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ABSTRACT 
 

Applying basic classical physics concepts of time and space, while considering event information was 

ultimately communicated through light—or electromagnetic—signals, it was shown that proper time interval 

measured in an inertial reference frame (labeled as the “traveling frame”) between two co-local events occurring 

at the frame origin underwent apparent alteration and perceived as an altered interval in another inertial frame 

(labeled as the “stationary frame”), when the two frames were in relative motion. It was shown through obtained 

modified Galilean transformations that “apparent” length contraction and expansion were associated with 

“apparent” time dilation and contraction, respectively. In the case the Emission Theory of light was considered, 

symmetry in regard to the time and space alteration factors between the frames was shown. The known classical 

Doppler Effect was readily derived from the established alteration factors. For all classical approaches, and in 

the case of light, the wave length was deemed invariant. 

In the case the Special Relativity approach was considered, i.e. when the speed of light was assumed 

constant with respect to all inertial reference frames, inconsistent time “alterations” were perceived, so an ad 

hoc assumption was required, imposing an artificial conversion factor, leading to the Lorentz transformation, 

applicable under special conditions of the space coordinates in the direction of motion. Misconceptions in the 

Special Relativity interpretation of the Lorentz transformation were systematically revealed. Time alteration was 

perceived dilated for receding frames, and contracted for approaching ones.  

When the frames receded and then approached during equal proper time intervals, the net time interval is 

perceived dilated by γ for the Special Relativity approach, as opposed to 
2γ for the Light Emission theory. For 

the Ether Theory assumption, either time dilation or time invariance was obtained depending on whether the 

traveling frame was taken to be the ether frame.  

The known relativistic Doppler Effect was readily derived. For the case of light, the perceived frequency 

exhibiting a blue shift in the case of approaching frames was in line with the established time contraction in this 

study, contradicting the Special Relativity prediction of time dilation. In addition, the wavelength exhibited an 

increase in the case of receding frames, whereas it decreased when the source was approaching.  
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1 BACKGROUND 
 

Let the time associated with an event occurring at a fixed point in a reference frame (i.e., at rest 

with respect to the frame), and measured in the same frame, be called the event proper [occurrence] 

time; and the frame time interval between two events occurring at the same or separate fixed point(s) 

in the frame be called the events proper time interval.   

An event that has occurred at a certain proper time with respect to a reference frame—let’s label it 

as the traveling frame— will be observed in a different frame—labelled as the stationary frame— at a 

different perceived time depending on the distance between the two frames, the instantaneous 

variation of this distance, and the speed of information propagation from the “traveling” to the 

“stationary” frame. If the event can be communicated thru signals that travel at an ultimate finite 

speed, then the information cannot possibly be perceived by any means in the stationary frame before 

a time equal to the event proper time in the traveling frame incremented by the signal travel time at 

the ultimate speed to reach the second frame. 

If two events, separated by a certain proper time interval, have occurred in the traveling frame, the 

formerly event will be perceived in the stationary frame after a certain time increment, and if the 

frames are moving relative to each other, the next event will be perceived after a time interval larger 

or smaller than the proper interval, depending on whether the frames are receding from or 

approaching each other.   

An observer in the stationary frame should then correct the perceived time interval, so as the 

absolute time can be calculated, using corrected equations relating the frames space coordinates.  

If the apparent time variations between the reference frames were to be taken into consideration 

and incorporated in the classical Galilean transformation converting space coordinates from one 

reference frame to another, this transformation shall take different corrected forms, depending on the 

assumptions made on the conveyance of events from one frame to another. Ultimately, events are 

transmitted via light or electromagnetic signals; there is no known faster means of communicating 

information. So, if event signals are assumed to propagate at no faster than the speed of light, 

considered as the ultimate communication speed, then the perceived event time shall depend on the 

proper time, and the speed of light and its traveled distance as it travels from the “traveling” to the 

“stationary” frame. 

The self-posed question would then be; what if there’s some other means to communicate events 

at a speed faster than the speed of light? Or, what if there were no means to detect light signals in the 

stationary frame? For instance, suppose the frames are traveling in a medium where communication 

could be carried out through sound signals only; then time will be perceived totally differently. The 

traveling frame proper time is fixed and independent of the communication signal speed. Whereas, the 

corresponding measured time in the stationary frame is variable, and depends on the communication 

signal speed, as well as the relative speed between the frames. Thus, the available communication 

means will dictate the time transformation equations, and time will become malleable, taking different 

shapes according to the imposed communication means. Hence, the idea of absolute time is definitely 

essential to save the sanity in the concept of time! This should justify why the time variable perceived 

as a function of the event communication speed is only apparent. In this paper, apparent time based on 

events communication at the speed of light is considered. 

In classical physics, there are two principal theories governing the nature and behavior of light; 

the Emission Theory and the Ether Theory.  

In the light Emission Theory, also known as the ballistic theory, often attributed to Isaac Newton 

for his Corpuscular theory, light is assumed to exhibit a nature incorporating a corpuscular behavior. 

Under this conjecture, light is emitted at a constant speed c  relative to its emission source. So, if the 

source (emitter) is moving at a speed v  relative to an observer, light will travel towards the observer 

at a speed of .c v±  Hence, there is no preferred reference frame for light propagation. 
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On the other hand, the Ether Theory was prevailed in the 19
th

 century when the electromagnetic 

wave nature of light had been established and described by the Maxwell’s equations. The corpuscular 

nature of light conjecture had been dropped. Since waves must propagate through a medium, then the 

ether, an assumed medium required to carry light waves, was supposed to fill the entire interstitial 

space. Therefore, light must propagate at a constant speed c  relative to the ether rest frame. Hence, 

the speed of light with respect to a certain reference frame would depend on the speed of that frame 

with respect to the ether rest frame. However, doubts about the Ether Theory had been raised 

following the negative results of the famous Michelson-Morley experiment
1
 designed to verify the 

Ether Theory by attempting to detect directional variations in the light speed relative to the earth, 

supposedly moving with respect to the ether. The Special Relativity theory came later on to replace 

the Ether Theory, introducing new concepts of space and time. 

In the theory of Special Relativity,2 Einstein postulated that there was no preferred reference 

frame for light propagation (first postulate: physics laws are the same in all inertial reference frames), 

and that the speed of light was independent of the source state of motion. Hence, the speed of light 

would be always the same and equal to a universal constant c  in all inertial reference frames (second 

postulate). Consequently, since an observer measures the same speed of light in his rest frame and in 

another traveling inertial frame, space and time in the latter must be deformed with respect to the 

observer in order for this speed invariance to be maintained.  

Based on the Special Relativity postulates, the Lorentz transformation, a set of space-time 

equations to convert coordinates between two inertial frames of reference in relative motion, 

predicting time dilation and length contraction under particular interpretations, was derived.
2
  

In this paper, it is demonstrated that apparent time, as well as length, alterations (dilation or 

contraction) are the natural consequence of assuming that events are ultimately communicated via 

light —or electromagnetic wave— signals. Each of the above light theories would give different 

extents of time and space alterations between inertial reference frames in relative motion. Modified 

versions of the Galelian transformation are obtained. Although the approach used leads to the Lorentz 

transformation in the case of the Special Relativity assumption for the light speed, several 

misconceptions with the Special Relativity interpretations are revealed.  

 

 

2 TIME INTERVAL ALTERATION  
 

Consider two inertial frames of reference, ( ), , ,K x y z  and ( ) , , K x y z′ ′′ ′ , in relative  translational 

motion with parallel corresponding axes, and let their origins be aligned along the overlapped x - and 

x ′ -axes. Let v  be the relative motion velocity in the direction of the -x x′ axis oriented in such a way 

that with respect to an observer in K (i.e., K  is “stationary” relative to this observer), the relative 

travel direction of K ′ (“traveling” frame) is in the positive -x x ′ direction when the frames are 

receding; this arrangement shall be referred to as the “forward scenario”. For an observer in K ′  (i.e., 

K ′  is “stationary” relative to this observer), the relative travel direction of K (“traveling” frame) 

would be in the negative -x x ′ direction when the frames are receding; this arrangement shall be 

referred to as the “backward scenario”. The objective is to determine how a proper time interval 

measured in the traveling frame would be perceived in the stationary frame. 

 

 

2.1 GENERAL TIME ALTERATION FACTOR DERIVATION FOR RECEDING FRAMES  
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Suppose that K  and K ′  are overlapping at the time 0.t t ′= =  The event coordinates can then 

be considered as space and time intervals measured from the initial zero coordinates of the 

overlapped-frames event. 

 

 

2.1.1 Perception in K (stationary frame) of a proper time interval for events in K ′
(traveling frame)—receding frames “forward scenario” 

  

Suppose a signal of an event (0,0,0)E ′  is emitted from K ′ origin at time t ′  with respect to 

,K ′ which will be perceived at time t  in .K  

Let the speed of the light signal traveling from K ′  to K  be 
K K
c ′→
′  with respect to ,K ′  and 

K K
c
′→

 with respect to .K    

 

K ′  perspective 

From the perspective of ,K ′ the origin of K ′ at the event occurring time is at a distance of vt ′  

from that of K  (Fig. 1). 

 

 

Fig. 1 Signal propagation—receding frames 

 

 Let 
*t ′  be the time interval it takes the event signal to reach the origin of ,K  from K ′  

perspective. By that time, K ′  will have moved a further distance of 
*vt ′  away from ,K  bringing the 

distance traveled by the signal to 
*vt vt ′′ + with respect to .K ′  The time interval 

*t ′  can then be 

expressed as 

 

*
* ,

K K

vt vt
t

c
′→

′′ +′ =
′

 

leading to 

 

* .
K K

vt
t

c v
′→

′
′ =

′ −
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It follows that the event perception time t  in K  with respect to K ′will be given by 

 

* ;t t t ′′= +  

 

;K K

K K

c
t t

c v

′→

′→

 ′  ′=  ′  − 
 

 

,

1
K K

t
t

v

c
′→

′
=

−
′

                                                                (1) 

 

exhibiting time dilation. 

 

K  perspective 

Now, from the perspective of ,K  the origin of K ′ at the event occurring time is at a distance of 

vt ′  from that of .K   The signal will have traveled a distance of ,vt ′  at the speed of 
K K
c
′→

 with 

respect to ,K  when it reaches K  origin. Therefore, the event will be perceived at time t  in ,K  

given by                     

 

;
K K

vt
t t

c
′→

′
′= +  

 

1 ,
K K

v
t t

c
′→

  ′= +   
                                                               (2) 

 

dilated with respect to .t ′   

 

 

2.1.2 Perception in K ′ (stationary frame) of a proper time interval for events in K

(traveling frame)—receding frames “backward scenario” 
 

Let’s now consider the case of the signal of an event (0, 0, 0)E  being emitted fromK origin at 

time τ  with respect to ,K which will be perceived at time τ ′  in .K ′  — τ  and τ ′  are used to 

denote “proper time” and “perceived time”, respectively, as opposed to t  and t ′  denoting “perceived 

time” and “proper time”, respectively, in the “forward scenario”. 

Let the speed of a light signal traveling from K  to K ′  would be 
K K
c

′→
 with respect to ,K  and 

K K
c

′→
′  with respect to .K ′    

 

K ′  perspective 
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From the perspective of ,K ′  the origin of K at the event occurring time is at a distance of vτ  

from that of .K ′   The signal will have traveled a distance of ,vτ  at a speed of 
K K
c

′→
′  with respect to 

,K ′  when it reaches K ′  origin. Therefore, the event will be perceived at time τ ′  in ,K ′  given by                     

 

;
K K

v

c

τ
τ τ

′→

′ = +
′

 

 

 

1 .
K K

v

c
τ τ

′→

  ′ = +  ′  
                                                              (3) 

 

exhibiting time dilation. 

