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Abstract  -  Job shop scheduling using ACO(Ant Colony 

Optimization)  approach. Different heuristic information 

is discussed and three different ant algorithms are 

presented. State transition rule and pheromone updating 

methods are given. The concept of the new strategy is 

highlighted and template for ACO approach is presented. 

 

Keywords – Job Shop Scheduling. 

1. Ant Colony Optimization  
 

1.1 Behavior of Real Ants 
 
Ants have a limited awareness of their surroundings. 

They are not able to see a food source that is available 

in a long way away and also are not having the 

knowledge to plan a correct route to reach there and 

come back. The ants work collectively to search the 

area around their nest. They need to communicate in 

some way so as to work collectively and this 

communication is carried out by marking the ground 

with pheromone. The nature of the ants varies 

considerably. Some types of ants are capable of finding 

the best route between a food source and the nest (Li 

and Gong 2003). A simplified theory of how ants find 
the best path to a food source is given in this thesis 

and key concepts relevant to ant algorithms are 

highlighted. All ants wander back and forth between the 

food source and the nest after finding the food source.  

 

Initially, they take a route by a random wander 

between the two sites. They also deposit pheromone on 

the ground during the wandering. This pheromone will 

affect paths of future ants, because the ants have a 

tendency to follow paths marked with pheromone. If the 

pheromone level on a path is more, the more likely, an 
ant is to wander in that path. When ants first leave the 

nest, they choose paths randomly.  

 

Ants that have returned from the nest using shorter 

routes will arrive more quickly to the nest and will 

deposit pheromone sooner on that path. That is, the 

shorter routes will be more strongly marked with  

 

 

 

 

pheromone and ants in future will be more likely to use 

those routes. After some time, the shorter routes 

become very strongly marked with pheromone and 

thus, all ants will be following the shorter routes.  

 

Ants are capable of finding the shortest path from a 
food source to the nest (Dorigo and Gambardella 

1997a, Colorni et al 1993) without using visual cues. 

Hence, the inspiring source of ACO is the “pheromone 

trail laying and following” behavior of real ants, which 

use pheromone (Holldobler and Wilson 1990, Beckers 

et al 1992) as a communication medium. The 

probability for choosing the next path by an ant will be 

directly proportional to the amount of pheromone on 

that path. Referring to Figure 4.1(a), three ants start 

from a point A, where nest is available, travel 

randomly to reach food at a point D and deposit some 
amount of pheromone during their traveling. First ant 

selects a path through point B. Second ant travels 

directly to D and third ant travels through C. In Figure 

4.1(b), second ant reaches the food first, since it travels 

through the shortest path and other two ants are still 

traveling towards the food in their paths. At the same 

time, three more ants start to travel from the nest. Since 

the pheromone level for all paths traveled by ants are 

same, new ants follow the paths already traveled by the 

previous ants. Since the ants travel at constant speed, 

more number of ants travel through path A-D than 
number of ants through paths A-B-D and A-C-D as 

denoted in Figures 4.1(c) and 4.1(d).  In turn, 

pheromone is deposited on the paths according to the 

number of ants traveling in the respective paths.  

Figure 4.1(e) shows thickness of the line indicating 

pheromone level of three paths after some time. 

Eventually, all ants choose the path A-D that is having 

the highest pheromone level. 

 

(a) Ants Select Paths     Randomly,  

(b) Ant Selecting the Shortest Path Reaches  

(c) and (d) Food First, Change of Pheromone Level 

During Traveling, 
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Pheromone is deposited and evaporated in paths of ants 

during the traveling of ants. Since the paths A-B-D and 

A-C-D are not used by ants, the pheromone is 

evaporated on these paths as denoted in Figure 4.2(a).  

 
(a) Pheromone Starting to Evaporate,  

 

Figure 4.2   Pheromone Evaporation in Search Space 

 

After some time the pheromone is completely 

evaporated in longer paths, which are not available 

long time and all ants as denoted in Figure 4.2(b) use 

only one path having the shortest distance. 

