Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

A formula based approach to
Arithmetic Coding

ARUNDALE RAMANATHAN

Siara Logics (cc)

arun@siara.cc

Abstract

The Arithmetic Coding process involves re-calculation of intervals for each symbol that need to be encoded. This
article discovers a formula based approach for calculating compressed codes and provides proof for deriving the formula
from the usual approach. A spreadsheet is also provided for verification of the approach. Consequently, the similarities
between Arithmetic Coding and Huffman coding are also visually illustrated.

This article presents a formula based approach
to Arithmetic Coding. It also explains the math-
ematical foundation of Arithmetic Coding from a
radically different perspective.

This article discovers a formula based approach
for calculating compressed codes and provides
proof for deriving the formula from the usual ap-
proach.

Using a spreadsheet, the new approach is
demonstrated by compressing and decompressing
a simple string ("Hello World"). Compression using
conventional approach is also demonstrated in the
same spreadsheet. It can be seen that the same com-
pressed value is obtained using both the methods.

Simply put, the spreadsheet compresses the
string "Hello World" having length 11 letters to a 4
byte value 2166290293 (31.298 bits to be more exact).

Radix (logarithmic) is taken as 2 in this article,
but any radix can be used.

I Known facts

The basic principles of Arithmetic Coding are ex-
plained well in [2].

Referring to this article [3], for a given input
string A, with N symbols (letters) and n unique
symbols,

o if each unique symbol is represented as a;, i being
the index of symbol after sorting by descend-
ing order of weights,

e if each symbol appears k; times,

e if weights (or probability) of each symbol is given
by w; = ki /N,

we know:

o the length (in bits) of optimal possible code for
symbol a; is —log, (w;) bits, referred as h(a;).

total
n n
Z —k;logy(w;) or Zkih(ai) bits.
i=1 i=1

e the compressed length L will be

IT This work

The formula for h(a;) has been known for several
decades [1]. If this indicates the length of the com-
pressed code (in bits), what is the value contained
in that length?

Surely it cannot be all Os or all 1s, in which case
the compressed value will simply be 0 or 1. Also, it
cannot also take any arbitrary value, as there could
be more than one symbol having the same com-
pressed length. So the value is distinct and specific
for each symbol. Let us call this value as v(a;).

If the formula for this value could be discov-
ered, it would be simply a matter of concatenating
lengths of values to obtain the code, without hav-
ing to recalculate the intervals for each symbol, as
required in the common approach.

Licensed under Creative Commons 4.0 Int’l Attribution License 1

mailto:arun@siara.cc

Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

IIT Formulae

N . .
compressed_value = Z (v(A[i])/?_ZJ‘:I h(AU]))
j=1

IV Proof (derivation)

We derive the formula from the common approach,
which slices the interval according to the weights
w;. So for coding any symbol a;, the following value
is used:
i—1
code_value = Z;(w] « interval_length)
j=
When we use interval as 0 to 1, interval_length
is equal to 1, so it becomes:
i-1
code_value = Z wj
j=1
However, since we have taken the interval as 0
to 1, the value is a fraction and we have to scale it
to get the value we are seeking. The length of this
value is h(a;) bits, so we shift it left as follows to get
the desired value:

i—1
v(a;) = () wj) * 2hai)
j=1

i-1
= v(a;) = () wj) = 2 loga(wi)
j=1
i-1
(Y w)) = ploga(1/w;)
j=1

i-1
= v(a;) = (Z1 wj) * (1/w;)
=

= v(a;)

= o(a;) = (i_Zl wj)/w;
j=1

i1
v(a;) = (Y_kj)/ki
=

V Application to other coding
methods

The same formulae and approach are applicable
to other coding methods such as Huffman coding,
Shannon-Fano coding where length and value are
available.

Once the codes for symbols are obtained using
the respective methods, the Frequencies need to be
re(verse)-calculated according to the code lengths
(ki = 27@) 4« N)). Then, the formulas can be ap-
plied to obtain the compressed value. This is shown
in a separate sheet (Huffman_coding).

A picture for visual comparison between Arith-
metic Coding and Huffman Coding is given under
the example section below (Fig. [3).

