
IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

315

Job Shop Scheduling Using ACO

Ms. K. Sathya Sundari

 (Ph. D., Part time Category – B Research & Development Centre, Bharathiar University, Coimbatore)

Tamil Nadu, India

Abstract - Job shop scheduling using ACO(Ant Colony

Optimization) approach. Different heuristic information

is discussed and three different ant algorithms are

presented. State transition rule and pheromone updating

methods are given. The concept of the new strategy is

highlighted and template for ACO approach is presented.

Keywords – Job Shop Scheduling.

1. Ant Colony Optimization

1.1 Behavior of Real Ants

Ants have a limited awareness of their surroundings.

They are not able to see a food source that is available

in a long way away and also are not having the

knowledge to plan a correct route to reach there and

come back. The ants work collectively to search the

area around their nest. They need to communicate in

some way so as to work collectively and this

communication is carried out by marking the ground

with pheromone. The nature of the ants varies

considerably. Some types of ants are capable of finding

the best route between a food source and the nest (Li

and Gong 2003). A simplified theory of how ants find
the best path to a food source is given in this thesis

and key concepts relevant to ant algorithms are

highlighted. All ants wander back and forth between the

food source and the nest after finding the food source.

Initially, they take a route by a random wander

between the two sites. They also deposit pheromone on

the ground during the wandering. This pheromone will

affect paths of future ants, because the ants have a

tendency to follow paths marked with pheromone. If the

pheromone level on a path is more, the more likely, an
ant is to wander in that path. When ants first leave the

nest, they choose paths randomly.

Ants that have returned from the nest using shorter

routes will arrive more quickly to the nest and will

deposit pheromone sooner on that path. That is, the

shorter routes will be more strongly marked with

pheromone and ants in future will be more likely to use

those routes. After some time, the shorter routes

become very strongly marked with pheromone and

thus, all ants will be following the shorter routes.

Ants are capable of finding the shortest path from a
food source to the nest (Dorigo and Gambardella

1997a, Colorni et al 1993) without using visual cues.

Hence, the inspiring source of ACO is the “pheromone

trail laying and following” behavior of real ants, which

use pheromone (Holldobler and Wilson 1990, Beckers

et al 1992) as a communication medium. The

probability for choosing the next path by an ant will be

directly proportional to the amount of pheromone on

that path. Referring to Figure 4.1(a), three ants start

from a point A, where nest is available, travel

randomly to reach food at a point D and deposit some
amount of pheromone during their traveling. First ant

selects a path through point B. Second ant travels

directly to D and third ant travels through C. In Figure

4.1(b), second ant reaches the food first, since it travels

through the shortest path and other two ants are still

traveling towards the food in their paths. At the same

time, three more ants start to travel from the nest. Since

the pheromone level for all paths traveled by ants are

same, new ants follow the paths already traveled by the

previous ants. Since the ants travel at constant speed,

more number of ants travel through path A-D than
number of ants through paths A-B-D and A-C-D as

denoted in Figures 4.1(c) and 4.1(d). In turn,

pheromone is deposited on the paths according to the

number of ants traveling in the respective paths.

Figure 4.1(e) shows thickness of the line indicating

pheromone level of three paths after some time.

Eventually, all ants choose the path A-D that is having

the highest pheromone level.

(a) Ants Select Paths Randomly,

(b) Ant Selecting the Shortest Path Reaches

(c) and (d) Food First, Change of Pheromone Level

During Traveling,

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

316

Nest

Food

D

B

C

A

C

A

Nest

D

Food

(a) (b)

B

C

D

Food A
Nest Nest

D

C

Food

Figure 4.1 Pheromone Deposited in Search Space

C
D

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

317

Pheromone is deposited and evaporated in paths of ants

during the traveling of ants. Since the paths A-B-D and

A-C-D are not used by ants, the pheromone is

evaporated on these paths as denoted in Figure 4.2(a).