 

K  perspective 

From the perspective of ,K the origin of K at the event occurring time is at a distance of vτ  

from that of .K ′  Let 
*τ  be the time interval it takes the event signal to reach the origin of ,K ′  from 

K  perspective. By that time, K  will have moved a further distance of 
*vτ  away from ,K ′  bringing 

the distance traveled by the signal to 
*v vτ τ+ with respect to .K  The time interval 

*τ  can then be 

expressed as 

*
* ,

K K

v v

c

τ τ
τ

′→

+
=  

leading to 

 

* .
K K

v

c v

τ
τ

′→

=
−

 

 

It follows that the event perception time τ ′  in K ′  with respect to K will be given by 

  

*;

;
K K

v

c v

τ τ τ

τ
τ τ

′→

′ = +

′ = +
−

 

 

,

1
K K

v

c

τ
τ

′→

′ =

−

                                                                  (4) 

 

exhibiting time dilation. 
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2.2 GENERAL TIME ALTERATION FACTOR DERIVATION FOR APPROACHING FRAMES 
 

Suppose that the time is set to 0t t ′= =  when K  and K ′  are at a distance of d   from each 

other.  

 

 

2.2.1 Perception in K (stationary frame) of a proper time interval for events in K ′
(traveling frame)—approaching frames “forward scenario” 

 

Suppose a signal of an event (0,0,0)
o
E ′  is emitted from K ′ origin at time 0

o
t ′ =  with respect to 

,K ′ which will be perceived at time 
o
t  in ,K and another signal of an event (0,0,0)E ′  is emitted at 

time t ′ from K ′  origin, which will be perceived at time t  in .K   

Let the speed of a light signal traveling from K ′  to K  be 
K K
c
′→
′   with respect to ,K ′ and 

K K
c
′→

 

with respect to .K    

 

K ′  perspective 

From the perspective of ,K ′ the origin of K ′ at the event 
o
E ′  occurring time is at a distance of 

d  from that of .K  Let 
*

o
t ′  be the time interval it takes the event 

o
E ′ signal to reach the origin of ,K  

from K ′  perspective. By that time, K ′  will have moved a distance of 
*
o
vt ′ closer to ,K  bringing the 

distance traveled by the signal to 
*

o
d vt ′−  with respect to .K ′  The time interval 

*

o
t ′  can then be 

expressed as 

 

*
* ,o
o

K K

d vt
t

c ′→

′−
′ =

′
 

leading to 

* ,
o

K K

d
t

c v
′→

′ =
′ +

 

and 

 

*

0
;

o o
t t t ′′= +  

.
o

K K

d
t

c v′→

=
′ +

                                                             (5) 

 

 

Similarly, with respect to ,K ′ the origin of K ′ at the event E ′  occurring time is at a distance of 

d vt ′−  from that of K  (Fig. 2).  
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Fig. 2 Signal propagation—approaching frames 

 

Let 
*t ′  be the time interval it takes the event E ′ signal to reach the origin of ,K  from K ′  

perspective. By that time, K ′  will have moved a distance of 
*vt ′ closer to ,K  bringing the distance 

traveled by the signal to 
*d vt vt ′′− − with respect to .K ′  The time interval 

*t ′  can then be 

expressed as 

 

*
* ,

K K

d vt vt
t

c
′→

′′− −′ =
′

 

leading to 

 

* .
K K K K K K

d vt d vt
t

c v c v c v′ ′ ′→ → →

′ ′−′ = = −
′ ′ ′+ + +

 

 

It follows that the event perception time t  of E ′  in K  with respect to K ′ will be given by  

* ,

.
K K K K

t t t

d vt
t t

c v c v
′ ′→ →

′′= +

′
′= + −
′ ′+ +

 

Therefore, 

 

;
o

t t t∆ = −  

 

.

1
K K

t
t

v

c
′→

′
∆ =

+
′

 

Since 0,
o
t ′ =  then 
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.

1
K K

t
t

v

c
′→

′∆
∆ =

+
′

                                                                (6) 

 

exhibiting time contraction. 

 

K  perspective 

Now, from the perspective of ,K  the origin of K ′ at the event 
o
E ′  occurring time is at a distance 

of d  from that of .K   The signal will have traveled a distance ,d  at the speed 
K K
c
′→

 with respect to 

,K  when it reaches K  origin. Therefore, the event will be perceived at time 
o
t   in ,K  given by   

                   

.
o

K K

d
t

c
′→

=  

 

Similarly, with respect to ,K the origin of K ′ at the event E ′  occurring time is at a distance of 

d vt ′−  from that of .K  The signal will have traveled this distance at the speed 
K K
c
′→

 with respect 

to K  when it reaches K  origin. Therefore, the event will be perceived at time  t   in ,K  given by                     

  

.
K K K K

d vt
t t

c c
′ ′→ →

′
′= + −  

Therefore, 

;

1 .

o

K K

t t t

v
t t

c
′→

∆ = −

  ′∆ = −   

 

 

Since 0,
o
t ′ =  then 

 

1 ,
K K

v
t t

c
′→

  ′ ∆ = ∆ −   
                                                         (7) 

 

exhibiting time contraction. 

 

 

2.2.2 Perception in K ′  (stationary frame) of a proper time interval for events in K

(traveling frame)—approaching frames “backward scenario” 
 

The frame K  is considered to be the “traveling” frame in this case. Suppose a signal of an event 

(0,0,0)
o
E  is emitted from K origin at time 0

o
τ =  with respect to ,K which will be perceived at 
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time 
o
τ ′  in ,K ′ and another signal of an event (0, 0, 0)E  is emitted at time τ  from K  origin, which 

will be perceived at time τ ′  in .K ′   

Let the speed of a light signal traveling from K  to K ′  be 
K K
c

′→
 with respect to ,K and 

K K
c

′→
′  

with respect to .K ′    

 

K ′  perspective 

from the perspective of ,K ′  the origin of K at the event 
o
E  occurring time is at a distance of d  

from that of .K ′   The signal will have traveled a distance ,d  at the speed 
K K
c

′→
′  with respect to ,K ′  

when it reaches K ′  origin. Therefore, the event will be perceived at time 
o
τ ′   in ,K ′  given by       

               

.
o

K K

d

c
τ

′→

′ =
′

 

 

Similarly, with respect to ,K ′ the origin of K at the event E  occurring time is at a distance of 

d vτ−  from that of .K  The signal will have traveled this distance, at the speed of 
K K
c

′→
′  with 

respect to ,K ′  when it reaches K ′  origin. Therefore, the event will be perceived at time τ ′   in ,K ′  

given by                     

  

.
K K K K

d v

c c

τ
τ τ

′ ′→ →

′ = + −
′ ′

 

 

Therefore, 

;

1 .

o

K K

v

c

τ τ τ

τ τ
′→

′ ′ ′∆ = −

  ′ ∆ = −  ′  

 

Since 0,
o
τ =  then 

 

1 ,
K K

v

c
τ τ

′→

  ′ ∆ = ∆ −  ′  
                                                          (8) 

 

exhibiting time contraction. 

 

K  perspective 

It can be shown, using the same methodology for the case of the time interval perception in K

from the perspective of ,K ′ that from the perspective of ,K  the time τ ′∆  would be obtained as 
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,

1
K K

v

c

τ
τ

′→

∆
′∆ =

+

                                                              (9) 

 

contracted with respect to .τ∆  

 

 

3 TIME INTERVAL ALTERATION APPLICATIONS 
 

The obtained general equations for the apparent alteration of a proper time interval measured in 

the traveling frame relative to the stationary frame shall be applied to the different light conjectures, 

from the Emission theory to Special Relativity, going through the Ether theory, each allowing to 

specify the speed of light relative to the involved reference frames.  

Appendix A gives a tabulated summary of the results. 

 

  

3.1 EMISSION THEORY  
 

In this conjecture, the speed of light is constant, say ,c  with respect to the source rest frame. The 

speed of light relative to the other frame becomes ,c v±  according to the classical addition of 

velocities. 

 

 

3.1.1 Case of Receding Reference Frames—Emission Theory Approach 
 

 

3.1.1.1 Change of duration for events occurring at K ′ (traveling frame) origin—Emission 

Theory—receding frames “forward scenario” 
 

The speed 
K K
c
′→
′  and 

K K
c
′→

 of a light signal traveling from K ′  to K  with respect to K ′  and 

,K  would be c  and ,c v−  respectively.  

Applying Eq. (1) for the perceived time interval in K  from the K ′  perspective, we get 

 

.

1 1
K K

t t
t

v v

c c
′→

′ ′
= =

− −
′

 

 

Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (2) 

as 

 

1 1 ;
K K

v v
t t t

c c v
′→

    ′ ′ = + = +    −  
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.

1

t
t

v

c

′
=

−

                                                                 (10) 

 

Therefore, the perceived time interval in K  is the same from the perspective of both frames. 

It follows that the time interval measured at the origin of the traveling frame K ′  between two 

events will be perceived as a time interval in the stationary frame ,K  dilated by a factor of

1(1 / )v c −− . 

 

3.1.1.1.1 Space alteration 

If the time t ′  measured at the traveling frame K ′  origin was for an event that has taken place at 

a point of coordinate 0x ′ >  ( 0)x >  on the -x x ′  axis, then t ′  could be replaced by /x c′  and t  

by / ( )x c v−  in Eq. (10), yielding 

 

;
x x vt

c v c c

+ +
′

= +
−

 

 

1 ;
v

x x vt
c+ +

  ′ ′= − +   
                                                        (11) 

 

( )1 ;
v

x x vt
c+ +

  ′= − +   
                                                      (12) 

 

Equation (12) shows the -x coordinate contracted by the factor (1 / )v c−  with respect to its 

value ( )x vt′ +  given by the classical Galilean transformation. In fact, Eq. (11) can be physically 

deducted, since by the time the light signal, emitted from a distance x ′  with respect to ,K ′  reaches 

the origin of ,K ′  K ′  would have moved closer to the starting point, making the distance x ′  shorter 

with respect to .K  Let 
*x ′  be the perceived x ′  in .K  Then, we can write 

 

*
*

*

;

1 ,

vx
x x

c v

v
x x

c

′
′ ′= −

−

 ′ ′ = −   

 

 

and, since * ,x x vt′ ′= +  Eqs. (11) and (12) would follow. 

 

 

3.1.1.2 Change of duration for events occurring at K (traveling frame) origin—Emission 

Theory—receding frames “backward scenario” 
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If K  was considered to be the traveling frame, the speed 
K K
c

′→
′  and 

K K
c

′→
 of a light signal 

traveling from K  to K ′  with respect to K ′  and ,K  would be c v−  and ,c  respectively.  

Applying Eq. (3) for the perceived time interval τ ′  in K ′  from the K ′  perspective, we get 

 

1 1 .
K K

v v

c c v
τ τ τ

′→

    ′ = + = +   ′  −  
 

 

 .

1
v

c

τ
τ ′ =

−

                                                                            (13) 

Whereas, the same perceived time interval in K ′  from the perspective of ,K   is given by Eq. (4) 

as 

 

;

1
K K

v

c

τ
τ

′→

′ =

−

 

 

.

1
v

c

τ
τ ′ =

−

                                                                 (14) 

 

Therefore, the perceived time interval in K ′  is the same from the perspective of both frames. 