VI Example

Given A = "HelloWorld”, then
e N=11,n=38,

e ay="l,ap="0,a3="H,a4="¢/,a5="", a6 ='W,
a; ='r’,ag ='d’, and

k1=3,ky=2,kztokg=1

w; = 0.2727 (3/11), wy = 0.1818 (2/11), w3 to wg
=0.0909 (1/11)

then

° h(al) = 1.8745, h(ﬂz) = 2.4594, h(a3) to h(ag) =
3.4594, and

e [=31.2989

which means after compression, 11 bytes will
become 31.2989 bits (around 4 bytes). By applying
the formulas, we get:

e v(a;) =0, v(ap) =1.5,v(az) =5, v(ay) =6, v(as)
=7,v(ag) =8, v(ay) =9, v(ag) =10

o compressed_value = 2166290392.64712
(0.50437878646122 unscaled)

The detailed calculations can be seen in the
spreadsheet (Fig. [2).

The following picture visually shows placement
of letters in compressed value for both Arithmetic
and Huffman coding:

Licensed under Creative Commons 4.0 Int’l Attribution License 2

Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

Comparing Arithmetic coding with Huffman

Input String ("Hello World") in binary

H

coding

e
L o: 1: o: o: 1: 0: 0: of o0: 1: 1: 0: 0: 1: 0: 1] 0O:

1: 1: 0: 1: 1: 0:; ol 0: 1: 1: 0: 1: 1: 0: 0]

byte 1 (decimal 72) byte 2 (decimal 101)

byte 3 (decimal 108)

byte 4 (decimal 108)

o <spc> W o
Lo: 1: 1: 0: 1:; 1: 13 1] 0:; 0; 1: 0: 0: 0: 0; o] o 1: 0: 1: 0; 1: 1: 1] 0: 1: 1: 0: 1: 1: 1: 1]

byte 5 (decimal 111) byte 6 (decimal 32) byte 7 (decimal 87) byte 8 (decimal 111)

r 1 d

Lo: 1: 1: 1: 0: 0: 1: ol O0: 1: 1: 0: 1: 1: 0: O] 0: 1: 1: 0: 0: 1: 0: 0]

byte 9 (decimal 114) byte 10 (decimal 108) byte 11 (decimal 100)
Compressed output in binary with Arithmetic coding
value: 5 6 0 0 1.5 7 8 1.5 9 0 10
length: 3.5 bits 3.5 bits i1.8 bitil.8 biti 2.4 bits 3.5 bits 3.5 bits 3.5 bits 3.5 bits 1.8 biti 3.5 bits
letters: H e 1 1) <spc> '] r 1 d
bits: 1: 0: 0: O0: O: O: O: 1] O: O: O: 1: 1: 1: 1: Of 1: 1: 1: 1: O: 1: 1: 1] 1: 1: O: 1: 1: O: O: 1

byte 1 byte 2 byte 3 byte 4
Compressed value = 2166290392.647, length = 31.3 bits
Compressed output in binary with Huffman coding
value: 3 4 0 0 2 5 6 2 14 0 15
length: 3 bits 3 bits 2 bits i 2 bits 3 bits 3 bits 3 bits 3 bits 4 bits 2 bits 4 bits
letters: H e 1 1 o <spc> W o r 1 d
bits: 0: 1: 1: 1: O: O: O: Op O: O: O: 1: O: 1: ©O: 1] 1: 1: O: O: 1: O: 1: 1] 1: O: O: O: 1: 1: 1: 1
byte 1 byte 2 byte 3 byte 4
Compressed value = 1880476559, length = 32 bits

To read full article, visit: http://siara.cc/arithmetic_coding_new_approach/

Copyright (c) 2015 Siara Logics (cc) - http://siara.cc
Licensed under Creative Commons 4.0 Intermational License (http://creativecommons.org/licenses/by/4.0/)

O

Figure 1: Visual indication of symbol positions in compressed value

The values are the same as those shown in the example spreadsheets. A screenshot of the spreadsheets

are also given in the Appendix.

VII Conclusion

The current work simplifies the encoding process
and explains Arithmetic coding in simpler terms.
However, for practical implementations, the follow-
ing points need to be considered:

e The formula based approach would heavily de-
pend on the performance of exp2 function. It
is likely to be slower than calculating the inter-
val table for each symbol. Very little research
has been done on this aspect.

o While the interval based approach does not al-
low parallel processing [1]], the formula based
approach would allow parallel processing.

Till the answers to the above points are available,
this work presently serves the following purposes:

e Understand Arithmetic Coding from a different
perspective

e Visualize positions of compressed symbols

e Visually compare Arithmetic coding and Huff-
man coding

Licensed under Creative Commons 4.0 Int’l Attribution License 3

Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

e Precursor for further research on entropy coding [2] Wikipedia, Arithmetic Coding,
https:/ /en.wikipedia.org/wiki/ Arithmetic_coding,
September 2015.
References
[1] Paul G. Howard and Jeffrey Scott Vitter, Practi- [3] Wikipedia, Huffman Coding,
cal Implementations of Arithmetic Coding, Brown https:/ /en.wikipedia.org/wiki/Huffman_coding,
University, April 1992. August 2015.