(a) Pheromone Starting to Evaporate,

Figure 4.2 Pheromone Evaporation in Search Space

After some time the pheromone is completely

evaporated in longer paths, which are not available

long time and all ants as denoted in Figure 4.2(b) use

only one path having the shortest distance.

Ants are also capable of adapting to changes in the

environment. For example, the shortest path found so

far is no longer feasible due to a new obstacle on the
way. Figure 4.3 shows the behavior of real ants. Ants

are moving on a straight line, which connects a food

source to the nest (Figure 4.3(a)). As stated, each

ant probabilistically prefers to follow a direction rich in

pheromone rather than a poorer one. This elementary

behavior of real ants can be used to explain how they

can find the shortest path, which reconnects a broken

line after the sudden appearance of an unexpected

obstacle interrupting the initial path (Figure 4.3(b)).

Once the obstacle has appeared, those ants, which are

just in front of the obstacle, cannot continue to follow
the pheromone trail and therefore they have to choose

between turning right or left (Figure 4.3(c)). In this

situation, half number of ants may be expected to turn

right and the other half to turn left.

The same situation can be found on the other side of

the obstacle. It is interesting to note that those ants,

which choose, by chance, shorter path around the

obstacle will more rapidly reconstitute the interrupted

pheromone trail compared to those, which choose

longer path. Hence, shorter path will receive a higher

amount of pheromone in the time unit and this will in

turn cause a higher number of ants to choose shorter

path (Figure 4.3(d)). Due to this positive feedback,

very soon all ants will choose the shorter path. The

most interesting aspect of this process is that finding

the shortest path around the obstacle seems to be an

emergent property of interaction between the obstacle
shape and distributed behavior of ants. Although all

ants move at approximately the same speed and deposit

a pheromone trail at approximately the same rate, it is a

fact that it takes longer to contour obstacles on their

longer side than on their shorter side, which makes the

pheromone trail accumulate quicker on the shorter

side. The ant’s preference for higher pheromone trail

levels makes this accumulation still quicker on the

shorter path.

Generally, the real situation is much more complicated.

The first ant to discover a food source may return to the

nest along a wandering route. The current route will be
improved over time towards some optimal route. Skaife

(1961) describes a number of experiments on ant path-

finding behavior. Some findings are relevant to this

thesis. They are:

• If a new shorter route than the current route is

found, ants will continue to use the older and

longer route for some time, because ants tend to

follow the heavily marked trail that they had

previously been using.

• Ants have difficulty with paths having many
sharp corners. The ants reach these corners and

take some time finding the way to continue. They

may follow the trail back again, instead of the trail

onwards, since both are equally well marked.

• Objects marked with pheromone also affect the

behavior of ants for some time after they are

marked. However, the effect of trail diminishes, if

the future ants will not deposit more pheromone.

• If the pheromone level between the food

source and the nest changes, the ants will try to

find a new path using any elements of the old
trails, which are also relevant at the current time.

This often greatly reduces the time taken to find a

new path.

Key features need to be emphasized as follows:

• Ants co-operate by marking the search space they

explore with pheromone.

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

318

• Ants wander at random, but are more likely to

follow routes that have been marked with

pheromone and the probability of following that

route is greater, if the pheromone level is more.

2. Fundamentals of Ant Colony

Optimization

ACO, is one of the meta-heuristic algorithms and first

member of ACO is Ant System (AS), which was

initially proposed by Dorigo et al (1991). AS uses a

population of co-operating ants also known as agents

(Colorni et al 1992). The cooperation phenomenon
among the ants is called foraging and recruiting

behavior (Dorigo et al 1996, Dorigo and Gambardella

1997b, Colorni et al 1991, Dorigo 1992). This

describes how ants explore the world in search of food

sources, then find their way back to the nest and

indicate the food source to the other ants of the colony.