It follows that the proper time interval measured at the origin of the traveling frame K
(“backward scenario”) between two events will be perceived as a time interval in the stationary frame

K ′  dilated by a factor of 1(1 / ) ,v c −−  the same as the time dilation factor for the “forward 

scenario” (Eq. (10)). Hence the Emission Theory results in symmetry with respect to the reference 

frames as to the extent of the time dilation between the receding reference frames. 

 

3.1.1.2.1 Space alteration 

Let’s suppose the time τ  measured at  the traveling frameK  origin was for an event that has 

taken place initially at a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis.  Then, τ  could be 

replaced by /x c−  and τ ′  by / ( )x c v− −  in Eq. (14), yielding 

 

;

v

c

x x v

c c v c

τ
τ τ

τ
− − −

′
′= −

′ ′− − −
= +
−
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1 .
v

x x v
c

τ
− −

 ′ = − −   
                                                        (15)    

 

1 1 .
v v

x x v
c c

τ
− −

     ′ ′ = − − −        
 

 

1 ( ).
v

x x v
c

τ
− −

 ′ ′= − −   
                                                          (16) 

 

Equation (16) shows the -x ′ coordinate contracted by the factor (1 / )v c−  with respect to its 

value ( )x vτ′−  given by the classical Galilean transformation. In fact, Eq. (15) can be physically 

deducted, since by the time the light signal, emitted from a distance x   with respect to ,K  reaches the 

origin of ,K  K  would have moved closer to the starting point, making the distance x  shorter with 

respect to .K ′  Let 
*x  be the perceived x  in .K  Then, we can write 

 

*
* ;

vx
x x

c v
= −

−
 

 

* 1
v

x x
c

  = −   
 

 

and, since * ,x x vτ′ = −  Eqs. (15) and (16) would follow. 

Comparing Eqs. (11) & (12) with Eqs. (15) & (16), it is observed that the Emission Theory results 

in symmetry with respect to the reference frames as to the extent of the length contraction perceived 

between the receding reference frames. 

 

 

3.1.1.3 Doppler Effect 

 

3.1.1.3.1 Forward Scenario 

If the proper time interval in K ′  represents the period of a periodic event (e.g., wave, vibration or 

rotation period), then the relation between the actual and perceived frequency of the event can be 

determined from Eq. (10) as   

 

 1 ,
v

f f
c

 ′ = −   
                                                                      (17) 

where, f  and f ′  are the perceived and actual frequency with respect to an observer in K  and ,K ′

respectively. Hence, the perceived frequency is lower than the proper frequency in the receding source 

frame. 
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Equation (17) expresses the Doppler effect for the case of a receding source from the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c  with respect to the receding 

source, c v−  with respect to the observer, when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq.(17) leads to 

 

1 ;
c v c v

cλ λ

 −  = −  ′  
 

.λ λ′=  

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

3.1.1.3.2 Backward Scenario 

If the proper time interval in K  represents the period of a periodic event, then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (14)  as   

            

1 .
v

c
φ φ

 ′ = −   
                                                                  (18) 

 

where, φ′  and φ  are the perceived and actual frequency with respect to an observer in K ′  and ,K

respectively, for a source in .K   

Equation (18) expresses the Doppler effect for the case of a receding source from the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c v−  with respect to the observer, 

c with respect to the receding source, when light travels towards the observer. 

It follows that the Doppler Effect is symmetrical relative to the receding reference frames under 

the Emission Theory assumption. 

 

 

3.1.2 Case of Approaching Reference Frames—Emission Theory  
 

 

3.1.2.1 Change of duration for events occurring at K ′ (traveling frame) origin—Emission 

Theory—approaching frames “forward scenario” 

 

In this case, ,
K K
c c
′→
′ =  and .

K K
c c v
′→
= +  Applying Eq. (6) for the perceived time interval in 

K  from the K ′  perspective, we get 

 

;

1 1
K K

t t
t

v v

c c
′→

′ ′∆ ∆
∆ = =

+ +
′

                                                        (19) 
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Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (7) 

as 

 

1 1 .
K K

v v
t t t

c c v
′→

    ′ ′ ∆ = ∆ − = ∆ −    +  
 

 

.

1

t
t

v

c

′∆
∆ =

+

                                                                  (20) 

 

Therefore, the perceived time interval in K  is the same from the perspective of both frames. 

 

3.1.2.1.1 Space alteration 

If the time t ′  measured at the traveling frameK ′  origin was for an event that has taken place at a 

point of coordinate 0x ′ >  ( 0)x >  on the -x x ′  axis, then t ′∆  could be replaced by / ,x c′∆  and 

t∆  by / ( )x c v∆ +  in Eq. (20), yielding 

 

1 ;
v

x x v t
c+ +

  ′ ′∆ = + ∆ − ∆   
                                                   (21) 

 

( )1 ;
v

x x v t
c+ +

  ′∆ = + ∆ − ∆   
                                                 (22) 

 

Equation (22) shows the -x coordinate expanded by the factor (1 / )v c+  with respect to its 

value ( )x v τ′∆ − ∆  given by the classical Galilean transformation. In fact, Eq. (21) can be 

physically deducted, since by the time the light signal, emitted from a distance x ′  with respect to ,K ′  

reaches the origin of ,K ′  K ′  would have moved farther from the starting point, making the distance 

x ′  longer with respect to .K  Let 
*x ′  be the perceived x ′  in .K  Then, we can write 

 

*
*

*

;

1 ,

vx
x x

c v

v
x x

c

′
′ ′= +

+

 ′ ′ = +   

 

 

and, since 
*x x v t′ ′∆ = ∆ − ∆ for approaching frames, Eqs. (21) and (22) would follow. 

 

3.1.2.1.2 Receding–approaching frames 

We note from Eqs. (10) and (20) that if the frames receded for a certain proper time interval 
o
t ′∆  

and then approached for an equal proper  time interval, then the total perceived time interval in K  

would become 
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,

1 1

o o
t t

t
v v

c c

′ ′∆ ∆
∆ = +

− +

 

2 2

2 2

2
,

1 1

o
t t

t
v v

c c

′∆ ′∆
∆ = =

− −

 

with a net dilation factor of ( )
1

2 21 / .v c
−

−   

 

 

3.1.2.2 Change of duration for events occurring at K (traveling frame) origin—Emission 

Theory—approaching frames “backward scenario” 

 

In this case, ,
K K
c c

′→
=  and .

K K
c c v

′→
′ = +  Applying Eq. (8) for the perceived time interval 

τ′∆  in K ′  from the K ′  perspective, we get 

 

1 1 ;
K K

v v

c c v
τ τ τ

′→

    ′ ∆ = ∆ − = ∆ −   ′  +  
 

 

 .

1
v

c

τ
τ

∆
′∆ =

+

                                                                         (23) 

Whereas, the same perceived time interval in K ′  from the perspective of ,K   is given by Eq. (9) 

as 

 

;

1
K K

v

c

τ
τ

′→

∆
′∆ =

+

 

 

.

1
v

c

τ
τ

∆
′∆ =

+

                                                                  (24) 

 

Therefore, the perceived time interval in K ′  is the same from the perspective of both frames. 

It follows that the proper time interval measured at the origin of the traveling frame K

(“backward scenario”) between two events will be perceived as a time interval contracted in K ′  by a 

factor of 
1(1 / ) ,v c −+  the same as the time contraction factor in K  for the “forward scenario” (Eq. 

(20)).  Hence, the time contracted for approaching frames is symmetrical with respect to the reference 

frames in the case when the Emission Theory is adopted. 
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3.1.2.2.1 Space alteration 

Let’s suppose the time τ  measured at K  origin was for an event that has taken place initially at 

a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis.  Then, τ  could be replaced by /x c−  and 

τ′  by / ( )x c v− +  in Eq. (44), yielding 

 

1 ;
v

x x v
c

τ
− −

 ′ ∆ = + ∆ + ∆   
                                                      (25) 

 

 ( )1 .
v

x x v
c

τ
− −

 ′ ′∆ = + ∆ + ∆   
                                                        (26) 

Equation (26) shows the -x ′ coordinate expanded by the factor (1 / )v c+  with respect to its 

value ( )x v τ ′∆ + ∆  given by the classical Galilean transformation for approaching frames. In fact, 

Eq. (25) can be physically deducted, since by the time the light signal, emitted from a distance x  with 

respect to ,K  reaches the origin of ,K  K  would have moved farther from the starting point, making 

the distance x  longer with respect to .K ′  Let 
*x  be the perceived x  in .K ′  Then, we can write 

 

*
*

*

;

1 ,

vx
x x

c v

v
x x

c

= +
+

  = +   

 

 

and, since 
*x x v τ′∆ = ∆ + ∆ for approaching frames, Eqs. (25) and (26) would follow. 

Comparing Eqs. (21) & (22) with Eqs. (25) & (26), it is observed that the Emission Theory results 

in symmetry with respect to the reference frames as to the extent of the length expansion perceived 

between the approaching reference frames. 

 

3.1.2.2.2 Receding–approaching frames 

We note from Eqs.(14)  and (24) that if the frames receded for a certain proper time interval 
o
τ∆  

and then approached for an equal proper  time interval, then the total perceived time interval in K ′  
would become 

 

2 2

2 2

2
,

1 1

o

v v

c c

τ τ
τ

∆ ∆
′∆ = =

− −

 

with a net dilation factor of ( )
1

2 21 / ,v c
−

−   

 

symmetrical with respect to the “forward scenario”, where K ′ is the traveling frame. 
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3.1.2.3 Doppler Effect 

 

3.1.2.3.1 Forward Scenario 

If the proper time interval in K ′  represents the period of a periodic event (e.g., wave, vibration or 

rotation period), then the relation between the actual and perceived frequency of the event can be 

determined from Eq. (20) as   

 

 1 ,
v

f f
c

 ′ = +   
                                                                        (27) 

where, f  and f ′  are the perceived and actual frequency with respect to an observer in K  and ,K ′

respectively. Hence, the perceived frequency is higher than the proper frequency in the approaching 

frame. 

Equation (27) expresses the Doppler effect for the case of a source approaching the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c  with respect to the source, 

c v+ with respect to the observer, when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq.(27) leads to 

 

1 ;

.

c v c v

cλ λ

λ λ

 +  = +  ′  

′=

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

3.1.2.3.2 Backward Scenario 

If the proper time interval in K  represents the period of a periodic event, then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (24)  as   

            

1 .
v

c
φ φ

 ′ = +   
                                                                   (28) 

 

where, φ′  and φ  are the perceived and actual frequency with respect to an observer in K ′  and ,K

respectively, for a source in .K   

Equation (28) expresses the Doppler effect for the case of an approaching source to the observer 

at a uniform velocity ,v  under the assumption that the speed of light is c v+  with respect to the 

observer, c with respect to the approaching source, when light travels towards the observer. 

It follows that the Doppler Effect is symmetrical relative to the approaching reference frames 

under the Emission Theory assumption. 
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3.2 ETHER THEORY  
 

In this conjecture, the speed of light is constant with respect to the rest frame of the ether, an 

assumed propagation medium for light. Let c  be the speed of light with respect to ,K  considered to 

be the ether rest frame.  

 

 

3.2.1 Case between the Ether and a Receding Frame  
 

 

3.2.1.1 Change of duration for events occurring at K ′ (traveling frame) origin—Ether Theory—

receding frames “forward scenario”  

 

In this case, ,
K K
c c v
′→
′ = +  and .

