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We analyze the crush-down collapse of One World Trade Center (1 WTC, North Tower) in

the framework of the National Institute of Standards and Technology (NIST, 2005) collapse

hypothesis. The main feature of crush-down is that a moving part of the building - the

top section - falls onto the stationary base, and absorbs the mass in the way. We extend

the Bažant-Verdure-Seffen (BVS) model of crush-down (Bažant and Verdure, 2002; Seffen,

2008), where we split the crushing front in two, one at the core and to other at the perimeter

of the building. We fit the BVS and the split-front crush-down model to recently published

roofline motion data (MacQueen and Szamboti, 2009), to find detailed variation of crushing

force FC(Z) in the storeys 97 and 96, and the average crushing force
〈
FC
〉

in the remainder

of the impact zone (storeys 95 to 93) and in the base below for the remainder of roofline

data (storeys 92 through 87).

We show how within the NIST hypothesis and the BVS model εC , defined as εC =〈
FC
〉
/FC(0), requires a correction factor of 1/6 to match the data. We construct a Con-

trolled Demolition (CD) hypothesis which avoids this and other correction factors through

two assumptions: (i) the top section is twice as massive as what it appears to be, where its

core stretches initially down to the 75-th storey; and (ii), the collapse starts with the wave

of massive destruction which annihilates the core below the 75-th storey and separates the

top section from the base below the impact zone, following which the top section falls to the

ground opposed mostly by the perimeter columns, which strength is approximately a third

of the total strength. Within the CD hypothesis we achieve excellent agreement between

Bažant-Verdure model of crushing force and the data.
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LIST OF SYMBOLS AND TERMS

The Base Stationary part of a collapsing high-rise building . . . . . . . . . . . . . . . . . . . . .Sec. 2

Top Section Moving part of a collapsing high-rise building . . . . . . . . . . . . . . . . . . . . . . . Sec. 2

Crush-down Collapse in a high-rise building, in which the top section falls
onto the base and adsorbs its entire mass . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2

Z = Z(t) Displacement of the roof-line of the top section,
Ż = dZ/dt is the velocity and Z̈ = d2Z/dt2 the acceleration . . . . . . . . . Sec. 2

m0 Initial mass of the top section. In constant acceleration model of
collapse equal to the mass of the top section . . . . . . . . . . . . . . . . . . . . . . .Sec. 2.2

R Resistive force that opposes the weight of
the top section throughout the collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sec. 2.2

FC Momentary crushing force.
〈
FC
〉

is its average value,
while fC = FC/(M g) its scaled value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

η
Scalar constant that determines conserved quantity in collisions
between the top section and the base: η ≡ 0 for momentum,
and η ≡ 1 for energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

M Total mass of 1 WTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.2

H Height of 1 WTC. Also the position from which all distances
in crush-down collapse are measured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

ρ0 Longitudinal density of 1 WTC in 1-D models of collapse, ρ0 = M/H Sec. 2.3

Za = Za(t) Position of the perimeter crushing-front . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

Zb = Zb(t) Position of the core crushing-front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sec. 2.3

κ Average compaction ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

La Crush-down initiation point in the BVS model. Same but at
the perimeter only in the split-front crush-down model . . . . . . . . . . . . Sec. 2.3

Lb Distance from the top of the building in the split-front crush-down model
where the core crush-down starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Sec. 2.3

H1 Single storey height, equal to 3.66 m (12 ft) . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

M1 Single storey mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.3

χ Additional mass of the top section in the split-front crush-down model
in terms of the storey masses M1, χ = b (Lb − La)/H1 . . . . . . . . . . . . . Sec. 2.3

a, b, c
Fractions of masses of perimeter columns, core columns, and
dwelling surfaces in the total mass of the building, in that order,
a+ b+ c = 1. In principle, one could differentiate the same fractions
in the top section from those in the base, so to allow voids . . . . . . . . Sec. 2.3
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P Peak strength of vertical columns during crushing. Same as FC

at the beginning of crushing of one segment . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.4

gBV
Periodic unity-normalized crushing force after Bažant and Verdure[1].
gpBV is a modification that includes
catastrophic failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.4

εCBV Mean-value of gBV , it is used to extract peak strengh from
the average value of crushing force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.4

Lg Distance over which g = g(Z) is periodic. Length of a single crushing
segment in the building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sec. 2.4

r, s Parameters of the linear model of peak crushing force P,
while r̄, s̄ are the same parameters for

〈
FC
〉

. . . . . . . . . . . . . . . . . . . . . . .Sec. 2.4
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1. INTRODUCTION

The World Trade Centers North Tower (One World Trade Center, or 1 WTC) was destroyed

on September 11, 2001, as a result of terrorist attacks on the World Trade Center (WTC) complex

in New York City, US.