Ants are also capable of adapting to changes in the 

environment. For example, the shortest path found so 

far is no longer feasible due to a new obstacle on the 
way. Figure 4.3 shows the behavior of real ants. Ants 

are moving on a straight line, which connects a food 

source to the nest        (Figure 4.3(a)). As stated, each 

ant probabilistically prefers to follow a direction rich in 

pheromone rather than a poorer one. This elementary 

behavior of real ants can be used to explain how they 

can find the shortest path, which reconnects a broken 

line after the sudden appearance of an unexpected 

obstacle interrupting the initial path (Figure 4.3(b)). 

Once the obstacle has appeared, those ants, which are 

just in front of the obstacle, cannot continue to follow 
the pheromone trail and therefore they have to choose 

between turning right or left (Figure 4.3(c)). In this 

situation, half number of ants may be expected to turn 

right and the other half to turn left. 

The same situation can be found on the other side of 

the obstacle. It is interesting to note that those ants, 

which choose, by chance, shorter path around the 

obstacle will more rapidly reconstitute the interrupted 

pheromone trail compared to those, which choose 

longer path. Hence, shorter path will receive a higher 

amount of pheromone in the time unit and this will in 

turn cause a higher number of ants to choose shorter 

path (Figure 4.3(d)). Due to this positive feedback, 

very soon all ants will choose the shorter path. The 

most interesting aspect of this process is that finding 

the shortest path around the obstacle seems to be an 

emergent property of interaction between the obstacle 
shape and distributed behavior of ants. Although all 

ants move at approximately the same speed and deposit 

a pheromone trail at approximately the same rate, it is a 

fact that it takes longer to contour obstacles on their 

longer side than on their shorter side, which makes the 

pheromone trail accumulate quicker on the shorter 

side. The ant’s preference for higher pheromone trail 

levels makes this accumulation still quicker on the 

shorter path. 

Generally, the real situation is much more complicated. 

The first ant to discover a food source may return to the 

nest along a wandering route. The current route will be 
improved over time towards some optimal route. Skaife 

(1961) describes a number of experiments on ant path-

finding behavior. Some findings are relevant to this 

thesis. They are: 

 

• If a new shorter route than the current route is 

found, ants will continue to use the older and 

longer route for some time, because ants tend to 

follow the heavily marked trail that they had 

previously been using. 

• Ants have difficulty with paths having many 
sharp corners. The ants reach these corners and 

take some time finding the way to continue. They 

may follow the trail back again, instead of the trail 

onwards, since both are equally well marked. 

• Objects marked with pheromone also affect the 

behavior of ants for some time after they are 

marked. However, the effect of trail diminishes, if 

the future ants will not deposit more pheromone. 

• If the pheromone level between the food 

source and the nest changes, the ants will try to 

find a new path using any elements of the old 
trails, which are also relevant at the current time. 

This often greatly reduces the time taken to find a 

new path. 

  

Key features need to be emphasized as follows: 

• Ants co-operate by marking the search space they 

explore with pheromone. 
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• Ants wander at random, but are more likely to 

follow routes that have been marked with 

pheromone and the probability of following that 

route is greater, if the pheromone level is more. 

2. Fundamentals of Ant Colony 

Optimization 

ACO, is one of the meta-heuristic algorithms and first 

member of ACO is Ant System (AS), which was 

initially proposed by Dorigo et al (1991). AS uses a 

population of co-operating ants also known as agents 

(Colorni et al 1992). The cooperation phenomenon 
among the ants is called foraging and recruiting 

behavior (Dorigo et al 1996, Dorigo and Gambardella 

1997b, Colorni et al 1991, Dorigo 1992). This 

describes how ants explore the world in search of food 

sources, then find their way back to the nest and 

indicate the food source to the other ants of the colony. 