K K
c c
′→
=  Applying Eq.(1) for the perceived time interval in 

K  from the K ′  perspective, we get 

 

 

1 .

1 1
K K

t t v
t t

v v c

c c v
′→

 ′ ′ ′ = = = +   
− −
′ +

                                            (29) 

 

Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (2) 

as 

 

1 1 .
K K

v v
t t t

c c
′→

    ′ ′ = + = +      
                                                   (30) 

 

Therefore, the perceived time interval in K  is the same from the perspective of both frames. 

It follows that the time interval measured at the origin of the traveling frame K ′  between two 

events will be perceived dilated in K  by a factor of (1 / )v c+ . 

 

3.2.1.1.1 Space alteration 

Let’s suppose the time t ′  measured at K ′  origin was for an event that has taken place at a point 

of coordinate 0x ′ >  ( 0)x > on the -x x ′  axis.  Then, t ′  could be replaced by / ( )x c v′ +  and t  

by /x c  in Eq. (30), yielding 

;
x x vt

c c v c

′ ′
= +
+

 

 

;

1

x
x vt

v

c

′
′= +

+

                                                               (31) 
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1
( ).

1

x x vt
v

c

′= +

+

                                                           (32) 

Equation (32) shows the -x coordinate contracted by the factor 
1(1 / )v c −+  with respect to its 

value ( )x vt′ +  given by the classical Galilean transformation. In fact, Eq. (31) can be physically 

deducted, since by the time the light signal, emitted from a distance x ′  with respect to ,K ′  reaches 

the origin of ,K ′  K ′  would have moved closer to the starting point, making the distance x ′  shorter 

with respect to .K  Let 
*x ′  be the perceived x ′  in .K  Then, we can write 

 

*
*

*

;

,

1

vx
x x

c

x
x

v

c

′
′ ′= −

′
′ =

+

 

 

and, since 
* ,x x vt′ ′= +  Eqs. (31) and (32) would follow. 

 

 

3.2.1.2 Change of duration for events occurring at ether frame K (traveling frame) origin—

Ether Theory—receding frames “backward scenario” 

 

The ether frame K  is considered to be the “traveling” frame where an event  proper time interval 

τ  is measured.  

 In this case, ,
K K
c c

′→
=  and .

K K
c c v

′→
′ = −  Applying Eq. (3) for the perceived time interval 

τ′  in K ′  from the K ′  perspective, we get 

 

 

 

1 1 .
K K

v v

c c v
τ τ τ

′→

    ′ = + = +   ′  −  
 

 

 .

1
v

c

τ
τ ′ =

−

                                                                            (33) 

Whereas, the same perceived time interval in K ′  from the perspective of ,K   is given by Eq. (4) 

as 
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;

1
K K

v

c

τ
τ

′→

′ =

−

 

 

.

1
v

c

τ
τ ′ =

−

                                                                  (34) 

 

Therefore, the perceived time interval in K ′  is the same from the perspective of both frames. 

It follows that the proper time interval measured at the origin of the frame K (“backward 

scenario”) between two events will be perceived as a time interval dilated in K ′  by a factor of 

1(1 / ) ,v c −−  as opposed to the time dilation factor of (1 / )v c+  for the “forward scenario”. 

Hence, the time dilation is asymmetrical with respect to the reference frames in the case when the 

Ether Theory is adopted. 

 

3.2.1.2.1 Space alteration 

Let’s suppose the time τ  measured at K  origin was for an event that has taken place initially at 

a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis.  Then, τ  could be replaced by /x c−  and 

τ ′  by /x c v− −  in Eq. (34), yielding 

 

;

v

c

x x v

c c v c

τ
τ τ

τ

′
′= −

′ ′− − −
= +
−

 

 

1 .
v

x x v
c

τ
 ′ = − −   

                                                           (35)    

 

1 1 .
v v

x x v
c c

τ
     ′ ′ = − − −        

 

 

1 ( ).
v

x x v
c

τ
 ′ ′= − −   

                                                          (36) 

 

Equation (36) shows the -x ′ coordinate contracted by the factor (1 / )v c−  with respect to its 

value ( )x vτ′−  given by the classical Galilean transformation. In fact, Eq. (35) can be physically 

deducted, since by the time the light signal, emitted from a distance x   with respect to ,K  reaches the 

origin of ,K  K  would have moved closer to the starting point, making the distance x  shorter with 

respect to .K ′  Let 
*x  be the perceived x  in .K ′  Then, we can write 
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*
* ;

vx
x x

c v
= −

−
 

 

* 1 ,
v

x x
c

  = −   
 

 

and, since 
* ,x x vτ′ = −  Eqs. (31) and (32) would follow. 

 

 

3.2.1.3 Doppler Effect 

 

3.2.1.3.1 Forward Scenario 

If the proper time interval in K ′  represents the period of a periodic event (e.g., wave, vibration or 

rotation period), then the relation between the actual and perceived frequency of the event can be 

determined from Eq. (29)  as   

            

1

1 .
v

f f
c

−
 ′ = +   

                                                                   (37) 

 

where, f  and f ′  are the perceived and actual frequency with respect to an observer in K  and ,K ′

respectively, for a source in .K ′  Hence, the perceived frequency is lower than the proper frequency in 

the receding source frame. 

Equation (37) expresses the Doppler effect for the case of a receding source from the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c  with respect to the observer, 

c v+ with respect to the retreating source when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq.(37) leads to 

 

1

1 ;
c c v v

cλ λ

−
 +  = +  ′  

 

.λ λ′=  

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

3.2.1.3.2 Backward Scenario 

If the proper time interval in K  represents the period of a periodic event, then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (34)  as   

            

1 .
v

c
φ φ

 ′ = −   
                                                                     (38) 
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where, φ′  and φ  are the perceived and actual frequency with respect to an observer in K ′  and ,K

respectively, for a source in .K  Hence, the perceived frequency is lower than the proper frequency in 

the receding source frame. However, the decreasing factor is different from the case where the source 

is in the other frame. Therefore, the Doppler effect is asymmetrical in the case of the Ether Theory 

assumption. 

Equation (38) expresses the Doppler effect for the case of a receding source from the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c v−  with respect to the observer, 

c with respect to the retreating source, when light travels towards the observer. 

For the case of a light wave, Eq. (38) leads to 

 

1 ;
c v c v

cλ λ

 −  = −  ′  
 

.λ λ′=  

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

  

3.2.2 Case between the Ether and an Approaching Frame  
 

 

3.2.2.1 Change of duration for events occurring at K ′ (traveling frame) origin—Ether Theory—

approaching frames “forward scenario”  

 

In this case, ,
K K
c c v
′→
′ = −  and .

K K
c c
′→
=  Applying Eq. (6) for the perceived time interval in 

K  from the K ′  perspective, we get 

 

;

1 1
K K

t t
t

v v

c c v
′→

′ ′∆ ∆
∆ = =

+ +
′ −

 

 

1 .
v

t t
c

 ′ ∆ = ∆ −   
                                                             (39) 

 

Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (7) 

as 

 

1 .
K K

v
t t

c
′→

  ′∆ = ∆ −   
 

 

1 ;
v

t t
c

 ′ ∆ = ∆ −   
                                                          (40) 
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Therefore, the perceived time interval in K  is the same from the perspective of both frames. 

It follows that the time interval measured at the origin of the traveling frame K ′  between two 

events will be perceived as a time interval contracted in K  by a factor of (1 / ),v c−  in the case of 

approaching frames. 

 

3.2.2.1.1 Space alteration 

If the time t ′  measured at K ′  origin was for an event that has taken place at a point of 

coordinate 0x ′ >  ( 0)x >  on the -x x ′  axis, then t ′∆  could be replaced by / ( )x c v′∆ −  and 

t∆  by /x c∆  in Eq. (6), yielding 

 

;
x x v t

c c v c

′ ′∆ ∆ ∆
= −
−

 

 

;

1

x
x v t

v

c

′∆
′∆ = − ∆

−

                                                         (41) 

 

 ( )1
.

1

x x v t
v

c

′∆ = ∆ − ∆

−

                                                        (42) 

Equation (42) shows the -x coordinate expanded by the factor 
1(1 / )v c −−  with respect to its 

value ( )x v t′∆ − ∆  given by the classical Galilean transformation for approaching frames. In fact, 

Eq. (41) can be physically deducted, since by the time the light signal, emitted from a distance x ′  

with respect to ,K ′  reaches the origin of ,K ′  K ′  would have moved farther from the starting point, 

making the distance x ′  longer with respect to .K  Let 
*x ′  be the perceived x ′  in .K  Then, we can 

write 

 

*
*

*

;

,

1

vx
x x

c

x
x

v

c

′
′ ′= +

′
′ =

−

 

 

and, since * ,x x v t′ ′∆ = ∆ − ∆  Eqs. (41) and (42) would follow. 
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3.2.2.1.2 Receding–approaching frames 

We note from Eqs. (30) and (40) that if the frames receded for a certain proper time interval 
o
t ′∆  

and then approached for an equal proper  time interval, then the total perceived time interval in K  

would become 

 

1 1 ;
o o

v v
t t t

c c

     ′ ′ ∆ = ∆ + +∆ −        
  

 

2 ,
o

t t t′ ′∆ = ∆ = ∆  

 

exhibiting an invariant net time interval. 

 

 

3.2.2.2 Change of duration for events occurring at the ether frame K (traveling frame) origin—

Ether Theory—approaching frames “backward scenario”  

 

The ether frame K  is considered to be the “traveling” frame where an event  proper time interval 

τ  is measured.  

 In this case, ,
K K
c c

′→
=  and .

K K
c c v

′→
′ = +  Applying Eq. (8) for the perceived time interval 

τ′∆  in K ′  from the K ′  perspective, we get 

 

1 1 ;
K K

v v

c c v
τ τ τ

′→

    ′ ∆ = ∆ − = ∆ −   ′  +  
 

 

 .

1
v

c

τ
τ

∆
′∆ =

+

                                                                            (43) 

Whereas, the same perceived time interval in K ′  from the perspective of ,K   is given by Eq. (9) 

as 

;

1
K K

v

c

τ
τ

′→

∆
′∆ =

+

 

 

.

1
v

c

τ
τ

∆
′∆ =

+

                                                                (44) 

 

Therefore, the perceived time interval in K ′  is the same from the perspective of both frames. 

It follows that the proper time interval measured at the origin of the frame K (“backward 

scenario”) between two events will be perceived as a time interval contracted in K ′  by a factor of 
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1(1 / ) ,v c −+  as opposed to the time contraction factor of (1 / )v c−  in K  for the “forward 

scenario”. Hence, the time dilation is asymmetrical with respect to the reference frames in the case 

when the Ether Theory is adopted. 

 

3.2.2.2.1 Space alteration 

Let’s suppose the time τ  measured at K  origin was for an event that has taken place initially at 

a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis.  Then, τ  could be replaced by /x c−  and 

τ ′  by / ( )x c v− +  in Eq. (44), yielding 

 

1 ;
v

x x v
c

τ
 ′ ∆ = + ∆ + ∆   

                                                          (45) 

 

 ( )1 .
v

x x v
c

τ
 ′ ′∆ = + ∆ + ∆   

                                                             (46) 

Equation (46) shows the -x ′ coordinate expanded by the factor (1 / )v c+  with respect to its value 

( )x v τ ′∆ + ∆  given by the classical Galilean transformation for approaching frames. In fact, Eq. 