Following their investigation into the collapse of the building, the Federal Emergency Manage-

ment Agency (FEMA) concluded that the building has been built to the code [2]. Investigators

from the National Institute of Standards and Technology (NIST) followed, and by 2005 they had

helped to formulate, what we refer to as the NIST hypothesis, namely, a chain of events that they

propose may have led to the collapse of 1 WTC [3]. According to the investigators, the impact

of the airplane, the explosion of jet fuel and the subsequent fires heavily damaged the building

between the storeys 93 and 99, thus creating an impact zone while leaving the building below

and above undamaged. After one hour the vertical columns in the impact zone had experienced

sufficient damage to yield to the weight of the building above the impact zone. The crush-down

started spontaneously at the weakest point of the impact zone - the bottom of the 98-th storey. The

13-storeys-tall top section started to fall to the ground, and in so doing first crushed and absorbed

five, presumably, heavily damaged storeys (93-97) of the impact zone, and then continued down-

wards to crush the rest of the, presumably, undamaged building (storeys 92 and below). Around

the same time, a physical model of a progressive collapse in a high-rise structure was proposed by

Z. P. Bažant, M. Verdure and their colleagues [1, 4, 5], and applied to the South Tower (Two World

Trade Center, or 2 WTC) in support of the NIST hypothesis. Their work was later complemented

by Seffen [6]. In their model the moving top section falls onto the stationary base, and absorbs

all of the base mass, with resistance coming mostly from the load-bearing vertical columns in the

crushing zone (interface between the moving and the stationary part of the building). We refer to

this collection of works and results as the BVS Crush-down Model. As part of their work, Bažant

and Verdure also proposed a model of crushing force that allows one to relate the peak strength

of the vertical columns to their average crushing force. We refer to this as the BV Crushing Force

Model.

In this report we use variety of crush-down models to extract the peak and the average crushing

force over a distance of 11 storeys (97-87) from the high resolution roofline motion data [7]. We use

the BV Crushing Force Model to estimate the peak strength of the columns from their averages,

and vice versa, and so check the consistency between the predicted and actual values.

We have organized the report as follows. In Sec. 2 we start with a discussion of optimization
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method for goodness-of-fit, and present the roofline motion data and the one-dimensional models

of crush-down that they they try to explain. We finish with a presentation of the BV crushing

force model. In Sec. 3 we cast the NIST hypothesis in terms of the model parameters. In Sec. 4 we

show the best-fit results in the context of the NIST hypothesis. We follow with discussion in Sec. 5

and present our conclusions in Sec. 6.

2. ONE-DIMENSIONAL MODELS OF CRUSH-DOWN COLLAPSE

We limit our analysis to the so-called “crush-down” collapse of a high rise building. In crush-

down collapse the moving part of the building (the top section), falls onto the stationary part of

the building (the base) and in the process absorbs some, if not all, of the base mass. Under the

circumstances of the 1 WTC collapse, namely, (i) throughout the crush-down the top section is

rigid and fairly easily distinguished from the base, and (ii) the building collapses almost perfectly

to its footprint, we can accurately describe the motion of the top section through its displacement

from the initial position, which we call Z = Z(t).

We start with the fitting method, as it provides a criterion for goodness-of-fit of models param-

eters to the roofline motion data.

2.1. Fitting Method

The following discussion is based on the assumption that the pixelization, or binning, of the

descent curve by a recording device is the only source of uncertainty. Let u0 be the smallest

detectable displacement of the object by the recording device. What we call the descent curve,

is in fact {ti, Z̄i}i=1,N , where Z̄i are the pixel centers. The true descent curve {ti, Zi}i=1,N , can

then be written as Zi = Z̄i + ei, where ei ∈ [−u0
2 ,

u0
2 ] are the uniformly distributed positional

uncertainties.