The nature of ants, that collectively solve hard

problems, gave rise to artificial ant algorithms. These

algorithms were also proposed as a multi-agent

approach in order to solve hard combinatorial

optimization problems. ACO meta-heuristic introduces
main features of artificial ants (Dorigo et al 1999) and

these features have inspired different ant algorithms to

solve hard optimization problems. ACO employs

artificial ants in order to probabilistically construct a

solution by iteratively adding solution components to

partial solutions by using following information:

 (i) Heuristic information on the problem instance

being solved

 (ii) Artificial pheromone trails, which change

dynamically at run-time to reflect the search

experience of ants.

A stochastic component allows ants to construct a
variety of different solutions so as to explore much

larger number of solutions, while the use of heuristic

information, which is readily available for many

problems, can direct the ants towards the most

promising solutions. The solution constructions in

future iterations of the algorithm are influenced by

reminiscent of reinforcement learning (Sutton and

Barto 1998). Additionally, the use of a colony of ants

can give the algorithm-increased robustness and in

many ACO applications, the collective interaction of a

population of ants is needed to efficiently solve a
problem and is able to increase the robustness of the

algorithm. Application domain of ACO algorithms is

vast. In principle, ACO can be applied to any discrete

optimization problem, for which some solution

construction mechanism can be conceived. These

applications comprise two main application fields

(Dorigo and Stutzle 2003).

• NP-hard problems where ACO algorithms are

coupled with extra capabilities, such as heuristic

information and local search methods.

• Dynamic optimization problems, in which some

properties of the problem change over time

concurrently with the optimization process that
has to adapt to the problem’s dynamics.

ACO algorithm is able to use the elements of previous

solutions. It generates constructive low-level solution

by randomizing the construction in a Monte Carlo way.

Genetic algorithms (Holland 1975) suggest a Monte

Carlo combination of different solution elements,

whereas ACO defines probability distribution by

previously obtained solution components. The way, in

which the solution components and associated

probabilities are defined, is depending upon the prob-

lem-specific. A set of computational concurrent and
asynchronous agents (a colony of ants) move through

states of the problem that correspond to partial solu-

tions of the problem to be solved and incrementally

construct a solution to the problem. The ant evaluates

the solution and modifies the trail value on the

components used in its solution during the construction

phase. This trial information will direct the search of

future ants. In addition, an ACO algorithm uses two

more mechanisms:

(i) Trail evaporation

(ii) Daemon actions

An unlimited accumulation of trials over some
component is avoided by trail evaporation mechanism,

which decreases all trail values over time. Daemon

actions implement centralized actions such as the

invocation of a local optimization procedure or update

of global information, which decides whether to bias

the search process from a non-local perspective

(Dorigo and Stutzle 2003). Partial solutions are seen as

states in ACO, which iteratively constructs a solution.

Each ant moves from one state to another

corresponding to more complete partial solution. At

each move, an ant computes a set of feasible states
from its current state and moves to one of the feasible

states by using Monte Carlo probability. The heuristic

information and the trail level play major role in order

to find the probability of moving from a current state to

one of the feasible states. After constructing solutions

by all ants, trails are updated by increasing or

decreasing the level of trails corresponding to moves

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

319

that were part of "good" or "bad" solutions,

respectively.

3. Representation

A graph is employed to model a problem and the idea
is to search the best path in a graph, through which

artificial ants walk in order to find short paths.

Therefore, a key point is to define the graph and a

stochastic transition rule. Ants use the stochastic

transition rule to choose their path with respect to

constraints of the problem in order to ensure that ants

only perform consistent paths (Solnon 2000). Ants

follow a construction policy instead of arbitrary

movement on the graph during the construction of a

solution. Heuristic information may also use

scheduling costs to make probabilistic decisions on

how to move on the graph. More precisely, each ant of
the colony has the following properties:

• It exploits the graph in order to search feasible

schedules with minimum cost

• It uses a memory in order to store information

about the path it followed so far.

• It can be assigned to start an operation and one or

more termination conditions.

• It tries to move to any states in its feasible set of

states during solution construction by applying a

state transition rule, which is a function of locally

available pheromone trails τ and heuristic values

η, the ant’s private memory storing its past history

and the problem constraints.