(45) can be physically deducted, since by the time the light signal, emitted from a distance x  with 

respect to ,K  reaches the origin of ,K  K  would have moved farther from the starting point, making 

the distance x  longer with respect to .K ′  Let 
*x  be the perceived x  in .K ′  Then, we can write 

 

*
*

*

;

1 ,

vx
x x

c v

v
x x

c

= +
+

  = +   

 

 

and, since 
* ,x x v τ′∆ = ∆ + ∆  Eqs. (45) and (46) would follow. 

 

3.2.2.2.2 Receding–approaching frames 

We note from Eqs. (33)  and (44)  that if the frames receded for a certain proper time interval 

o
τ∆  and then approached for an equal proper  time interval, then the total perceived time interval in 

K ′  would become 

 

2 2

2 2

2
,

1 1

o

v v

c c

τ τ
τ

∆ ∆
′∆ = =

− −
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with a net dilation factor of ( )
1

2 21 / ,v c
−

−  asymmetrical with respect to the “forward scenario”, for 

which no net time variation is exhibited when K ′  oscillated back and forth with respect to K  for 

equal proper time intervals.  

 

3.2.2.3 Doppler Effect 

 

3.2.2.3.1 Forward Scenario 

If the proper time interval in K ′  represents the period of a periodic event (e.g., wave, vibration or 

rotation period), then the relation between the actual and perceived frequency of the event can be 

determined from Eq. (39) as   

 

 

1

1 ,
v

f f
c

−
 ′ = −   

                                                                (47) 

where, f  and f ′  are the perceived and actual frequency with respect to an observer in K  and ,K ′

respectively. Hence, the perceived frequency is higher than the proper frequency in the approaching 

source frame. 

Equation (47) expresses the Doppler effect for the case of a source approaching the observer at a 

uniform velocity ,v  under the assumption that the speed of light is c  with respect to the observer, 

c v− with respect to the approaching source, when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq. (47) leads to 

 

1

1 ;
c c v v

cλ λ

−
 −  = −  ′  

 

.λ λ′=  

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

3.2.2.3.2 Backward Scenario 

If the proper time interval in K  represents the period of a periodic event, then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (44)  as   

            

1 .
v

c
φ φ

 ′ = +   
                                                                     (48) 

 

where, φ′  and φ  are the perceived and actual frequency with respect to an observer in K ′  and ,K

respectively, for a source in .K  Hence, the perceived frequency is higher than the proper frequency in 

the approaching source frame. However, the increasing factor is different from the case where the 
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source is in the other frame. Therefore, the Doppler effect is asymmetrical with respect to the 

approaching frames in the case of the Ether Theory assumption. 

Equation (48) expresses the Doppler effect for the case of an approaching source to the observer 

at a uniform velocity ,v  under the assumption that the speed of light is c v+  with respect to the 

observer, c with respect to the approaching source, when light travels towards the observer. 

It can be shown, for this case as well, that the perceived wave length of a light wave in the 

observer frame is the same as the emitted light wave in the moving source frame. 

 

     

3.2.3 Case between Two Reference Frames Receding From the Ether Frame 
o
K   

 

Here, our two inertial frames of reference are taken to be ( ) , , K x y z  and ( ), , K x y z′ ′ ′ ′  in relative 

translational motion. Let their origins be aligned along the overlapped -x  and -x ′  axes, and let v  be 

the velocity between K ′  and the ether frame ,
o
K  and w  the velocity between K ′  and .

o
K  

Therefore, the velocity between K  and K ′  is .w v−  Both frames are receding from the ether 

frame.  

Assume that K  and K ′  are overlapping at the time 0.t t ′= =  The event coordinates can then 

be considered as space and time intervals measured from the initial zero coordinates of the 

overlapped-frames event. 

 

 

3.2.3.1 Change of duration for events occurring at K ′ (traveling frame) origin—Ether Theory—

”forward scenario”  

 

Suppose a signal of an event (0,0,0)E ′  is emitted from K ′ origin at time t ′  with respect to 

,K ′ which will be perceived at time interval t  in .K  

The speed of the light signal traveling from K ′  to K  would be c w+  with respect to ,K ′  and 

also c v+  with respect to .K   

 

K ′  perspective  

From the perspective of ,K ′ the origin of K at the event occurring time is at a distance of 

( )w v t ′−  from that of .K ′  Let 
*t ′  be the time interval it takes the event signal to reach the origin of 

,K  from K ′  perspective. By that time, K ′  will have moved a further distance of 
*vt ′  away from 

,K  bringing the distance traveled by the signal to 
*( ) ( )w v t w v t ′′− + − with respect to .K ′  The 

time interval 
*t ′  can then be expressed as 

 

*
* ( ) ( )

,
w v t w v t

t
c w

′′− + −′ =
+

 

leading to 

 

* ( )
.

w v t
t

c v

′−′ =
+
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It follows that the event perception time interval t  in K  with respect to K ′will be given by 

  

* ;

( )
;

t t t

w v t
t t

c v

′′= +

′−
′= +

+

 

 

 

1
.

1

w

c w ct t t
c v v

c

  +  +  ′ ′ = =     +   +  

                                                 (49)                 

K  perspective 

Now, from the perspective of ,K  the origin of K ′ at the event occurring time is at a distance of 

( )w v t ′−  from that of .K  The signal will have traveled a distance of ( )w v t ′′−  at the speed of 

c v+  with respect to ,K ′  when it reaches K ′  origin. Therefore, the event will be perceived at time 

t  in ,K  given by     

 

( )
;

w v t
t t

c v

′−
′= +

+
 

 

1
,

1

w
c w ct t t
c v v

c

  +  +  ′ ′ = =     +   +  

 

 

 the same as from the perspective of .K ′   

It follows that the proper time interval measured at the origin of the traveling frame K ′  between 

two events will be perceived as a time interval dilated  in K  by a factor of ( ) / ( ),c w c v+ + when 

w v> , i.e. when the frames are receding (for frames traveling in the same direction) from each other.  

In case K ′  was traveling towards ,K  so as the frames were approaching each other, w  would be 

replaced by w−  in Eq. (49), resulting in time contraction by a factor of ( ) / ( ).c w c v− +  

If the frames receded for a certain proper time interval 
o
t ′∆  and then approached for an equal 

proper  time interval, then the total perceived time interval in  the stationary frameK  would become 

 

;
o o

c w c w
t t t

c v c v

   + −  ′ ′ ∆ = ∆ +∆     + +   
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2
,

1

o
t c t

t
c v v

c

′∆ ′∆
∆ = =

+
+

 

 

with a net contraction factor of ( )
1

1 / .v c
−

+   

 

3.2.3.1.1 Space alteration 

Let’s suppose the time t ′  measured at K ′  origin was for an event that has taken place at a point 

of coordinate 0x ′ >  ( 0)x > on the -x x ′  axis.  Then, t ′  could be replaced by / ( )x c w′ +  and t  

by / ( )x c v+  in Eq. (49), yielding 

 

;

;

1 1

x vt x wt

c v c c w c

x x
wt vt

v w

c c

′ ′
+ = +

+ +

′
′= + −

+ +

 

1
;

1 1 1

v

x x cwt vt
v w w

c c c

  + ′   = + −   + + +  

 

( )
;

1 1 1

( ) ;

x x t w v

v w w

c c c

c v c v
x x t w v

c w c w

′ −
= +

+ + +

   + +  ′  = + −     + +   

 

 

( ) ;
c v

x x w v t
c w+ +

 +  ′ ′= + −   + 
                                                        (50) 

 

  ( )( ) ;
c v

x x w v t
c w+ +

 +  ′= + −   + 
                                                     (51) 

 

Equation (51) shows the -x coordinate contracted by the factor ( ) / ( )c v c w+ +  with respect to 

its value given by the classical Galilean transformation. 
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3.2.3.2 Change of duration for events occurring at K  (traveling frame) origin—Ether Theory—

”backward scenario” 

 

Now, consider the case where the signal of an event (0,0,0)E  is emitted from K origin at time 

τ  with respect to ,K which will be perceived at time τ′  in .K ′  

The speed of the light signal traveling from K  to K ′  would be c w−  with respect to ,K ′  and 

also c v−  with respect to .K    

Using the above methodology, it can be shown that the perceived event duration in K ′  from the 

perspective of either frame would be given by 

 

( )
;

w v

c v

τ
τ τ

−
′ = +

−
               

 

            

1
.

1

v

c v c

c w w

c

τ τ τ

  −  −  ′ = =     −   −  

                                                 (52) 

 

It follows that the time interval measured at the origin of the traveling frame K  between two 

events will be perceived dilated in K ′  by a factor of ( ) / ( ),c v c w− − when w v> , i.e. when the 

frames are receding. 

Consequently, for the case of receding reference frames, the perceived time dilated would not be 

the same for the two cases when the traveling frame is considered to be K ′ in the first and K  in the 

second case. Thus, the perceived time dilation is not symmetrical in the case the Ether Theory is 

adopted. 

In case K ′  was traveling towards ,K  so as the frames were approaching each other, w  would be 

replaced by w−  in Eq. (52), resulting in time contraction by a factor of ( ) / ( ).c v c w− +   

If the frames receded for a certain proper time interval 
o
τ∆  and then approached for an equal 

proper  time interval, then the total perceived time interval in K ′  would become 

 

;
o o

c v c v

c w c w
τ τ τ

   − −  ′  ∆ = ∆ +∆     − +   
 

 

2 2 2 2

1 /
2 ,

1 /
o

c v v c
c
c w w c

τ τ τ
  − −   ′ ∆ = ∆ = ∆     − −   

 

 

asymmetrical with respect to the “forward scenario”, which exhibited a net contraction factor of  

1(1 / )v c −+ when the traveling frameK ′  oscillated back and forth with respect to the stationary 

frameK  for equal proper time intervals. 
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3.2.3.2.1 Space alteration 

Let’s suppose the time τ  measured at K  origin was for an event that has taken place at a point 

of coordinate 0x <  ( 0)x ′ < on the -x x ′  axis. Then, τ  could be replaced by / ( )x c v−  and τ ′  

by / ( )x c w′ −  in Eq.(52), yielding 

 

( ) ;
c w

x x w v
c v

τ
− −

 − ′ = − −   − 
                                                 (53) 

 

 

( ( ) ).
c w

x x w v
c v

τ
− −

 − ′ ′= − −   − 
                                              (54) 

 

Equation (54) shows the -x coordinate contracted by the factor ( ) / ( )c w c v− −  with respect to 

its value  given by the classical Galilean transformation. 

 

 

3.2.3.3 Doppler Effect 

 

3.2.3.3.1 Forward Scenario 

If the time interval represents the period of a periodic event (e.g., wave, vibration or rotation 

period) in ,K ′  then the relation between the actual and perceived frequency of the event can be 

determined from Eq. (49) as   

 

 ,
c v

f f
c w

 + ′ =    + 
                                                                           (55) 

where, f  and f ′  are the perceived and actual frequency with respect to an observer in K  and ,K ′

respectively. Hence, the perceived frequency is lower than the proper frequency in the receding source 

frame (i.e. when ).w v>  

Equation (55) expresses the Doppler effect for the case of both the source and observer are 

receding from the ether frame at the speeds of w  and ,v  respectively, and the source is receding from 

the observer at a uniform velocity ,w v−  under the assumption that the speed of light is c v+  with 

respect to the observer, c w+  with respect to the receding source, when light travels towards the 

observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq. (55) leads to 

 

;
c v c w c v

c wλ λ

 + + +  =   ′ + 
 

.λ λ′=  
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Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

3.2.3.3.2 Backward Scenario 

If the proper time interval in K  represents the period of a periodic event, then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (52)  as   

            

.
c w

c v
φ φ

 − ′ =    − 
                                                                 (56) 

 

where, φ′  and φ  are the perceived and actual frequency with respect to an observer in K ′  and ,K

respectively, for a source in .K  Hence, the perceived frequency is lower than the proper frequency in 

the receding (when )w v>  source frame.  However, the decreasing factor is different from the case 

where the source is in the other frame. Therefore, the Doppler effect is asymmetrical in the case of the 

Ether Theory assumption. 