Let Z = Z(t− t0; {P}) + d0 be a trajectory obtained by solving a theoretical model, where {P}

is the set of values of the model parameters, and t0 and d0 the time and the position offset of the

descent curve. We interpret the descent curve as a relative position of the roofline as a function of

time {ti, X̄i}i=1,N . From X̄i = Z̄i − Z̄0, and by setting Z̄0 ≡ 0, we obtain X̄i ≡ Z̄i. The relative

trajectory is d0 + Z(t − t0; {P}) − e0, so we can choose d0 ≡ e0, with a benefit of not having

to increase the number of model parameters, but at the expense of uncertainty in the absolute

position of the descent curve.
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The fitting objective function should be a sum of absolute residuals
∑

i |∆Zi|, when the errors

{e∗i }i=1,N are all identically uniformly distributed [8]. Let the j-th residual be ∆Zj = Z̄j − Ẑj ,

where Ẑj = Z(tj − t0; {P}) is the model prediction. In an effort to minimize
∑

i |∆Zi|, only the

points such that |Z̄j − Ẑj | > u0 are relevant. Conversely, if for some j∗ we have |Z̄j∗ − Ẑj∗| < u0

then the minimization goal for that point has been reached, as ej∗ is unknown. This argument

leads us to the objective function that we use throughout this report,

Spa(t0; {P}) =
N∑
i=1

θ(|∆Zi| − u0) · (|∆Zi| − u0), (2.1)

where θ = θ(x) is a Heaviside function, θ(x) = 1 for x > 0, and 0 otherwise.

2.2. Roofline Motion Data and Constant-Acceleration Model

Recently, a two-part analysis was published [7] of a video recording showing the first 3.2 seconds-

long of collapse of 1 WTC. In the first, the authors extracted the roofline motion as a function

of time, which we show in Table I, and estimated its uncertainty to be uniform in nature and of

the size of a single pixel u0 = 0.27 m (0.88 ft). In the second part, the authors showed good fit

between the roofline motion and a motion with constant acceleration â that starts from rest,

Z(t) =
â

2
(t− t0)2, (2.2)

with t0 being the offset.

We use Spa to fit the roofline motion data from Table I to model (2.2) and find,

â ' 6.9 m s−2, (2.3)

that is achieved for Spa ' 20.4 cm. In Fig. 1 we show the best-fit trajectory, where we can see

that over a distance of 35 meters (some 10 stories of the building) the constant-acceleration model

fits the data quite well. We notice that all contributions to Spa come from the initial moments of

collapse.

The authors interpret Eq. (2.2) as that the top section of fixed mass m0 falls under the action

of two constant forces, the weight m0 g and some average resistive force R > 0,

m0 â = m0 g −R. (2.4)
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We find the resistive force as,

r̄ =
R
M g

=
m0

M
·
(

1− â

g

)
, (2.5)

where M is the total mass of the building. The authors of the two-part analysis [7] continue

that if the NIST collapse hypothesis is correct, then (i) the top section mass cannot be constant

(over the length of their data set the top section should double in weight), and (ii) there should

be a strong decrease in â once the top section moves from crushing the impact zone to crushing

of the (presumably undamaged) base. That is, if the NIST hypothesis holds, then the constant-

acceleration model should be a poor fit. Based on the fit being good, the authors conclude that

the damage in the building extended beyond the five-storey impact zone for at least the length of

their dataset.

2.3. Split-front Crush-down Model of Collapse

Bažant and Verdure [1] introduced a crush-down model to describe collapse of 2 WTC. The

kinetic and gravitational parts of their model belong to a class of “falling chain” physics problems

featuring variable mass [9]. Seffen [6] rearranged Bažant and Verdure’s model in the framework

of a cumulative instability propagating through a continuous structure, where the instability is

a highly compacted material in the wake of the crushing front. The resulting model is the BVS

Crush-down model, which in a uniform high-rise structure reads,

Z̈ = g − 1

Za

(
1− η

2

1− κ
Ż2 +

1

ρ0
R(Z)

)
, (2.6)

where ρ0 = M/H is the structure’s longitudinal density (with M and H being its mass and

height), and Za = La + (1 − κ)−1 · Z is the position of a crushing front. At the crushing front

the mass is compacted from ρ0, its density in the base, to ρ1, its density after the crushing,

where we assume that the compaction ratio κ = ρ0/ρ1 � 1 is a constant. We introduce collision

parameter η [10], which determines whether the collisions between the top section and the base

are momentum-conserving (η ≡ 0, after BV) or energy-conserving (η ≡ 1, after Seffen). Both

1 and 2 WTC comprised two distinct load-bearing structures, the perimeter columns (PC) and

the core columns (CC). A reticent feature of the model in Eq. (2.6) is that it assumes that the

structures’ crushing fronts, at Za at the perimeter and Zb at the core, are collocated (Za ≡ Zb)

so the initial mass of the top section is m0 = ρ0 · La. The authors identify as the strongest
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contributors to resistive force R the crushing forces coming from the two vertical column groups,

so that R(Z) = FCa (Za(Z)) + FCb (Za(Z)).