The nature of ants, that collectively solve hard 

problems, gave rise to artificial ant algorithms. These 

algorithms were also proposed as a multi-agent 

approach in order to solve hard combinatorial 

optimization problems. ACO meta-heuristic introduces 
main features of artificial ants (Dorigo et al 1999) and 

these features have inspired different ant algorithms to 

solve hard optimization problems. ACO employs 

artificial ants in order to probabilistically construct a 

solution by iteratively adding solution components to 

partial solutions by using following information: 

 (i) Heuristic information on the problem instance 

being solved 

 (ii) Artificial pheromone trails, which change 

dynamically at run-time to reflect the search 

experience of ants. 

A stochastic component allows ants to construct a 
variety of different solutions so as to explore much 

larger number of solutions, while the use of heuristic 

information, which is readily available for many 

problems, can direct the ants towards the most 

promising solutions. The solution constructions in 

future iterations of the algorithm are influenced by 

reminiscent of reinforcement learning (Sutton and 

Barto 1998). Additionally, the use of a colony of ants 

can give the algorithm-increased robustness and in 

many ACO applications, the collective interaction of a 

population of ants is needed to efficiently solve a 
problem and is able to increase the robustness of the 

algorithm. Application domain of ACO algorithms is 

vast. In principle, ACO can be applied to any discrete 

optimization problem, for which some solution 

construction mechanism can be conceived. These 

applications comprise two main application fields 

(Dorigo and Stutzle 2003). 

 

• NP-hard problems where ACO algorithms are 

coupled with extra capabilities, such as heuristic 

information and local search methods. 

• Dynamic optimization problems, in which some 

properties of the problem change over time 

concurrently with the optimization process that 
has to adapt to the problem’s dynamics. 

ACO algorithm is able to use the elements of previous 

solutions. It generates constructive low-level solution 

by randomizing the construction in a Monte Carlo way. 

Genetic algorithms (Holland 1975) suggest a Monte 

Carlo combination of different solution elements, 

whereas ACO defines probability distribution by 

previously obtained solution components. The way, in 

which the solution components and associated 

probabilities are defined, is depending upon the prob-

lem-specific. A set of computational concurrent and 
asynchronous agents (a colony of ants) move through 

states of the problem that correspond to partial solu-

tions of the problem to be solved and incrementally 

construct a solution to the problem. The ant evaluates 

the solution and modifies the trail value on the 

components used in its solution during the construction 

phase. This trial information will direct the search of 

future ants. In addition, an ACO algorithm uses two 

more mechanisms: 

(i) Trail evaporation 

(ii) Daemon actions 

An unlimited accumulation of trials over some 
component is avoided by trail evaporation mechanism, 

which decreases all trail values over time. Daemon 

actions implement centralized actions such as the 

invocation of a local optimization procedure or update 

of global information, which decides whether to bias 

the search process from a non-local perspective 

(Dorigo and Stutzle 2003). Partial solutions are seen as 

states in ACO, which iteratively constructs a solution. 

Each ant moves from one state to another 

corresponding to more complete partial solution. At 

each move, an ant computes a set of feasible states 
from its current state and moves to one of the feasible 

states by using Monte Carlo probability. The heuristic 

information and the trail level play major role in order 

to find the probability of moving from a current state to 

one of the feasible states. After constructing solutions 

by all ants, trails are updated by increasing or 

decreasing the level of trails corresponding to moves 
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that were part of "good" or "bad" solutions, 

respectively. 

3. Representation 

A graph is employed to model a problem and the idea 
is to search the best path in a graph, through which 

artificial ants walk in order to find short paths. 

Therefore, a key point is to define the graph and a 

stochastic transition rule. Ants use the stochastic 

transition rule to choose their path with respect to 

constraints of the problem in order to ensure that ants 

only perform consistent paths (Solnon 2000). Ants 

follow a construction policy instead of arbitrary 

movement on the graph during the construction of a 

solution. Heuristic information may also use 

scheduling costs to make probabilistic decisions on 

how to move on the graph. More precisely, each ant of 
the colony has the following properties: 

 

• It exploits the graph in order to search feasible 

schedules with minimum cost 

• It uses a memory in order to store information 

about the path it followed so far. 