Licensed under Creative Commons 4.0 Int’l Attribution License 4

Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

VIII Appendix

Formula based approach to Arithmetic Coding

Frequency Table:

Compression:

. Frequency Weights Bit length Total bit length A
L:':;TJ[:” {Letter {probability) [h{ai) = {Letter Count x [\‘I,a(:‘il;!] L(::":;r:'g':')t I:ee[:;a:
count) [ki] [wi = ki / N] -log(wi)] Bit length)
| 3| 0.27272727272727| 1.87446911791614 5.62340735374842 0 [l
o] 2| 0.18181818181818 2.4594316186373| 4.91886323727459 1.5] 1171354717|0
H 1] 0.09090902090909 3.4594316186373 3.4594316186373 5] 1952257862 |H
e 1| 0.09090909090909 3.4594316186373 3.4594316186373 6| 2342709434|e
1| 0.09090909090909 3.4594316186373 3.4594316186373 7| 2733161007
W 1] 0.09090902090909 3.4594316186373 3.4594316186373 8| 3123612579|W
r 1] 0.09090909090909 3.4594316186373 3.4594316186373 9| 3514064151|r
d 1| 0.09090909090909 3.4594316186373 3.4594316186373 10| 3904515724(d
Count [N]: 11 Compressed length [L] (in bits) 31.2988603028468

Letter Value | Bit length [h(ai}] | Bits Remaining [Compressed value
{from frequency table) 32

H 5 3.4594316186373 | 28.5405683813627 1952257861.81818
e 6 3.4594316186373 | 25.0811367627254 2165231446.7438
| 0 1.87446911791614 | 23.2066676448093 2165231446.7438
| 0 1.87446911791614 | 21.3321985268931 2165231446.7438
o 1.5 2.4594316186373 | 18.8727669082558 2165951492.6733
7 3.4594316186373 | 15.4133352896185 2166256966.704

W 8 3.4594316186373 | 11.9539036709812 2166288704.26563
o 1.5 2.4594316186373 | 9.49447205234394 2166289786.22796
r 9 3.4594316186373 | 6.03504043370664 2166290376.38923
| 0 1.87446911791614 | 4.1605713157905 2166290376.38923
d 10 3.4594316186373 0.7011396971532 |2166290392.64712

Letters are looked up -->
using compressed value -->

Usually a terminator is required
when implementing for real life
compression. But it is not shown
in this example

<-- Final Compressed Value

To compress [A]l: H
Logarithm radix:
No of bits:

Total Value:

Decompression:

ello World
2
32
4294967296

Letter Bits

{from F29)

3.459432

2166290393

3.459432

2354357839.12

1.874469

128132454.301

1.874469

469818999.104

2.459432

1722669663.38

3.459432

3032232204.6

3.459432

3289783178.6

2.459432

1827876596.61

3.459432

3610870337.37

1.874469

1064868047.07

3.459432

3904516172.58

Arithmetic coding by conventional method:

Lookup table for Interval (recalculated after

compressing each letter)

Total letter count: 11 Letter Count --> 3 2 1 1 1 1 1 1
Probability -->]0.27273]|0.18181818|0.09091|0.09091(0.09091| 0.09091(0.09091| 0.090909091
Compression: Letters -->|I o H e w r d
Interval begin Interval end Interval length 1 o H e W r d
1]Initial interval 0 1 1 0] 0.272727273]0.454545(0.5454550.636364| 0.727273(0.818182]0.90909090909 1
2|H 0.45454545454545| 0.54545454545455 0.09090909090909}0.454545] 0.479338843(0.495868]0.504132]0.512397| 0.520661)0.528926[0.53719008264 | 0.47934
3le 0.50413223140496| 0.51239669421488 0.00826446280992]0.504132| 0.506386176(0.507889| 0.50864|0.509391| 0.510143]0.510894[0.51164537941 0.50639
4]l 0.50413223140496| 0.50638617580766 0.0022539444027]0.504132| 0.504746944]0.505157]0.505362 [0.505567| 0.505771]0.5059760.50618127177| 0.50475)
5|1 0.50413223140496| 0.50474694351479 0.00061471210983}0.504132| 0.504299880(0.504412]0.504468|0.504523| 0.504579]0.504635| 0.5046910606(0.5043
6)o 0.50429988016218| 0.50441164600034 0.00011176583815] 0.5043] 0.504330362|0.504351{0.504361]0.504371] 0.504381]0.504391 |0.50440148547| 0.50433
7 0.50437100387737| 0.50438116440811]1.016053074099E—05]0.504371] 0.504373775]0.504376]0.504377(0.504377] 0.504378[0.504379]0.50438024072| 0.50437|
8|W 0.50437839335427| 0.504379317038899.236846127969E—07]0.504378| 0.504378645]0.504379]0.504379(0.504379| 0.504379]0.504379]0.50437923307 | 0.50438|
9]o 0.50437864526826| 0.50437881321092|1.679426568924E—07]0.504379] 0.5043786910.504379]0.504379(0.504379] 0.504379[0.504379]0.50437879794| 0.50438|
10r 0.50437878267589 0.5043787979434]1.526751425285E—-08]0.504379 0.504378787]0.504379]0.504379)0.504379 0.504379]0.504379]0.50437879656| 0.50438|
111 0.50437878267589| 0.50437878683976|4.163867473039E—09]0.504379] 0.504378784]0.504379]0.504379(0.504379] 0.504379{0.504379]0.50437878646| 0.50438)
12]d 0.5043787864612