We extend the BVS Crush-dwon model in Eq. (2.6) where we allow for the initial top section

mass to vary by splitting the crushing fronts at the core and at the perimeter of the building. We

assume that the two crush-downs are independent except for the common top section that does

the crushing, and which by its rigidity maintains distance between the two fronts. We call this the

Split-front Crush-down model,

Z̈ = g − 1

Za + χH1

(
1− η

2

1− κ
Ż2 +

1

ρ0
FCa (Za) +

1

ρ0
FCb (Zb)

)
. (2.7)

The two crushing fronts are at Za,b = La,b+(1−κ)−1 ·Z, where Lb is the collapse initiation point at

the core. We show the schematic of such a split crushing front in Fig. 2. Omika et al. [11] estimated

the fractions of total mass of each structural element: perimeter columns (PC) a, core columns

(CC) b, and dwelling surfaces c, where a = 0.3, b = 0.6, and c = 0.1. The initial mass of the top

section becomes m0/ρ0 = aLa + b Lb = La + b · (Lb − La) = La + H1 χ, with H1 being a storey

height. The parameter χ, represents the extra mass of the top section in terms of the mass of a

single storey M1 = ρ0H1. In Eq. (2.7), R is again represented by its two strongest contributors,

the perimeter (core) columns’ crushing force, but at the position Za (Zb).

2.4. Crushing Force FC

Based on discussion of FC by Bažant and Verdure [1], we subdivide the base into a number of

segments or sub-zones, where the length of each is n · H1, where n ≥ 1 (BV sets n ≡ 1). Over

each segment FC strongly decreases monotonically as the segment is compacted. As the crushing

front reaches Lg = n · (1 − κ) · H1, the compacted segment is instantaneously absorbed and the

crushing front jumps by κ · n ·H1 to n ·H1. At the continuous limit, this averages such that the

top section moves with the velocity Ż, while the crushing front moves with an average velocity

Ża = Ż/(1− κ). In terms of the roofline motion the base structure repeats with distance Lg.

Bažant and Verdure [1] assumed that the crushing of vertical columns over one Lg-segment

proceeds in two stages, namely, the longitudinal ductile compression followed by buckling, and

that FC is continuous across the two. We introduce the scaled penetration distance, u∗ = Z∗/Lg,

at which ductile deformation switches to buckling, and find unity-normalized crushing force gBV
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to be,

gBV (u) = min

(
1,

√
1− (1− u∗)2√
1− (1− u)2

)
. (2.8)

The two are related as FC(u) = FC(0) · gBV (u), with FC(0) ≡ P, where P is the local peak

strength on the segment. The mean value of gBV over a single crushing segment is

εCBV =

∫ 1

0
du gBV (u) = π

√
u∗

2
− u∗ +O(u∗3/2), (2.9)

so that the following relationship applies between the segment-averaged crushing force
〈
FC
〉

and

P,

〈
FC
〉

= εC · P (2.10)

Bažant and Verdure [1] proposed that εC is a constant of crush-down, that is, u∗ and Lg are the

same for all columns in the entire building.

Seffen [6]argued that collapse which affects the entire building, one has to consider that P is at

least an affine function of distance, P = (M g) (r + s ZH ), yielding

〈
FC
〉

M g
= r εC + s εC

Z

H
. (2.11)

For convenience, we define the barred quantities r̄ = r εC and s̄ = s εC .

In fitting the crush-down model to the roofline motion data, whether to use FC or its average〈
FC
〉

depends on the local resolution of data. As discussed by Bažant and Verdure [1], FC can be

used when the top section moves slowly, while otherwise one uses
〈
FC
〉
.