Equation (56) expresses the Doppler effect for the case of both the source and observer are 

receding from the ether frame at the speeds of v  and ,w  respectively, and the source is receding from 

the observer at a uniform velocity ,w v−  under the assumption that the speed of light is c w−  with 

respect to the observer, c v−  with respect to the receding source, when light travels towards the 

observer. 

For the case of a light wave, assume λ′  and  λ  are the perceived and actual wave length with 

respect to K ′  and .K  Then, Eq. (56) leads to 

 

;
c w c v c w

c vλ λ

 − − −  =   ′ − 
 

.λ λ′ =  

 

Therefore, the perceived wave length of a light wave in the observer frame is the same as the 

emitted light wave in the moving source frame. 

 

 

3.3 SPECIAL RELATIVITY APPROACH 
 

In Special Relativity, light travels in the absence of a propagating medium at a constant speed 

with respect to all inertial reference frames. Let c  be the absolute speed of light with respect to both 

frames, K  and .K ′   

 

 

3.3.1 Case of Receding Reference Frames—Special Relativity 
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3.3.1.1 Change of duration for events occurring at K ′ (traveling frame) origin—Special 

Relativity—receding frames “forward scenario”  

 

The speed 
K K
c
′→
′  or 

K K
c
′→

 of a light signal traveling from K ′  to K  with respect to K ′  or ,K  

would be c .  

Applying Eq. (1) for the perceived time interval in K  from the K ′  perspective, we get 

 

.

1 1
K K

t t
t

v v

c c
′→

′ ′
= =

− −
′

                                                         (57) 

 

Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (2) 

as 

 

1 1 .
K K

v v
t t t

c c
′→

    ′ ′ = + = +      
                                                     (58)                              

 

Each of the parameters t ′  and t  represents the same entity in Eqs. (57) and  (58) (i.e., t ′  

represents the time interval between two successive events, measured in the traveling frame ,K ′  and 

t  the corresponding time interval as perceived in the stationary frame .K  It follows that 

 

(1 ),

1

t v
t t

v c

c

′
′= = +

−

 

 

leading to 0,v =  unless an ad hoc assumption is made such that t  is transformed by a certain factor 

(say )γ with respect to ,K  and by another factor (say )β  with respect to ,K ′  leading to the equation 

 

1 ;

1

t v
t t

cv

c

β
γ
 ′ ′ = = +     −   

 

 

which can be satisfied only if 1 / ,β γ=  resulting in 

 

2

2

1
.

1
v

c

γ =

−

 

 

Therefore, 

;

1

t
t

v

c
γ

′
=
  −   
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1 ;
v

t t
c

γ
 ′ = +   

                                                             (59)                                              

 

;

1

t
t

v

c
γ

′ =
  +   

 

1 .
v

t t
c

γ
 ′ = −   

                                                             (60) 

 

It follows that the proper time interval measured at the origin of the traveling frame K ′  between 

two events will be perceived as a time interval dilated in K  by a factor of (1 / ),v cγ + or 

1[ (1 / )] .v cγ −−   

It is critical to note that both equations (59) and (60) describe the time dilation in K  of a proper 

time interval 0t ′ >  measured in K ′origin ( 0)x ′ =  and perceived as t  (time interval) in K origin. 

In one equation, the perceived time interval t  is written in terms of the proper time interval ;t ′  in the 

other one, t ′  in terms of .t  In other words, the time interval t ′  in Eq. (60) should not be interpreted 

as the perceived time interval in K ′  of a proper time interval t  in ,K  which must be dilated as well 

(discussed in next section), yet Eq. (60) exhibits time contraction for the proper time interval t ′ (with 

respect to the dilated time interval ).t  Equations (59) and (60) are equivalent (the same equation 

written in two different forms), so proper time in one remains proper in the other, so as the perceived 

time. One should not be misled by the swapped primed variables and the sign change of the velocity, 

in going from Eq. (59) to Eq. (60), which is merely a property of the expression ( )1 /v cγ −  or 

( )1 / ,v cγ + the inverse of which would be simply obtained by reversing the sign of the v  term! 

 

 

3.3.1.2 Change of duration for events occurring at K (traveling frame) origin—Special 

Relativity—receding frames “backward scenario”  

 

Using the above methodology in reaching Eqs. (59) and (60), it can be easily verified that a proper 

time interval τ  in K  will be perceived as a dilated time interval τ ′  in ,K ′  according to the 

equations  

 

1 ;

1

v

cv

c

τ
τ γτ

γ

 ′ = = +     −   

                                                       (61) 

 

1 .

1

v

cv

c

τ
τ γτ

γ

 ′ ′ = = −     +   

                                                  (62) 
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In the case of receding frames, the perceived time interval is always dilated with respect to the 

proper time interval. 

It follows that the proper time interval measured at the origin of the traveling frame K

(“backward scenario”) between two events will be perceived as a time interval dilated in K ′  by a 

factor of (1 / ),v cγ +  or 
1[ (1 / )] ,v cγ −− the same as the time dilation factor in K  for the 

“forward scenario” (Eq.(59)). Hence the Special Relativity results in symmetry with respect to the 

reference frames as to the extent of the time dilation between the receding reference frames. 

 

 

3.3.1.3 Lorentz Transformation 

 

3.3.1.3.1 Forward Scenario 

Now, back to Eq.  (59), if the time t ′  measured at K ′  origin was for an event that has initially 

taken place at a point of coordinate 0x ′ >  ( 0)x >  on the -x x ′  axis, then t ′  could be replaced by 

/ ,x c′  in the last term of Eq. (59), and  t  by /x c  in the last term of Eq. (60), to yield 

 

2
.

vx
t t

c
γ +
 ′  ′= +    

                                                               (63) 

 

2
.

vx
t t

c
γ +
  ′ = −    

                                                               (64) 

 

Equations (63) and (64) are limited to K ′  proper events with positive x  and x ′  coordinates, and 

not applicable for events having 0x ′ =  when 0t ′ > ( 0x =  when 0)t > —in which case Eqs. 

(59) and (60) should be used—since they were obtained under x ct′ ′=  and  ,x ct=  which returns 

0t ′ =  and 0t =   for 0x ′ =  and 0,x =  respectively. Letting 0x ′ =  in Eq. (63) (or 0x =  in 

Eq. (64)) returns the wrong result t tγ ′=  (or ).t tγ′ =   

Now, replacing t  and t ′  with /x c  and /x c′  in Eqs. (59) and (60), yields 

 

 ( ),x x vtγ
+ +

′ ′= +                                                                      (65) 

( ),x x vtγ
+ +
′ = −                                                               (66) 

 

exhibiting perceived length expansion in .K   

Equations (63) to (66) are the Lorentz transformation equations, the basis of the special relativity 

theory.
2,3

 However, these equations are derived under the assumption x ct′ ′=  and .x ct=  i.e. they 

are limited to K ′  proper events with positive x  and x ′  coordinates. Indeed, it has been shown in 

related studies that the Lorentz transformation equations result in mathematical contradictions when 

applied for co-local or simultaneous events.4 5 6  

It should be emphasized again that equation (63) and its converse (64) describe the time dilation 

in K  of a proper time interval t ′  measured in the traveling frame K ′  for an event having 0,x ′ >  
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and perceived as t  (perceived time interval) in K  at a corresponding 0.x >  Eq. (65) and its 

converse (66) are the corresponding space transformation equation, applicable in the same space 

coordinate domain. 

 

3.3.1.3.2 Backward Scenario 

Similarly, if the “reversed” proper time interval τ  measured at the traveling frameK  origin was 

for an event that has initially taken place at a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis, 

then τ  and τ′  may be replaced by /x c−  and /x c′−  in  Eqs. (61) and (62), respectively, leading 

to 

 

2
,

vx

c
τ γ τ −

  ′ = −   
                                                                 (67) 

 

2
,

vx

c
τ γ τ −

 ′  ′= +   
                                                                (68) 

 

and consequently, 

 

( ),x x vγ τ
− −
′ = −                                                                     (69) 

( ).x x vγ τ
− −

′ ′= +                                                             (70) 

 

exhibiting perceived length expanded in .K ′   

Equations (67) to (70) are limited to the traveling frame K  proper events with negative x  and 

x ′  coordinates, and not applicable for events having 0x =  when 0τ > ( 0x ′ =  when 0)τ ′ > —

in which case Eqs. (61) and (62) should be used—since they were obtained under x cτ= −  and  

,x cτ′ ′= −  which returns 0τ =  and 0τ ′ =  for 0x =  and 0,x ′ =  respectively. Letting 0x =  

in Eq. (64) (or 0x ′ =  in Eq.(63)) returns the wrong result τ γτ′ =  (or ).τ γτ ′=   

Lorentz transformation Eqs.  (63) – (66) and its reversed Eqs. (67) – (70) take the same form, but 

with different domains,  i.e. with the difference being that in the first set, where the proper time 

interval is considered as t ′  in the traveling frame ,K ′  perceived in the stationary frame K  as ,t  the 

terms x ct=  and  x ct′ ′=  are positive and embedded in the equations, whereas x cτ= −  and 

x cτ′ ′= −  are negative and embedded in the second set, where the proper time interval is considered 

as τ  in the traveling frame K  and perceived in the stationary frame K ′  as .τ ′  Therefore, the sets of 

Lorentz transformation equations given by Eqs. (63) – (66) and  Eqs. (67) – (70) may be replaced with 

the former set with eliminating the “+” and “-” indices, keeping in mind the above coordinate 

application domains. Hence, the Lorentz Transformation equations interpretation changes depending 

on which frame is considered as the “traveling” one (i.e., the “traveling” frame in which the proper 

time is measured). Lorentz Transformation is restricted to positive x  and x ′  coordinates when K ′  is 
taken as the traveling frame (Eqs. (63) and (65) become the principle transformation equations for this 

case; Eqs. (64) and (66) are their equivalent equations in the reversed form), and to negative 

coordinates when K  is taken as the traveling frame (Eqs. (64) and (66) become the principle 
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“reversed” transformation equations for this case; Eqs. (63) and (65) are their equivalent equations in 

the reversed form). This can be easily checked by plugging numerical values in the Lorentz 

Transformation time equations. For instance, assume 1,  0.5,c v= =  hence 1.15,γ =  and let an 

event take place in K ′  at 1x ′ = , 1.t ′ =  Using Eq.  (63), the corresponding time in K  would be 

1.73,t = dilated in agreement with Eq. (59). However, if the same event took place at 1,x ′ = −  Eq. 

(63) yields 0.58,t =  an apparent time contraction, in disagreement with the basic Eq. (59). In fact, 

this apparent time contraction is justified by the fact this event’s point location ( 1)x ′ = −  in K ′  is 

approaching the origin of K that would receive signals from this approaching point with contracted 

time intervals, as demonstrated in the later section related to approaching frames. The contracted time 

0.58t = is in agreement with the respective apparent time contraction equation (Eq. (75)) for 

approaching frames given in the subsequent related section. This constitutes a clear self-contradiction 

within the Special Relativity that claims time dilation should always occur for a moving reference 

whether it was approaching or receding from the observer. 