• It stops the construction procedure, if at least one

of the termination conditions is satisfied.

• It can update the pheromone trail, associated with

a state (or with the corresponding connection), at

the time of adding that state to current partial

solution. This is called online step-by-step

pheromone update or local pheromone update.

• It can retrace the same path backward and update

the pheromone trails of the used components or

connections after construction of a solution. This

is called online delayed pheromone update or
global pheromone update.

4. Heuristic Information

Heuristic information plays a major role to guide the

ants during solution construction phase. It is also

important, because it gives the possibility of exploiting

problem specific knowledge. This information can be

available a priori (static case) or at run-time (dynamic
case). In static problems, the heuristic information is

computed once at initialization time and it is

considered same throughout the period of algorithm’s

run. On the other hand, in dynamic case, the heuristic

information depends on the partial solution constructed

so far and has to be computed at each step of an ant’s

movement. This causes a higher computational cost

that may be compensated by higher accurateness of

computed heuristic values. Some of the common

heuristic information is given as follows:

• Earliest Due Date (EDD) – Sequence of due dates

are used to rank unscheduled jobs. Highest rank

value is given to jobs with earliest due dates.

Problems without release and setup times prefer

this type of heuristic information, which has the

objective of minimizing completion time.

• Modified Due Date (MDD) – If due dates are

past, sequence of due dates or completion time

are used to rank unscheduled jobs. Jobs with the

earliest due dates or completion time are given

the highest rank. This type of heuristic
information is used specifically for tardiness

problems.

• Minimum Slack Time (MST) – The possible

delay until the latest starting time is used to rank

unscheduled jobs. Job with the smallest delay is

given the highest rank.

• Earliest Completion Time (ECT) – Sequence of

completion time is used to rank unscheduled jobs

and the highest rank is given to a job with the

earliest completion times. ECT is a dynamic

heuristic, because it depends on the status of

current schedule.

• Shortest Setup Time (SST) – Sequences of setup

time are used to rank unscheduled jobs. Jobs with

the shortest setup time are given the highest rank.

This heuristic information is appropriate for

problems without release times and has the

objective of minimizing the completion time.

• Shortest Processing Time (SPT) – Sequences of

processing time are used to rank unscheduled

jobs and the highest rank is given to jobs with the

shortest processing time. The processing time

may be considered for an individual operation in
a job or for a whole job.

• Job time/Operation time – Unscheduled jobs are

ranked by the combination of total job time and

an individual operation to be selected during the

construction phase. An operation with the lowest

processing time belonging to the highest job time

is more desired.

• Job remaining time/Operation time – Here an

operation with the lowest processing time

belonging to the highest remaining job time is

more desired.

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

320

There has been other ways of computing heuristic

information (Dorigo and Stutzle 2003), viz. lower

bound on solution cost of the completion of a partial

schedule is used to compute the heuristic information.

This method allows excluding certain choices, which

lead to schedules that are worse than the best solution

found so far. Combination of knowledge on the

calculation of lower bound from mathematical

programming with ACO paradigm is permitted in this
case, but the computations of upper bounds are time

consuming, because they have to be calculated in

single step by each ant.

5. Ant System

Ant System (AS) is a first member of algorithms

inspired by behavior of real ants and was proposed by

Dorigo et al (1991). AS is being the prototype of a
number of ant algorithms, which collectively

implement ACO paradigm. As mentioned in section

4.1.3, a graph can be employed to represent the ant

algorithm and in the graph, ants move along each

branch from one node to another node and so construct

paths representing solutions. Starting from an initial

node, each ant chooses the next node in its path

according to a state transition rule by using the

probability of transition. Let S be a set of nodes at a

decision point i. Transition probability for choosing the

edge from i to node r by an ant at a time t is calculated
as in Equation (4.1).

