¢"R, <T=g¢"T, (5.2)
in eq-(5.1) it yields
1
T = 5 9w T = Ry (5.3)

one can notice that the last eq-(5.3) is indeed equivalent to eq-(5.1) after simply
taking the trace of eq-(5.1) in D = 4 and leading to T = —R. In this respect
four dimensions is singled out.

In other dimensions than D = 4 one can look back at eqs-(2.27)

1
Rij — 5 (R—FS)QU =0 =
1 1
RZ‘]‘ - 57?/ = igijS = Tij (54)

such that when all the quantities in eq-(5.4) solely depend on the coordinates
x' (and not on the momenta p,) one finds that the scalar curvature S in
momentum space (times g;;/2) plays the role of an effective stress energy tensor
T;; in the horizontal spacetime M. Hence, matter sources (mass in particular)
can be effectively geometrized (mimicked) by the momentum space curvature.

In classical mechanics, inertial mass is that property of matter which op-
poses acceleration. The Quaplectic group transformations in flat phase spaces,
implementing Born’s Reciprocal Relativity principle [1], implies the physical
equivalence of accelerated frames of reference [2]. Likewise, Special Relativ-
ity is based on the physical equivalence of inertial frames in flat Minkowski
spacetime via Lorentz transformations. One of the most salient features of the
Quaplectic group transformations is the mizing of spacetime coordinates with
the energy-momentum coordinates as described in section 1. Also, Quaplectic
group transformations can change the spin of particles, which does not occur in
Lorentz transformations. Born’s Reciprocal Relativity, in essence, is an attempt
to unify space-time-matter.

This picture of the equivalence of accelerated frames in flat phase space
differs considerably from the one in ordinary Quantum Field Theory (QFT).
The physics behind accelerated frames in Minkowski space is essential in the
Fulling-Davies-Unruh effect, where an accelerating observer will observe black-
body radiation where an inertial observer would observe none. From the view-
point of the accelerating observer, the vacuum of the inertial observer will look
like a state containing many particles in thermal equilibrium (a warm gas of
photons). The Unruh temperature [18] is the effective temperature experienced
by a uniformly accelerating detector in a vacuum field. It is given by 7' = 512

2rckp’
where a is the local acceleration, and kg is the Boltzmann constant. The Unruh
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temperature has the same form as the Hawking temperature after replacing a
for the surface gravity at the black hole horizon.

Recently, Dasgupta [19] re-investigated the Bogoliubov transformations which
relate the Minkowski inertial vacuum to the vacuum of an accelerated observer.
He implemented the transformation using a non-unitary operator used in for-
mulations of irreversible systems by Prigogine [20]. An attempt was discussed
to generalize Quantum Field Theory (QFT) for accelerated frames using this
new connection to Prigogine transformations. It is warranted to build a general-
ized QFT in accelerated frames which is compatible with the Quaplectic group
transformations in Born’s Reciprocal Relativity [1]. This may shed some light
into the resolution of the black hole information paradox by recurring to novel
physical principles and which are beyond the many current proposals based on
standard QFT in curved Riemannian spacetimes.

Finally we add that in [17] we argued how Born Reciprocal Relativity could
provide a physical mechanism to understand T-duality in string theory. Nowa-
days it is pursued via Double Field Theory (FDT) [15]. The idea behind DFT is
to introduce a doubled space with coordinates X = (2¢,%"), M =1,...,2D, on
which O(D, D) acts naturally in the fundamental representation [15], [16]. One
has doubled the number of all spacetime coordinates. This idea is actually well
motivated by string theory on toroidal backgrounds, where these coordinates
are dual both to momentum and winding modes [16]. An extension of DFT
to exceptional groups, now commonly referred to as exceptional field theory,
allows us to settle open problems in Kaluza-Klein truncations of supergravity
that, although of conventional nature, were impossible to solve with standard
techniques [16]. We have not addressed in this work how to accommodate DFT
to Born Reciprocal Relativity and the geometry of (co) tangent bundles. It is
becoming more clear that generalized geometries (like those involving metrics
of the form in eq-(4.7)) warrant further investigation.
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