3. THE NIST COLLAPSE HYPOTHESIS

We cast the NIST hypothesis using the basic dimensions of 1 WTC, for which the height of one

storey is H1 = 3.6576 m (12 ft), and the height of the whole building is H = 417 m = 114 ·H1. We

use Bažant and Verdure estimate of the total mass M ' 5.76 ·108 kg, so the mass of a single storey

is M1 = M/114 ' 5 · 106 kg. We find the peak strength of vertical columns p = P/(M g), as a

function of scaled distance z = Z/H using the linear model in Eq. (2.11) and the NIST data [3]. The

perimeter columns (PC) comprise 236 columns which have external dimensions were 14”-by-14”,
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and are made of structural steel the yield strength of which varies from 58 (36) KSI and thickness

1
4” at the top of the building to 110 (100) KSI and thickness 1” at the bottom, where we list the

ultimate strength followed by the nominal strength in the brackets. This yields pa(0) ' 0.12 and

pa(1) ' 1.07, so the ultimate (peak) strength of PC’s as a function of distance is,

pa(z) ' 0.12 + 0.95 · z (3.1)

For the core columns (CC), we assume that the scaling of Omika et al. [11] between the masses of the

perimeter and CC directly translates to their strength, so that pb = b/a·pa, or, pb(z) ' 0.24+1.90·z.

Our working estimate for the total peak capacity is thus,

p(z) ' 0.4 + 2.9 · z. (3.2)

We proceed to quantify the NIST hypothesis as follows. The impact zone is 18.5 m in height.

The collapse initiation point is at the bottom of the 98-th storey at La = (110−98+1)H1 = 47.5 m

for both the perimeter and the core, Lb ≡ La, or χ ≡ 0. The initial mass of the top section is

m0 = 13M1, or m0/M ≈ La/H = 0.11. The collapse is spontaneous so the total peak capacity of

compromised columns at or near the collapse initiation point is approximately the weight pressing

on it, p∗ ≈ m0/M ≈ 0.11.

Bažant and Verdure [1] discussed model parameters for 2 WTC in support of the NIST hy-

pothesis. They assumed that the top section free-falls for one storey, following which the average

crushing force settles at a constant r̄2WTC ≈ 0.05. For 1 WTC assuming χ ≡ 0, for the duration

of the observed roofline motion the top section grows in mass from 13 ·M1 to 24 ·M1, yielding an

average of (18.5 ± 5.5) ·M1. From Eq. (2.5) we see that r̄1WTC = 0.04 ± 0.01 ≈ r̄2WTC , but this

r̄1WTC combines static as well as kinetic resistance.

We continue with Bažant and Verdure analysis, and assume that this r̄ = r̄1WTC represents

only FC in the impact zone. As we know strength p∗ there, this yields εC = r̄/p∗ ' 0.36. However,

at some point over the distance covered by the roofline data, the top section should enter the

undamaged base, at which point r̄ should change to, say, r̄2. E.g., if this occurs at the top of the

92-nd storey, we have r̄2 ∼ 0.96 · 0.36 ≈ 0.4 � r̄ ∼ 0.04, and this change should be clearly visible

in the acceleration of the top section. The results presented in Sec. 2.2 suggest this not to be the

case, reaffirming findings in [7].
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4. RESULTS

Through numerical analysis of roofline motion we find Lg = 6.4 m, so κ = 1/8. We thus divide

the 16 m (= 7/8 · 18.5 m) impact zone into two sub-zones, where the first is 6.4 m long. In the

first sub-zone we choose the mesh {0 m, 1.5 m, 6.4 m} and define linear interpolant over the mesh

with values for the crushing force of {fC0,0, fC0,1, fC0,2}. We use r̄2, r̄3, for the average crushing force

on the second sub-zone of the impact zone (distance between 6.4 m and 16 m), and in the rest of

the base (above 16 m). The remaining parameters is t0, the time offset in the reference frame of

the data, which we drop for brevity. We always use η ≡ 1, after Seffen [6].

As we use linear interpolant for the fC on the first sub-zone (crushing segment) of length Lg,

we can find an approximate value for εC through Simpson’s integration formula, as

εC =
1

fC0,0 Lg

(
fC0,0 + fC0,1

2
· 1.5 m +

fC0,1 + fC0,2
2

· 4.9 m

)
. (4.1)

Once εC is known, we use it to derive the approximate peak strengths in other sub-zones fC2,3 =

r̄2,3/ε
C . We also use εC to find the average crushing force in the first sub-zone, r̄1 = εC · fC0,0. We

call these the derived quantities.