[(,)] .[()]
if

[(,)] .[()](,)

0 otherwise

t
j S

i r r
r S

i j jPi r

α β

α β

τ η

τ η
∈

∈

=

∑

 (4.1)

τ(i, j) is the quantity of pheromone on the edge

between node i and node j. η(j) is heuristic information

on the node j. α and β tune relative importance in
probability of the amount of the pheromone and the

heuristic information respectively. In case of JSSP, if

the heuristic information refers to inverse of the

operation time of the node j (i.e. η(j) = 1/pij), the
artificial ants move to a node that has a higher amount

of pheromone and lesser value of operation time and

will have higher probability to be scheduled in the

partial solution. After each iteration t of the algorithm,

That is, when all ants have completed a solution, trails

are updated by means of Equation (4.2).

 τ(i, j)t = (1- ρ).τ(i, j)t-1 + ∆τ(i, j)

 (4.2)

where ρ (0 < ρ < 1), is a user-defined parameter called

evaporation coefficient, and ∆τ(i, j) represents sum of

the contributions of all ants that used move (i, j) to

construct their solution and is calculated as given in

Equation (4.3). ∆τ(i, j) =

1k

t

=
∑ ∆τ(i, j)k

 (4.3)

where t is the total number of ants, ∆τ(i, j)k is the

amount of trail laid on edge (i, j) by k
th ant and is

computed as in Equation (4.4),.

ifant usesarc(,) in its tour
(,)

0 otherwise

k

k

Q
k i j

Li jτ

∆ =

(4.4)

where Q is a constant parameter selected according to
size of the problem and Lk is the length of the path

traveled by k
th ant. Hence, contributions of ants are

proportional to the quality of solutions generated by

corresponding ants and higher trail contributions are

added to moves made by the ants giving better

solutions. AS simply iterates a loop, where all ants

construct in parallel their solutions, thereafter updating

the trail levels. Performance of the algorithm depends

on correct tuning of parameters like α, β, ρ, initial trail
level τ0, number of ants, and the constant Q used for

generating high quality solutions with low cost.

6. Ant Colony System

AS was initially applied to solve traveling salesman

problem. However, it was not able to compete against

the state-of-the art algorithms in the field. Authors of

AS, on the other hand, have the merit to introduce

ACO algorithms and show the potentiality of using

artificial pheromone and artificial ants to search of

better solutions for complex optimization problems.

Then research on AS was carried out in order to
achieve the following goals:

• To improve the performance of the algorithm.

• To investigate and better explain the behavior of

the algorithm.

Gambardella and Dorigo (1995) proposed an extension

of AS called Ant-Q algorithm, which integrates several

ideas from Q-learning (Watkins and Dayan 1992).

They also proposed Ant Colony System (ACS)

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

321

(Gambardella and Dorigo 1996, Dorigo and

Gambardella 1997b), which is a simplified version of

Ant-Q. ACS maintains the same level of performance

as Ant-Q algorithm in terms of the complexity and the

computational results. The following three aspects

make ACS to differ from AS: (i) State transition, (ii)

Pheromone updating and (iii) Hybridization and

performance improvement.

State Transition Rule

Ants use state transition rule to select the next state that

is to be added to partial solution. ACS employs a

transition rule called pseudo-random-proportional,

which is a balance between pseudo-random state

choice rule used in Q-learning (Watkins and Dayan

1992) and random-proportional action choice rule used

in AS. In ACS, an ant selects a state using the biased

random choice as in AS during some of the time,

whereas the best state is selected during the rest of the

time based on the heuristic information and the

pheromone level. Pseudo-random-proportional rule

selects the best state with a probability q0 and selects a
random state with a probability 1-q0 where q0 is a

constant given as input ranging from 0 to 1. However,

all the time, random-proportional rule used in AS

selects the next state randomly with a probability

distribution, which depends on the heuristic

information and the pheromone level. Pseudo-random-

proportional state transition rule in ACS provides a

way to compromise between exploration of new states

and exploitation of the heuristic information and the

pheromone level. Hence, pseudo-random-proportional

rule uses a state transition rule given in Equation (4.5).