• It can be assigned to start an operation and one or 

more termination conditions. 

• It tries to move to any states in its feasible set of 

states during solution construction by applying a 

state transition rule, which is a function of locally 

available pheromone trails τ and heuristic values 

η, the ant’s private memory storing its past history 

and the problem constraints. 

• It stops the construction procedure, if at least one 

of the termination conditions is satisfied. 

• It can update the pheromone trail, associated with 

a state (or with the corresponding connection), at 

the time of adding that state to current partial 

solution. This is called online step-by-step 

pheromone update or local pheromone update. 

• It can retrace the same path backward and update 

the pheromone trails of the used components or 

connections after construction of a solution. This 

is called online delayed pheromone update or 
global pheromone update. 

4. Heuristic Information 

Heuristic information plays a major role to guide the 

ants during solution construction phase. It is also 

important, because it gives the possibility of exploiting 

problem specific knowledge. This information can be 

available a priori (static case) or at run-time (dynamic 
case). In static problems, the heuristic information is 

computed once at initialization time and it is 

considered same throughout the period of algorithm’s 

run. On the other hand, in dynamic case, the heuristic 

information depends on the partial solution constructed 

so far and has to be computed at each step of an ant’s 

movement. This causes a higher computational cost 

that may be compensated by higher accurateness of 

computed heuristic values. Some of the common 

heuristic information is given as follows: 

 

• Earliest Due Date (EDD) – Sequence of due dates 

are used to rank unscheduled jobs. Highest rank 

value is given to jobs with earliest due dates. 

Problems without release and setup times prefer 

this type of heuristic information, which has the 

objective of minimizing completion time. 

• Modified Due Date (MDD) – If due dates are 

past, sequence of due dates or completion time 

are used to rank unscheduled jobs. Jobs with the 

earliest due dates or completion time are given 

the highest rank. This type of heuristic 
information is used specifically for tardiness 

problems. 

• Minimum Slack Time (MST) – The possible 

delay until the latest starting time is used to rank 

unscheduled jobs. Job with the smallest delay is 

given the highest rank. 

• Earliest Completion Time (ECT) – Sequence of 

completion time is used to rank unscheduled jobs 

and the highest rank is given to a job with the 

earliest completion times. ECT is a dynamic 

heuristic, because it depends on the status of 

current schedule.  

• Shortest Setup Time (SST) – Sequences of setup 

time are used to rank unscheduled jobs. Jobs with 

the shortest setup time are given the highest rank. 

This heuristic information is appropriate for 

problems without release times and has the 

objective of minimizing the completion time. 

• Shortest Processing Time (SPT) – Sequences of 

processing time are used to rank unscheduled 

jobs and the highest rank is given to jobs with the 

shortest processing time. The processing time 

may be considered for an individual operation in 
a job or for a whole job. 

• Job time/Operation time – Unscheduled jobs are 

ranked by the combination of total job time and 

an individual operation to be selected during the 

construction phase. An operation with the lowest 

processing time belonging to the highest job time 

is more desired. 

• Job remaining time/Operation time – Here an 

operation with the lowest processing time 

belonging to the highest remaining job time is 

more desired. 
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There has been other ways of computing heuristic 

information (Dorigo and Stutzle 2003), viz. lower 

bound on solution cost of the completion of a partial 

schedule is used to compute the heuristic information. 

This method allows excluding certain choices, which 

lead to schedules that are worse than the best solution 

found so far. Combination of knowledge on the 

calculation of lower bound from mathematical 

programming with ACO paradigm is permitted in this 
case, but the computations of upper bounds are time 

consuming, because they have to be calculated in 

single step by each ant. 

5. Ant System 

Ant System (AS) is a first member of algorithms 

inspired by behavior of real ants and was proposed by 

Dorigo et al (1991). AS is being the prototype of a 
number of ant algorithms, which collectively 

implement ACO paradigm. As mentioned in section 

4.1.3, a graph can be employed to represent the ant 

algorithm and in the graph, ants move along each 

branch from one node to another node and so construct 

paths representing solutions.  Starting from an initial 

node, each ant chooses the next node in its path 

according to a state transition rule by using the 

probability of transition.  Let S be a set of nodes at a 

decision point i. Transition probability for choosing the 

edge from i to node r by an ant at a time t is calculated 
as in Equation (4.1). 