We use Monte Carlo sensitivity analysis with respect to initial conditions to find the approximate

values of the model parameters: We create a large number (few thousands) of uniformly distributed

acceptable initial conditions, and then through optimization collect their best-fit values. We keep

only those solutions for which Spa ≤ 0.2 m, that is, which are a better fit than the constant-

acceleration motion. For solving the ordinary differential equations we use a 8-th order Runge-

Kutta Prince-Dormand method, while for the optimization we use a simplex method of Nelder and

Mead, as the latter does not require Jacobian computation.[12]

For the NIST hypothesis we fit the data to the BVS model from Eq. (2.6), which is equivalent

to the split-front crush-down model of Eq. (2.7) with χ ≡ 0. Through Monte Carlo analysis we find

that the best-fit solutions achieve mostly a perfect fit Spa = 0.01±0.00 (0.00, 0.16) m, representing

the mean value and its standard deviation (with minimum and maximum values in brackets), all

rounded to two decimal places. The best-fit parameters are,
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Best-fit parameters Derived quantities

fC0,0 = 0.087± 0.009 (0.069, 0.111) εC = 0.225± 0.042

fC0,1 = 0.016± 0.006 (0.000, 0.030)

fC0,3 = 0.004± 0.006 (0.000, 0.033) r̄1 = 0.020± 0.004

r̄2 = 0.033± 0.002 (0.026, 0.046) fC2 = 0.148± 0.029

r̄3 = 0.015± 0.003 (0.000, 0.019) fC3 = 0.065± 0.019

We plot these values in Fig. 3, and find that fC0,0 is consistent with the onset of collapse being

spontaneous. We find εC ' 0.23±0.04 on the first segment, and remark that this is m0-independent

quantity.

From the plot in Fig. 3 we see that εC derived from the first sub-zone is too great for the other

sub-zones. We calculate the correction factors for εC in each sub-zone as follows. We find the

expected nominal values f2,0 = 0.88 ± 0.03 in the second sub-zone (storeys 96 through 94), and

f3,0 = 1.01 ± 0.09 in the third sub-zone (storeys 93 through 87). Their εC ’s are εC2 = r̄2/f2,0 =

0.038 ± 0.003 and εC3 = 0.015 ± 0.003, or εC/εC2 ∼ 6 ± 1 and εC/εC3 ∼ 15 ± 3. Now, in the NIST

hypothesis the damage to the base decreases with increasing distance. We combine the two and

conclude that the corrected εC as a function of presumed damage in the building decreases with

decreasing damage, i.e., εC is the greatest in the most damaged part, and the smallest in the least

damaged part.

First consequence of this trend in εC in the framework of the NIST hypothesis is that the Bažant

and Verdure proposition about εC being a constant of collapse does not hold.

Secondly, this behavior of εC is an example of correction factors that needs to be introduced

a posteriori, so that the predictions of the BVS model in context of the NIST hypothesis would

match the data. As an extreme example we mention Seffen’s conjecture by which all εC ’s have

correction factors which are randomly varying quantities. Obviously, this cannot be the case as we

have just shown that these correction factors are progressively smaller quantities.

Lastly, we are interested in a collapse scenario, which with minimal number of assumptions does

not require correction factors at all.

5. DISCUSSION

We focus on the second sub-zone of the impact zone, in which εC/εC2 ∼ 6± 1. We remark that

the impact zone only suffers damage from the airplane impact and its aftermath.
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We propose an explanation comprising two assumptions:

Firstly, let us assume that the core crushing front forms at the 75-th, so called, mechanical storey.

The initial mass of the top section is then the NIST’s 13 storeys plus χ = b·(97−75+1) = 13.8 ≈ 14,

or m0/M ≈ 27/114 = 0.24, i.e., double its NIST value.

Secondly, let us assume that the collapse starts when the strength of the core below the 75th storey

is totally compromised in an event we call “the wave of massive destruction” (WMD). We model

the WMD after Bažant and Verdure analysis of 2 WTC crush-down, in which they propose yet

another correction factor in form of a heat wave (BV heat wave, or BVHW) that the crushing front

pushes in front of itself, which locally halves the columns peak strength. Because the crushing

front (at the bottom of the top section) can be displaced from the hinge of the buckling column

by as much as H1
2 , if the crushing front radiates heat, then most of the crushed column has an

elevated temperature. If ∆T is the average temperature increase of the column caused by the

BVHW, then this requires energy W = Cv ρ0 Z ∆T , where Cv = 480 J/(kg K) is the specific heat

of structural steel. Were this energy part of the split-front crush-down model (2.7) it would appear

as an additional resistive force rHW = RHW /(M g) = −Cv ∆T/(H g). We need ∆T ∼ 600 oC to

halve the strength of structural steel, which yields rHW ∼ 70 ≫ r̄ ∼ 0.04 ± 0.01. The argument

can also be reversed, where ∂r̄/∂∆T = −Cv/(H g) = 0.11 ·α, which gives an increase in r̄ per 1 oC

increase in the temperature of the crushed structural steel whose fraction of the total mass is α.