0{[(,)] .[()] } if

otherwise

j S

Max i j j q q
s

r

α βτ η
∈

 ≤
=

 (4.5)

where q ∈ [0,1] is a uniform random number and r is a
component, which is chosen randomly according to the

probability distribution defined by Equation (4.1). The

random number q is selected each time an ant moves
from a state i to another state j. If the value of q is less

than or equal to the value of q0, the ant will select the

best state. Otherwise, the ant will select a biased

random state.

 Pheromone updating

Once all ants have constructed solutions, AS updates

the pheromone trail using all solutions generated by the

colony of ants. An amount of pheromone on each edge

belonging to one of the computed solutions is modified

by an amount, which is proportional to its solution

value. AS then evaporates the pheromone of the entire

system after construction of solutions by all ants and

the process of solution construction and pheromone

update are iterated. But ACS updates pheromone value

for the edges belonging to the best solution computed

since the beginning of the computation and this
technique is called global pheromone update. Global

pheromone updating technique updates the amount of

pheromone on edge (i, j) belonging to the shortest path at

a time t by using the pheromone on that edge at the time

t-1 as given in Equation (4.6).

1

1

(1). (,) / if (,) Global best path
(,)

(,) otherwise

t b

t

t

i j Q L i j
i j

i j

ρ τ
τ

τ
−

−

− + ∈
=

(4.6)

where ρ is an evaporation co-efficient, Q is a constant

whose value is chosen depending upon the problem

size and Lb is length of the best path. Amount of

pheromone deposited on each edge is inversely

proportional to length of the path so as to enable

shorter path to get higher amount of pheromone

deposited on the edges. Global pheromone updating
increases the attractiveness of promising solutions and

tries to avoid long time of convergence by directly

concentrating search of the best solution found up to

the current iteration. ACS also employs a technique

called local pheromone updating, which is intended to

avoid a strong edge being chosen by all ants. While

constructing its path, the local pheromone updating

technique modifies amount of pheromone on the

passed edge (i, j) at a time t as given in Equation

(4.7).

 τ(i, j)t = (1- ρ).τ(i, j)t-1 + ρ.τ0 (4.7)

where τ0 is the initial amount of pheromone deposited

on each edge and can be defined as (n.Lnn)
-1

(Gambardella and Dorigo 1996), where Lnn is length

of the path produced by SPT rule. Local pheromone

updating modifies pheromone trail on the edges in each

time the ant travels through these edges. Local

pheromone updating also represents evaporation of the

pheromone in natural ants and forgets previous good

paths in favor of the new best path.

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

322

Structure of basic ant colony optimization

algorithm

General structure of ACO algorithm is as follows.

Initialization

 Initialize parameters like α, β, ρ, q0, and Q.

 Store a maximum value to the solution.

 Calculate initial pheromone value

Construction and Improvement

 While termination condition not satisfied do

Construction

For each ant k do

Choose a state i with a probability and

add i to partial solution

 Update pheromone trial for the current move

 End For

Update pheromone trail for the best ant’s path

Improve the solution

End While

Output

 Print the best solution found.

he algorithm initializes various parameters and assigns

a maximum value for the current solution. It also
calculates initial pheromone value during the

initialization phase. In the construction phase, the

algorithm finds a solution and updates the pheromone

trial, which is used to improve the solution. The

algorithm repeats the construction phase until

termination condition is met and finally prints the best

solution found.

Performance improvement by hybridization

ACS incorporates an advanced data structure known as

candidate list (Reinelt 1994) in order to solve big

symmetric and asymmetric traveling salesman

problems (TSP/ATSP) (Gambardella and Dorigo 1996,
Dorigo and Gambardella 1997b). A static data structure

is used to implement the candidate list, which has

length l and contains l preferred cities to be visited

from a given city i. In ACS, the state transition rule is

used to select a city in the candidate list. If the

candidate list is empty (i.e. none of the cities are

available in the candidate list), the ant chooses the

nearest available city only using the heuristic value ηij.