Similar checking can be done using Eq. (67) with an event taking place in K  at 1,x = −  

1,τ =  to obtain a dilated time 1.73,τ′ =  in agreement with Eq. (61) whereas an erroneous  

contracted time of 0.58τ ′ =  would be obtained, had the event taken place at 1.x =    

 

3.3.1.3.3 Symmetry 

Considering the direct time transformation Eq. (59), and its reversed Eq. (61): 

 

1 ,    1 ,
v v

t t
c c

γ τ γτ
     ′ ′ = + = +        

 

 

we see they exhibit a total symmetry in regard to the perceived time dilation factor. When rewriting 

these equations in their reversed form,  

 

1 ,    1 ,
v v

t t
c c

γ τ γτ
     ′ ′ = − = −        

 

 

the primed and unprimed term are swapped, and the sign of the v  term is reversed, yet they do not 

represent the “reversed” transformation equations.  

Now, for co-local events not occurring at the origin of K ′  and K  for the forward and backward 

scenario, respectively, the above “direct” and “reversed” transformations would hold with 

;  ,x ct x ct′ ′= = and ;  ,x c x cτ τ′ ′= − =−   respectively, yielding the Lorentz transformation and 

its reversed, 

 

2 2
,    ,

vx vx
t t

c c
γ τ γ τ+ −
   ′    ′ ′ = + = −       

 

and in reversed form: 

 

2 2
,    .

vx vx
t t

c c
γ τ γ τ+ −
   ′   ′ ′ = − = +       
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Therefore, the equations of t  and t ′  represent the same transformation and can be obtained from 

each other by swapping the primed and unprimed terms and reversing the v  term sign, due merely to 

the property of the expression ( )1 /v cγ −  or ( )1 / ,v cγ + the inverse of which would be simply 

obtained by reversing the sign of the v  term! Taking account of the spatial coordinate sign, the 

equations of t  and τ ′ have total symmetry, and the  sign change of the v  term in τ ′  equation  is 

merely due to the replacement of x  with ,cτ− and not to the reversed direction of .v  

 

 

3.3.1.4 Doppler Effect 

 

3.3.1.4.1 Forward Scenario 

If the time interval represents the period of a periodic event (e.g., wave, vibration or rotation 

period) in K ′ (source), then the relation between the actual and perceived frequency of the event can 

be determined from Eq. (59) as   

 1 ;
v

f f
c

γ
 ′ = −   

                                                               (71) 

1 .
v

f f
c

γ
 ′ = +   

 

 

where, f  and f ′  are the perceived and actual (proper) frequency with respect to an observer in K  

and ,K ′ respectively. Hence, the perceived frequency is lower than the proper frequency in the 

receding source frame. 

Equation (71) expresses the relativistic Doppler Effect2 for the case of a receding source from the 

observer at a uniform velocity ,v  under the assumption that the speed of light is c  with respect to 

both the source and the observer when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq. (71) leads to 

 

1 ;
c c v

c

γ

λ λ

  = −  ′  
 

;

1
v

c

λ
λ

γ

′
=
  −   

 

 

1 .
v

c
λ γλ

 ′ = +   
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Therefore, the perceived wave length of a light wave in the observer frame is longer than the light 

wave emitted in the moving receding frame. 

 

3.3.1.4.2 Backward Scenario 

If the time interval represents the period of a periodic event in K (source), then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (61) as   

 

 

1 ;

1 .

v

c

v

c

φ γφ

φ γφ

 ′ = −   

 ′ = +   

                                                                        (72) 

where, φ′  and φ  are the perceived and actual (proper) frequency with respect to an observer in K ′  

and ,K respectively. Hence, the perceived frequency is lower than the proper frequency in the 

receding source frame, with same decreasing factor as for the reversed case where the source is in 

.K ′  Hence, the Doppler Effect is symmetrical under the Special Relativity assumptions. 

Equation (72) expresses the relativistic Doppler effect for the case of a receding source from the 

observer at a uniform velocity ,v  under the assumption that the speed of light is c  with respect to 

both the source and the observer when light travels towards the observer. 

 

 

3.3.2 Case of Approaching Reference Frames—Special Relativity  
 

 

3.3.2.1 Change of duration for events occurring at K ′ (traveling frame) origin—Special 

Relativity—approaching frames “forward scenario” 

 

In this case, .
K K K K
c c c
′ ′→ →
′ = =   Applying Eq. (6) for the perceived time interval in K  from 

the K ′  perspective, we get 

 

;

1 1
K K

t t
t

v v

c c
′→

′ ′∆ ∆
∆ = =

+ +
′

                                                      (73) 

 

Whereas, the same perceived time interval in K  from the perspective of ,K   is given by Eq. (7) 

as 

 

1 1 .
K K

v v
t t t

c c
′→

    ′ ′ ∆ = ∆ − = ∆ −      
                                         (74) 
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Each of the parameters t ′∆  and t∆  represent the same entities in Eqs. (73) and (74) (i.e., t ′∆  

represents the proper time interval between two successive events, measured in the traveling frame

,K ′  and t∆  the corresponding time interval as perceived in .K  It follows that 

 

1 ,

1

v t
t t

c v

c

  ′∆′ ∆ = ∆ − =      +   

 

 

leading to 0,v =  unless an ad hoc assumption is made such that t∆  is transformed by a certain 

factor (say )γ with respect to ,K  and by another factor (say )β  with respect to ,K ′  which leads to 

the equation 

 

1 ,

1

v t
t t

c v

c

β
γ

  ′∆′ ∆ = ∆ − =      +   

 

 

which can be satisfied only if 1 / ,β γ=  resulting in 

 

2

2

1
.

1
v

c

γ =

−

 

 

Therefore, 

 

1 ;
v

t t
c

γ
 ′ ∆ = ∆ −   

                                                            (75) 

 

;

1

t
t

v

c
γ

′∆
∆ =

  +   

 

1 ;
v

t t
c

γ
 ′ ∆ = ∆ +   

                                                            (76) 

 

.

1

t
t

v

c
γ

∆
′∆ =

  −   

 

 

It follows that the time interval measured at the origin of the traveling frame K ′  between two 

events will be perceived as a time interval contracted in K  by a factor of (1 / ),v cγ − or 

1[ (1 / )] ,v cγ −+  in the case of approaching frames.  
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It is critical to note that both equations (75) and (76) describe the time contracted in K  of a 

proper time interval 0t ′∆ >  measured in the traveling frame K ′  origin ( 0)x ′ =   and perceived as 

t∆  (time interval) in K  origin. In one equation, t∆  is written in terms of ;t ′∆  in the other one, 

t ′∆  in terms of .t∆  In other words, the proper time interval t ′∆  in Eq. (76) should not be 

interpreted as the perceived time interval in K ′  of a proper time interval t∆  in .K  Equations (75) 

and (76) are equivalent (the same equation written in two different forms), so proper time  in one 

remains proper in the other, so as the perceived time. One should not be misled by the swapped 

primed variables and the sign change of the velocity, in going from Eq. (75) to Eq. (76), which is 

merely a property of the expression ( )1 /v cγ −  or ( )1 / ,v cγ + the inverse of which would be 

simply obtained by reversing the sign of the v  term! 

 

3.3.2.1.1 Receding–approaching frames 

We note from Eqs. (59) and (75)  that if the frames receded for a certain proper time interval 

o
t ′∆  and then approached for an equal proper  time interval, then the total perceived time interval in 

K  would become 

 

1 1 ;
o o

v v
t t t

c c
γ γ

     ′ ′ ∆ = ∆ + + ∆ −        
 

 

2

2

2 ,

1

o

t
t t

v

c

γ
′∆′∆ = ∆ =

−

 

with a net dilation factor of ( )
1/2

2 21 / .v c
−

−  

3.3.2.2 Change of duration for events occurring at K (traveling frame) origin—Special 

Relativity—approaching frames “backward scenario” 

 

Using the above methodology in reaching Eqs. (75) and(76), it can be easily verified that a proper 

time interval τ∆  in the traveling frame K  will be perceived as a contracted time interval τ′∆  in 

,K ′  according to the equations  

 

1 ;
v

c
τ γ τ

 ′ ∆ = ∆ −   
                                                        (77) 

 

;

1
v

c

τ
τ

γ

∆
′∆ =

  +   

             

 

1 ;
v

c
τ γ τ

 ′ ∆ = ∆ +   
                                                         (78) 
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.

1
v

c

τ
τ

γ

′∆
∆ =

  −   

 

 

In the case of approaching frames, the perceived time interval is always contracted with respect to 

the proper time interval. 

It follows that the proper time interval measured at the origin of the traveling frame K  

(“backward scenario”) between two events will be perceived contracted in the stationary frameK ′  by 

a factor of (1 / ),v cγ −  or 
1[ (1 / )] ,v cγ −+  the same as the time contraction factor in K  for the 

“forward scenario” (Eq. (75)). Hence the Special Relativity results in symmetry with respect to the 

reference frames as to the extent of the perceived time contraction between the approaching reference 

frames. 

 

3.3.2.2.1 Receding–approaching frames 

We note from Eqs. (61) and (77)  that if the frames receded for a certain proper time interval 
o
τ∆  

and then approached for an equal proper  time interval, then the total perceived time interval in K ′  
would become 

 

2

2

2 ,

1

o

v

c

τ
τ γ τ

∆
′∆ = ∆ =

−

 

 

with a net dilation factor of ( )
1/2

2 21 / ,v c
−

−  

symmetrical with respect to the “forward scenario”.   

 

 

3.3.2.3 Lorentz Transformation 

 

3.3.2.3.1 Forward Scenario 

Now, back to Eq.  (75), If the time t ′  measured at K ′  origin was for an event that has initially 

taken place at a point of coordinate 0x ′ >  ( 0)x >  on the -x x ′  axis, then t ′∆  could be replaced 

by / ,x c′∆  in the last term of Eq. (75), and  t∆  by /x c∆  in the last term of Eq. (76), to yield 

 

2
.

v x
t t

c
γ +
 ′∆  ′∆ = ∆ −    

                                                               (79) 

 

2
.

v x
t t

c
γ +
 ∆  ′ ∆ = ∆ +    

                                                               (80) 

 

Equations (79) and (80) are limited to K ′  proper events with positive x  and x ′  coordinates, and 

are not applicable for 0 x ′∆ = with 0t ′∆ > ( 0x∆ =  with 0)t∆ > —in which case Eqs. (75) 
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and (76) should be used—since they were obtained under x c t′ ′∆ = ∆  and  ,x c t∆ = ∆  which 

returns 0t ′∆ =  and 0t∆ =   for 0x ′∆ =  and 0,x∆ =  respectively. Letting 0x ′∆ =  in Eq. 

(79) (or 0x∆ =  in Eq. (80)) returns the wrong result t tγ ′∆ = ∆  (or ).t tγ′∆ = ∆   

Now, replacing t∆  and t ′∆  with /x c∆  and /x c′∆  in Eqs. (75) and (76), yields 

 

 ( ).x x v tγ
+ +

′ ′∆ = ∆ − ∆                                                                    (81) 

( ).x x v tγ
+ +
′∆ = ∆ + ∆                                                             (82) 

 

exhibiting perceived length contracted in .K   

Equations (79) to (82) are the Lorentz transformation equations for the case of approaching 

reference frames. However, these equations are derived under the assumption x c t′ ′∆ = ∆  and 

.c t∆ = ∆  i.e. they are limited to K  proper events with positive x  and x ′  coordinates. 