[ ( , )] .[ ( )]
if

[ ( , )] .[ ( )]( , )

0 otherwise

t
j S

i r r
r S

i j jPi r

α β

α β

τ η

τ η
∈


∈

= 



∑  

         (4.1) 

τ(i, j)  is the quantity of pheromone on the edge 

between node i and node j. η(j) is heuristic information 

on the node j. α and β tune relative importance in 
probability of the amount of the pheromone and the 

heuristic information respectively. In case of JSSP, if 

the heuristic information refers to inverse of the 

operation time of the node j (i.e. η(j) = 1/pij), the 
artificial ants move to a node that has a higher amount 

of pheromone and lesser value of operation time and 

will have higher probability to be scheduled in the 

partial solution. After each iteration t of the algorithm, 

That is, when all ants have completed a solution, trails 

are updated by means of Equation (4.2). 

 τ(i, j)t  = (1- ρ ).τ(i, j)t-1 + ∆τ(i, j)                                      

          (4.2) 

where ρ (0 < ρ < 1), is a user-defined parameter called 

evaporation coefficient, and ∆τ(i, j) represents sum of 

the contributions of all ants that used move (i, j) to 

construct their solution and is calculated as given in  

Equation (4.3). ∆τ(i, j)   = 

1k

t

=
∑ ∆τ(i, j)k   

                        (4.3) 

where t is the total number of ants, ∆τ(i, j)k is the 

amount of trail laid on edge    (i, j) by k
th ant and is 

computed as in Equation (4.4),. 

ifant usesarc( , ) in its tour
( , )

0 otherwise

k

k

Q
k i j

Li jτ




∆ = 



         

(4.4) 

where Q is a constant parameter selected according to 
size of the problem and Lk is the length of the path 

traveled by k
th ant. Hence, contributions of ants are 

proportional to the quality of solutions generated by 

corresponding ants and higher trail contributions are 

added to moves made by the ants giving better 

solutions. AS simply iterates a loop, where all ants 

construct in parallel their solutions, thereafter updating 

the trail levels. Performance of the algorithm depends 

on correct tuning of parameters like α, β, ρ,  initial trail 
level τ0, number of ants, and the constant Q used for 

generating high quality solutions with low cost. 

6. Ant Colony System 

AS was initially applied to solve traveling salesman 

problem. However, it was not able to compete against 

the state-of-the art algorithms in the field. Authors of 

AS, on the other hand, have the merit to introduce 

ACO algorithms and show the potentiality of using 

artificial pheromone and artificial ants to search of 

better solutions for complex optimization problems. 

Then research on AS was carried out in order to 
achieve the following goals: 

 

• To improve the performance of the algorithm. 

• To investigate and better explain the behavior of 

the algorithm. 

Gambardella and Dorigo (1995) proposed an extension 

of AS called Ant-Q algorithm, which integrates several 

ideas from Q-learning (Watkins and Dayan 1992). 

They also proposed Ant Colony System (ACS) 
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(Gambardella and Dorigo 1996, Dorigo and 

Gambardella 1997b), which is a simplified version of 

Ant-Q. ACS maintains the same level of performance 

as Ant-Q algorithm in terms of the complexity and the 

computational results. The following three aspects 

make ACS to differ from AS: (i) State transition, (ii) 

Pheromone updating and (iii) Hybridization and 

performance improvement. 