Performance of ACS for TSP/ATSP has been

improved by incorporating local optimization heuristic
and this technique is known as hybridization, in which

a solution generated by the ant is taken to its local

minimum by the application of a local optimization

heuristic. ACS considers new optimized solutions as

final solutions produced in the current iteration by the

ants and uses these optimized solutions to globally

update the pheromone trails. This ACS

implementation, which has the combination of a new

pheromone management policy, a new state transition

strategy and local search procedures, was finally

competitive with state-of-the-art algorithm for solving

TSP/ATSP problems. This kind of implementation
opened a new frontier for ACO based algorithm. ACO

algorithms were able to break several optimization

records, including those for job shop scheduling and

routing problems by employing the approach that

combines a constructive phase driven by the

pheromone and local search phase, which optimizes

the constructed solution.

Max-Min Ant System

Relatively high pheromone levels on certain solution

components may quickly lead to those components

being used and causes the exclusion of all other
solution components. It results in premature

convergence to a local optimal solution. Due to

pheromone saturation of existing longer routes, a

colony is unable to exploit new and efficient solution

components. This phenomenon was especially

noticeable on large problem instances and motivates

the development of Max-Min Ant System (MMAS)

(Stutzle and Hoos 1996, Stutzle and Hoos 1998,

Stutzle and Hoos 2000).

Distinguishing characteristic of MMAS is that it

maintains pheromone values within the range [τmin,

τmax] at all time (Blum and Sampels 2004). Pheromone

levels are initially set to τmax to encourage exploration
early in the search process (Stutzle and Hoos 2000). It

was found that the best solutions were found at the

time of stagnation and these solutions are used to guide

the selection of values for τmin and τmax. This guidance

sets the appropriate bounds, which are independent of
the problem specific. MMAS was improved by using a

static candidate sets and the addition of a local search

IJCAT - International Journal of Computing and Technology, Volume 2, Issue 8, August 2015
ISSN : 2348 - 6090
www.IJCAT.org

323

heuristics. Diversification mechanism is also used in

MMAS to force the discovery of new solutions that are

far from the global-best solution. The diversification

mechanism reinitializes all pheromone values to τmax, if
small change is detected on solutions generated over

time. MMAS has made a significant success across a

range of problems.

7. Conclusion

This chapter has provided meta-heuristic approach

called ant colony optimization. Behavior of ants to find

shortest path has been given. Different ant algorithms

have been discussed together with local and global

pheromone updating. The key to the application of

ACO to a new problem is to identify an appropriate

representation for the problem (to be represented as a

graph searched by many artificial ants), and an

appropriate heuristic that defines the distance between

any two nodes of the graph. Then the probabilistic

interaction among the artificial ants mediated by the

pheromone trail deposited on the graph edges will
generate good, and often optimal, problem solutions.

Other problems solved by ACO algorithms include:

graph partitioning; subset problems including knapsack

problems; Quadratic assignment; graph colouring;

vehicle routing; networking routing and many more.

References

[1] M. Dorigo & L. M. Gambardella, 1997. "Ant

Colony System: A Cooperative Learning Approach
to the Traveling Salesman Problem". IEEE
Transactions on Evolutionary Computation, 1 (1):
53–66.

[2] M. DorigoT. Stützle,“The Ant Colony optima-

zation Metaheuristic: Algorithms, Applications, &
Advances”, Handbook of Metaheuristics, 2002

[3] M. Dorigo et L.M. Gambardella, Ant Colony

System : A Cooperative Learning Approach to the

Traveling Salesman Problem, IEEE Transactions
on Evolutionary Computation, volume 1, numéro
1, pages 53-66, 1997.

[4] A. Colorni, M. Dorigo et V. Maniezzo, Distributed

Optimization by Ant Colonies, actes de la première
conférence européenne sur la vie artificielle, Paris,
France, Elsevier Publishing, 134-142, 1991.

[5] M. Dorigo and T. Stützle. Ant Colony

Optimization. MIT Press, Cambridge, MA, 2004.