It should be emphasized again that equation (79) and its converse (80) describe the time 

contraction in K  of a proper time interval t ′∆  measured in K ′  for an event having 0,x ′∆ >  and 

perceived as t∆  (perceived time interval) in K  at a corresponding 0.x∆ >  Eq. (81) and its 

converse (82) are the corresponding space transformation equations, applicable in the same space 

coordinate domain. 

 

3.3.2.3.2 Backward Scenario 

Similarly, if the proper time interval τ  measured at K  origin was for an event that has initially 

taken place at a point of coordinate 0x <  ( 0)x ′ <  on the -x x ′  axis, then then τ  and τ ′  may be 

replaced by /x c−  and /x c′−  in  Eqs. (77) and (78), respectively, leading to 

  

2

v x

c
τ γ τ −

 ∆  ′ ∆ = ∆ +   
                                                           (83) 

 

 

2

v x

c
τ γ τ −

 ′∆  ′∆ = ∆ −   
                                                          (84) 

 

( )x x vγ τ
− −
′∆ = ∆ + ∆                                                                (85) 

( )x x vγ τ
− −

′ ′∆ = ∆ − ∆                                                         (86) 

 

exhibiting perceived length contracted in .K ′  

Equations (83) to (86) are limited to K  proper events with negative x  and x ′  coordinates, and 

not applicable for events having 0x∆ =  when 0τ∆ > ( 0x ′∆ =  when 0)τ′∆ > —in which 

case Eqs. (77) and (78) should be used—since they were obtained under x c τ∆ =− ∆  and  
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,x c τ′ ′∆ =− ∆  which returns 0τ∆ =  and 0τ ′∆ =  for 0x∆ =  and 0,x ′∆ =  respectively. 

Letting 0x∆ =  in Eq. (83) (or 0x ′∆ =  in Eq. (84)) returns the wrong result τ γ τ′∆ = ∆  (or 

).τ γ τ′∆ = ∆   

Lorentz transformation Eqs. (79) – (82) and its reversed Eqs. (83) – (86) take the same form, but 

with different domains,  i.e. with the difference being that in the first set, where the proper time 

interval is considered as t ′∆  in the traveling frame ,K ′  the terms x c t∆ = ∆  and  x c t′ ′∆ = ∆  

are positive and embedded in the equations, whereas x c τ∆ =− ∆  and x c τ′ ′∆ =− ∆  are 

negative and embedded in the second set, where the proper time interval is considered as τ∆  in  the 

traveling frame .K  Therefore, Eqs. (79) – (82) can be used in place of Eqs(83) – (86), keeping in 

mind the above coordinate application domains. Hence, the Lorentz Transformation equations 

interpretation changes depending on which frame is considered as the “traveling” one (i.e., the frame 

in which the proper time is measured). Lorentz Transformation equations are restricted to positive x  

and x ′  coordinates when K ′  is taken as the “traveling” frame, and to negative coordinates when K  

is taken as the “traveling” one. 

 

3.3.2.3.3 Special Relativity Self-Contradiction 

Consider two receding inertial reference frames, and their Lorentz transformation time equation 

 

2
.

vx
t t

c
γ
 ′ ′ = +   

 

 

Let an event be taking place in K ′  at ,
o

x x′ ′=  satisfying .
o o
x ct′ ′= −  According to the above 

equation, the converted time in K  would be  

 

1 ,
o o

v
t t

c
γ
 ′ = −   

 

 

which is a time contraction. Nonconforming with the Special Relativity, the justification for this time 

contraction is that the point having a negative coordinate of 
o o
x ct′ ′= −  in K ′would be approaching 

the origin of K  when the frames are receding. 

Now, modifying the above scenario, suppose the origin of K ′  was shifted to the point with the 

original coordinate of ,
o
x ′  so that the above event would occur at K ′origin, now traveling towards 

.K  This origin shifting doesn’t change anything for an observer at K  origin, in so far as the event 

time and location are concerned. In this case, however, the above Lorentz time transformation 

equation yields 

 

,
o o
t tγ ′=  

 

a time dilation with respect to the K observer, in contradiction with the time contraction obtained in 

the former scenario, although the two scenarios are equivalent relative to the K observer. This 

contradiction disappears had we used the time transformation Eq. (75) for approaching frames when 

the proper time is measured at the traveling frame origin, namely  
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1 .
v

t t
c

γ
 ′ ∆ = ∆ −   

 

 

3.3.2.4 Doppler Effect 

 

3.3.2.4.1 Forward Scenario 

If the time interval represents the period of a periodic event (e.g., wave, vibration or rotation 

period), then the relation between the actual and perceived frequency of the event can be determined 

from Eq. (75) as   

 

 

1 ;

1 .

v
f f

c

v
f f

c

γ

γ

 ′ = +   

 ′ = −   

                                                                       (87) 

where, f  and f ′  are the perceived and actual (proper) frequency with respect to an observer in K  

and ,K ′ respectively. Hence, the perceived frequency is higher than the proper frequency in the 

approaching source frame. 

Equation (87) expresses the relativistic Doppler effect for the case of an approaching source to the 

observer at a uniform velocity ,v  under the assumption that the speed of light is c  with respect to 

both the source and the observer when light travels towards the observer. 

For the case of a light wave, assume λ  and  λ′  are the perceived and actual wave length with 

respect to K  and .K ′  Then, Eq. (87) leads to 

 

1 ;
c c v

c

γ

λ λ

  = +  ′  
 

;

1
v

c

λ
λ

γ

′
=
  +   

 

 

1 .
v

c
λ γλ

 ′ = −   
 

 

Therefore, the perceived wave length of a light wave in the observer frame is shorter than the light 

wave emitted in the approaching source frame. 
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3.3.2.4.2 Backward Scenario 

If the time interval represents the period of a periodic event in K (source), then the relation 

between the actual and perceived frequency of the event can be determined from Eq. (77) as   

 

 1 ;
v

c
φ γφ

 ′ = +   
                                                                (88) 

1 .
v

c
φ γφ

 ′ = −   
 

 

where, φ′  and φ  are the perceived and actual (proper) frequency with respect to an observer in K ′  

and ,K respectively. Hence, the perceived frequency is higher than the proper frequency in the 

approaching source frame, with same increasing factor as for the reversed case where the source is in 

.K ′  Hence, the Doppler Effect is symmetrical under the Special Relativity assumptions. 

Equation (88) expresses the relativistic Doppler effect for the case of an approaching source to the 

observer at a uniform velocity ,v  under the assumption that the speed of light is c  with respect to 

both the source and the observer when light travels towards the observer. 

Equations (87) and (88), deduced from the time contraction equations, show that the perceived 

frequency undergoes an increase (blue shift) for the case of approaching frames, in line with the 

Special Relativity predictions. Hence, the Special Relativity is in contradiction between time (wave 

period) dilation and frequency boosting. 

For the case of a light wave, assume λ′  and  λ  are the perceived and actual wave length with 

respect to K ′  and .K  Then, Eq. (88) leads to 

 

1 ;
c c v

c

γ

λ λ

  = +  ′  
 

;

1
v

c

λ
λ

γ

′ =
  +   

 

 

1 .
v

c
λ γλ

 ′ = −   
 

 

Therefore, the perceived wave length of a light wave in the observer frame is shorter than the light 

wave emitted in the approaching source frame. 

 

4 CONCLUSIONS 
 

Basic classical physical concepts of time and space were applied to analyze time and space 

alterations between inertial reference frames in relative motion, while considering event information 
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is ultimately conveyed through light—or electromagnetic—signals. As these alterations were only 

apparent, they were considered to be of the real time and space entities. The reference frame 

associated with the events proper time was labeled as traveling frame, and he events perceiving frame 

as stationary frame. Results were obtained for the different theories of light. Appendix A gives a 

tabulated summary of the results. The classical theories (Ether and Emission) showed consistency in 

term of alteration factors perceived from the perspective of both frames. i.e., a traveling frame proper 

time interval is perceived as a time interval altered by the same factor in the stationary frame from the 

perspective of both frames. However, with the Special Relativity second postulate being considered, 

the alteration factor depended on the reference frame, producing different values for the same 

perceived time interval, and requiring the introduction of artificial deformation factors; dilation with 

respect to one frame, contraction with respect to the other, in order to equate the terms (1 /v c− ) 

and  
1(1 / ) ,v c −+  where v  and c  are the relative motion velocity and light speed, respectively.  It 

was found that multiplying the first term and dividing the second term by ,γ  where 

( )
1

2 21 / ,v cγ
−

= −  i.e. assuming inverse deformations of the perceived time from the 

perspective of the reference frames, would correct the situation, and result in the same alteration 

factor from the perspective of either frame. The fact that the inverse of an alteration factor 

(1 / )v cγ −  or (1 / )v cγ +  is obtained by just reversing the v  sign,   

1[ (1 / )] (1 / ),v c v cγ γ−− = +  leads to a misconception of symmetry. 

The alteration factors revealed time dilation and length contraction when the frames were 

receding; whereas time contraction and length expansion factors were obtained for approaching 

frames, in the considered classical light theories. The time alteration factors (dilation for receding and 

contraction for approaching frames) resulted from the Emission Theory assumptions were applicable 

for the Special Relativity case, after being reduced by the relativistic factor .γ  Self-contradiction in 

the Lorentz transformation was revealed in connection with the time contraction for approaching 

frames.  

If the frames receded and then approached during equal proper time intervals, the total perceived 

time interval exhibited a net time dilation for the light emission and Special Relativity theory. For the 

ether assumption, either time dilated or invariant was obtained depending on whether the proper-time 

traveling frame was taken to be the ether frame. The frame round trip apparent time dilation factor 

was equal to γ  for the Special Relativity and 
2γ  for the classical case.  

The Special Relativity resulting space coordinate transformation equations showed apparent 

length expansion for receding frames, and contraction for approaching ones. 

Interchanging the “traveling”/ “stationary” reference frames resulted in different space and time 

alteration factors for the Ether Theory, while the same factors were retained for the emission and 

Special Relativity theories. However, when the time equations were expressed in terms of both space 

and time coordinates, under some restricted coordinate conditions, the spatial coordinate terms in the 

resulted time equations had opposite sign compared to the similar terms in the “backward scenario” 

equations. This was due to the fact that for the “backward scenario” frames arrangement, the time 

equations could be expressed in terms of space coordinates in the opposite direction to the “forward 

scenario”. 

The known classical and relativistic Doppler Effects were readily derived from the established 

alteration factors. The relativistic Doppler Effect in the case of approaching reference frames 

exhibited blue shift for light, in line with the determined time (period) contraction. Thus, the Special 

Relativity prediction of time dilation for both receding and approaching frames was contradicted. In 

addition, for the Special Relativity approach, in the case of light, the wavelength exhibited an increase 
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in the case of receding frames, whereas it decreased when the source was approaching. For all 

classical approaches, and in the case of light, the wave length was invariant.  

Available experimental data related to [apparent] time dilations, Doppler Effect, and non-

existence of preferred reference frame for light propagation (Michelson-Morley experiment) could 

then be analyzed vis-à-vis the classical theories in terms of time and space transformations. 
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ANNEX A 
 

Table A1 Results Summary 
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Relative 

Motion

↓ 

Assumed 

theory→        
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in relative motion at velocity
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Ether Theory, K =  ether, 
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Relative 

Motion

↓ 

Assumed 
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Relative 
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↓ 
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