State Transition Rule 

Ants use state transition rule to select the next state that 

is to be added to partial solution. ACS employs a 

transition rule called pseudo-random-proportional, 

which is a balance between pseudo-random state 

choice rule used in Q-learning (Watkins and Dayan 

1992) and random-proportional action choice rule used 

in AS. In ACS, an ant selects a state using the biased 

random choice as in AS during some of the time, 

whereas the best state is selected during the rest of the 

time based on the heuristic information and the 

pheromone level. Pseudo-random-proportional rule 

selects the best state with a probability q0 and selects a 
random state with a probability 1-q0 where q0 is a 

constant given as input ranging from 0 to 1. However, 

all the time, random-proportional rule used in AS 

selects the next state randomly with a probability 

distribution, which depends on the heuristic 

information and the pheromone level. Pseudo-random-

proportional state transition rule in ACS provides a 

way to compromise between exploration of new states 

and exploitation of the heuristic information and the 

pheromone level. Hence, pseudo-random-proportional 

rule uses a state transition rule given in Equation (4.5). 

 

0{[ ( , )] .[ ( )] } if

otherwise

j S

Max i j j q q
s

r

α βτ η
∈

 ≤
= 


 

         (4.5) 

where q ∈ [0,1] is a uniform random number and r is a 
component, which is chosen randomly according to the 

probability distribution defined by Equation  (4.1). The 

random number q is selected each time an ant moves 
from a state i to another state j. If the value of q is less 

than or equal to the value of q0, the ant will select the 

best state. Otherwise, the ant will select a biased 

random state. 

 Pheromone updating 

Once all ants have constructed solutions, AS updates 

the pheromone trail using all solutions generated by the 

colony of ants. An amount of pheromone on each edge 

belonging to one of the computed solutions is modified 

by an amount, which is proportional to its solution 

value. AS then evaporates the pheromone of the entire 

system after construction of solutions by all ants and 

the process of solution construction and pheromone 

update are iterated. But ACS updates pheromone value 

for the edges belonging to the best solution computed 

since the beginning of the computation and this 
technique is called global pheromone update. Global 

pheromone updating technique updates the amount of 

pheromone on edge (i, j) belonging to the shortest path at 

a time t by using the pheromone on that edge at the time 

t-1 as given in Equation (4.6). 

1

1

(1 ). ( , ) / if ( , ) Global best path
( , )

( , ) otherwise

t b

t

t

i j Q L i j
i j

i j

ρ τ
τ

τ
−

−

− + ∈
= 


                                     

(4.6) 

 

where ρ is an evaporation co-efficient, Q is a constant 

whose value is chosen depending upon the problem 

size and Lb is length of the best path. Amount of 

pheromone deposited on each edge is inversely 

proportional to length of the path so as to enable 

shorter path to get higher amount of pheromone 

deposited on the edges. Global pheromone updating 
increases the attractiveness of promising solutions and 

tries to avoid long time of convergence by directly 

concentrating search of the best solution found up to 

the current iteration. ACS also employs a technique 

called local pheromone updating, which is intended to 

avoid a strong edge being chosen by all ants. While 

constructing its path, the local pheromone updating 

technique modifies amount of pheromone on the 

passed edge (i, j) at a time t as given in   Equation 

(4.7). 

 

 τ(i, j)t  = (1- ρ ).τ(i, j)t-1 + ρ.τ0                     (4.7) 

 

where τ0 is the initial amount of pheromone deposited 

on each edge and can be defined as (n.Lnn)
-1 

(Gambardella and Dorigo 1996), where Lnn is length 

of the path produced by SPT rule. Local pheromone 

updating modifies pheromone trail on the edges in each 

time the ant travels through these edges. Local 

pheromone updating also represents evaporation of the 

pheromone in natural ants and forgets previous good 

paths in favor of the new best path. 
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Structure of basic ant colony optimization 

algorithm  

General structure of ACO algorithm is as follows. 

Initialization 

 Initialize parameters like α, β, ρ, q0, and Q. 

 Store a maximum value to the solution. 