Compressed value:

Scale to len [L] in F14:

0.5043787864612

2166290392.6471 <-- Compare with above method (F29)

Licens

Copyright (c) 2015 Siara Logics {cc) - http://siara.cc
Creative Commons 4.0 International (http://creativecommons.org/licenses/by/4.0/)

Figure 2: Screenshot of spreadsheet that demonstrates both methods of Arithmetic Coding

Licensed under Creative Commons 4.0 Int’l Attribution License

Data Compression techniques e September 2015 ¢ New approach to Arithmetic Coding

Comparison with Huffman Coding

Frequency Table:

Copyright (c) 2015 Siara Logics (cc) - http://siara.cc

Licensed under Creative Commons 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

. Frequency Weights Bit Ien_gth [h(ai)] Total bit o Frec_|uency
Umque_ (Letter (probability) _(copued from_ length (Let!:er Vallfe Lower limit| Repeat [ki] re- Huffman
Letter [ai] . N . binary tree built Count x Bit [[v(ai)]| (of range) | Letter |calculated Code
count) [kil| [wi = ki / N] i
elsewhere) length) from h(ai)
| 3] 0.27272727273 2 6 0 ol 2.75|00
o 2)0.18181818182 3 6 2| 1073741824|0 1.375]|010
H 1| 0.09090909091 3 3 3| 1610612736|H 1.375]|011
e 1| 0.09090909091 3 3 4| 2147483648|e 1.375]100
1| 0.09090909091 3 3 5| 2684354560 1.375]|101
W 1| 0.09090909091 3 3 6| 3221225472|W 1.375]110
r 1| 0.09090909091 4 4 14| 3758096384 |r 0.6875]1110
d 1] 0.09090909091 4 4 15| 4026531840|d 0.6875]1111
Count [N]: 11 Compressed len [L] (in bits): 32 11
Compression:
Letter Value Bit Ier.\gth Bits Remaining Compressed
[h(ai)l value
(from frequency table) 32
H 3 3 29 1610612736 Letters are looked up -->
e 4 3 26 1879048192 using compressed value -->
| 0 2 24 1879048192
| 0 2 22 1879048192
[2 3 19 1880096768 Usually a terminator is required
5 3 16 1880424448 when implementing for real life
W 6 3 13 1880473600 compression. But it is not shown
o 2 3 10 1880475648 in this example
r 14 4 6 1880476544
| 0 2 4 1880476544
d 15 4 0 1880476559 <-- Final Compressed Value

Given string [Al: Hello World
Logarithm Radix: 2
No of bits: 32
Total Value: 4294967296
Decompression:
Letter Bits Remaining
(from F29)
H 3|1880476559
e 3| 2158910584
| 2 91415488
| 2| 365661952
0 3| 1462647808
3| 3111247872
W 3| 3415146496
] 3| 1551368192
r 4| 3821010944
| 2| 1006632960
d 4| 4026531840

To read full article visit:
http://siara.cc/arithmetic_coding_new_approach/

Figure 3: Screenshot of spreadsheet that demonstrates compression using Huffman codes by the same formula

Licensed under Creative Commons 4.0 Int’l Attribution License

	Known facts
	This work
	Formulae
	Proof (derivation)
	Application to other coding methods
	Example
	Conclusion
	Appendix