The WMD we propose inverts the cause and effect of the BVHW, where in the wake of the WMD

the top section is left mainly supported by the perimeter columns. As the perimeter columns in the

impact zone are at best undamaged, their peak strength is p∗a(La/H) ≤ pa(La/H) ' 0.22 < m0/M .

We thus see that in absence of the core and with the connections between the top section and the

base below the impact zone compromised or severed, the PC cannot support the top section and

the crush-down may start “spontaneously.”

As the PC strength is approximately 1/3 of the total building strength, this combined with

doubling of m0 produces desired factor of 6. As in this scenario the damage to the building

extends beyond the impact zone, we refer to it as the controlled demolition (CD) hypothesis.

We test our CD hypothesis through Monte Carlo analysis, where we use split-front crush-down

model (2.7) with a fixed χ ≡ 14. We find that the best-fit solutions found through sensitivity

analysis achieve mostly perfect fit with Spa = 0.00± 0.00 (0.00, 0.13) m, where
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Best-fit parameters Derived quantities

fC0,0 = 0.187± 0.012 (0.151, 0.234) εC = 0.228± 0.031

fC0,1 = 0.035± 0.008 (0.015, 0.057)

fC0,2 = 0.009± 0.008 (0.000, 0.029) r̄1 = 0.043± 0.007

r̄2 = 0.082± 0.005 (0.068, 0.099) fC2 = 0.360± 0.054

r̄3 = 0.049± 0.008 (0.021, 0.062) fC3 = 0.217± 0.046

We plot these values in Fig. 4, and find an excellent agreement between fC0,0, and fC2 , fC3 on one

side, and the estimated strengths of the perimeter columns. In particular, in the first sub-zone

best-fit fC is consistent with the partially damaged PC from the airplane wing cutting them from

their support.

We next argue that εC need not be a constant of collapse providing that the healthier the

columns, the greater the εC . The best fit data confirmed that Lg ≈ 2 (1 − κ)H1 in the most

damaged part of the impact zone. We examine what happens if in the rest of the impact zone, Lg

switches to the value initially proposed by Bažant and Verdure, namely, Lg ≈ (1−κ)H1. We start

from the estimate for u∗ ' 2− 2
√

1− 4 (d/Lg)2, i.e., that the compression is replaced by buckling

when the center of the column moves two thicknesses sideways. For the perimeter columns we find

u∗ ' 0.01, for d = 14” (transverse dimension of perimeter column) and Lg = 24 ft, and u∗∗ ' 0.04

for Lg = 12 ft and the same d. From Eq. (2.9) we find εC
∣∣
2H1

= εCBV (u∗) ' 0.21, which is very

close to the best-fit value εC ' 0.23. For the second sub-zone we have εC
∣∣
H1

= εCBV (u∗∗) ' 0.39

that should be used with r̄2, and this drops the estimated peak strength to fC2 ∼ 0.21, which is

within error margin from pa. So, by increasing εC (decreasing the size of crushing segment) we

produce almost constant pa that fully agrees with the undamaged PC in the second sub-zone. As

for the third sub-zone below the impact zone, using u∗ and u∗∗ suggest its PC’s to be mildly (20%)

to severely (50%) compromised. Our discussion suggests that in the contex of the CD hypothesis

a way to indirectly compromise the PC’s is to severe them from the dwelling surfaces rather then

directly cutting through them.

Finally, let us discuss implications of the CD hypothesis on the Bažant and Verdure Crushing

Force model. We notice fC0,2 = 0.009 ± 0.008 ≈ 0.00 at the end of the first Lg-segment, which

differs from limu→1 gBV (u) ∼
√

2u∗ � u∗ > 0, which for u∗ = 0.01 yields, gBV (1) ' 0.15. We

propose a following modification. We think that gBV is probably a reasonable approximation when

the crushing is slow, so the column can maintain its integrity for the entire duration of buckling.