 Calculate initial pheromone value 

Construction and Improvement 

 While termination condition not satisfied do 

Construction 

For each ant k do 

Choose a state i with a probability and                   

add i to partial solution 

        Update pheromone trial for the current move 

         End For 

Update pheromone trail for the best ant’s path 

Improve the solution 

End While 

Output 

        Print the best solution found. 

he algorithm initializes various parameters and assigns 

a maximum value for the current solution. It also 
calculates initial pheromone value during the 

initialization phase. In the construction phase, the 

algorithm finds a solution and updates the pheromone 

trial, which is used to improve the solution. The 

algorithm repeats the construction phase until 

termination condition is met and finally prints the best 

solution found. 

Performance improvement by hybridization 

ACS incorporates an advanced data structure known as 

candidate list (Reinelt 1994) in order to solve big 

symmetric and asymmetric traveling salesman 

problems (TSP/ATSP) (Gambardella and Dorigo 1996, 
Dorigo and Gambardella 1997b). A static data structure 

is used to implement the candidate list, which has 

length l and contains l preferred cities to be visited 

from a given city i. In ACS, the state transition rule is 

used to select a city in the candidate list. If the 

candidate list is empty (i.e. none of the cities are 

available in the candidate list), the ant chooses the 

nearest available city only using the heuristic value ηij. 

Performance of ACS for TSP/ATSP has been 

improved by incorporating local optimization heuristic 
and this technique is known as hybridization, in which 

a solution generated by the ant is taken to its local 

minimum by the application of a local optimization 

heuristic. ACS considers new optimized solutions as 

final solutions produced in the current iteration by the 

ants and uses these optimized solutions to globally 

update the pheromone trails. This ACS 

implementation, which has the combination of a new 

pheromone management policy, a new state transition 

strategy and local search procedures, was finally 

competitive with state-of-the-art algorithm for solving 

TSP/ATSP problems. This kind of implementation 
opened a new frontier for ACO based algorithm. ACO 

algorithms were able to break several optimization 

records, including those for job shop scheduling and 

routing problems by employing the approach that 

combines a constructive phase driven by the 

pheromone and local search phase, which optimizes 

the constructed solution. 

Max-Min Ant System 

Relatively high pheromone levels on certain solution 

components may quickly lead to those components 

being used and causes the exclusion of all other 
solution components. It results in premature 

convergence to a local optimal solution. Due to 

pheromone saturation of existing longer routes, a 

colony is unable to exploit new and efficient solution 

components. This phenomenon was especially 

noticeable on large problem instances and motivates 

the development of Max-Min Ant System (MMAS) 

(Stutzle and Hoos 1996, Stutzle and Hoos 1998, 

Stutzle and Hoos 2000).  

Distinguishing characteristic of MMAS is that it 

maintains pheromone values within the range [τmin, 

τmax] at all time (Blum and Sampels 2004). Pheromone 

levels are initially set to τmax to encourage exploration 
early in the search process (Stutzle and Hoos 2000). It 

was found that the best solutions were found at the 

time of stagnation and these solutions are used to guide 

the selection of values for τmin and τmax. This guidance 

sets the appropriate bounds, which are independent of 
the problem specific. MMAS was improved by using a 

static candidate sets and the addition of a local search 
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heuristics. Diversification mechanism is also used in 

MMAS to force the discovery of new solutions that are 

far from the global-best solution. The diversification 

mechanism reinitializes all pheromone values to τmax, if 
small change is detected on solutions generated over 

time. MMAS has made a significant success across a 

range of problems. 

7. Conclusion 

This chapter has provided meta-heuristic approach  

called ant colony optimization. Behavior of ants to find 

shortest path has been given. Different ant algorithms 

have been discussed together with local and global 

pheromone updating. The key to the application of 

ACO to a new problem is to identify an appropriate 

representation for the problem (to be represented as a 

graph searched by many artificial ants), and an 

appropriate heuristic that defines the distance between 

any two nodes of the graph. Then the probabilistic 

interaction among the artificial ants mediated by the 

pheromone trail deposited on the graph edges will 
generate good, and often optimal, problem solutions. 

Other problems solved by ACO algorithms include: 

graph partitioning; subset problems including knapsack 

problems; Quadratic assignment; graph colouring; 

vehicle routing; networking routing and many more.  
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