However, during rapid crushing the hinges in a buckling column may fail prematurely, for example,
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when cracks develop that quickly spread and split the column in two. We simplify this scenarion

and posit that an individual column may suffer random total catastrophic failure, following which

its strength drops to zero, and all participating columns fail by the end of a crushing segment. The

total crushing force fCY of a group “Y ” of NY identical columns, is

fCY =
∑

i∈ group Y

fC1 (u) · θ(u†i − u) ≈ NY · fC1 (u) (1− C(u)), (5.1)

where C(u), is the cumulative probability distribution function of distances u† at which the catas-

trophic failure occurs, while fC1 (u) is the crushing force of a single column. We assume {u†i}i=1,Ny

to have probability distribution as, π(u) = αuα−1, with α > 0, so that C(u, α) = uα. This modifies

the gBV given in Eq. (2.8) to

gpBV (u, u∗, α) = (1− uα) · gBV (u, u∗), (5.2)

which we refer to as the probabilistic-BV (pBV) model of FC . Its mean value, εCpBV (u∗, α) =∫ 1
0 du gpBV (u, u∗, α), is most easily found numerically, but a closed expression exists.

We now apply the probabilistic model from Eq. (5.2) to the first segment of crushing and solve

εCpBV (u∗, α) = εC = 0.23 with u∗ = 0.01 to find α ' 30. This tells us that FC is almost everywhere

BV-like except toward the end of the crushing segment. In Fig. 5 we plot the best-fit linear

interpolant for FC , BV model for gBV with u∗ = 0.01, and gpBV with u∗ = 0.01 and α = 30 we

propose, and find an excellent agreement.

6. CONCLUSION

We conclude that in the context of the CD hypothesis the observed roofline motion is fully

consistent with the theoretical models for crushing force and the crush-down collapse, with that

“caveat” that it is the perimeter columns that resist the crush-down and that the top section is

twice as massive as what it appears to be. Furthermore, we see that the CD hypothesis provides

consistent and flexible theoretical framework for interpretation of the existing and new evidence

when such become available.

Conversely, we have shown that the NIST hypothesis does not provide a consistent framework

in which the collapse can be studied, as demonstrated by the various correction factors we have

examined.
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[1] Z. P. Bažant and M. Verdure, J. Eng. Mech. - ASCE 133, 308 (2007), see also separate Discussions

by G. Szuladzinski, and J. R. Gourley and the Closure by Z. P. Bažant and J.-L. Le, J. Eng. Mech. -
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7. FIGURES AND CAPTIONS

index relative displacement displacement displacement

j time tj (s) (pixels) (ft) Ẑj (m)

0 0.000 0 0.00 0.00
1 0.167 1 0.88 0.27
2 0.333 2 1.76 0.54
3 0.500 4 3.52 1.07
4 0.667 6 5.28 1.61

5 0.833 9 7.92 2.41
6 1.000 13 11.44 3.49
7 1.167 17 14.96 4.56
8 1.333 23 20.24 6.17
9 1.500 29 25.52 7.78

10 1.667 37 32.56 9.92
11 1.833 44 38.72 11.80
12 2.000 52 45.76 13.95
13 2.167 61 53.68 16.36
14 2.333 71 62.48 19.04

15 2.500 81 71.28 21.73
16 2.667 92 80.96 24.68
17 2.833 104 91.52 27.90
18 3.000 117 102.96 31.38
19 3.167 130 114.40 34.87

TABLE I. Roof-line motion during the initial moments of collapse of 1 World Trade Center [7]. The authors
measure the displacements by counting the pixels, where the size of one pixel is u0 = 0.27 m (0.88 ft).
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FIG. 1. The best-fit trajectory in the constant acceleration model (2.2). Panel (a) gives the roofline data
from Table I (black points), and the model position (red solid line) and acceleration (orange solid line). We
also list Spa, the best-fit acceleration â, and the time Td it takes the crushing front to reach the ground.
Panel (b) shows the residuals between the model and the data.
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FIG. 2. Schematic of the split-front crush-down model (2.7), which main purpose is to allow us to vary the
top section initial mass through separation of crushing fronts at the perimeter and the core of the building.
In the NIST hypothesis the crushing fronts at the core and the perimeter are collocated, Za(t) ≡ Zb(t).
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