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Abstract

In this paper group semirings using distributive lattices as
semirings is studied. The condition on the distributive lattices as well as
on the groups are given for the group semiring to have zero divisors,
idempotents, S-zero divisors, S-anti zero divisors and S-idempotents.
This is the first time such analysis has been carried out on these group
semirings.
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1 Introduction

In this paper the study of group
semirings is made using finite or infinite
distributive lattices. Group rings and semigroup
rings have been studied by several authors.
Both these structures are only studied over
rings with unit or a field. In case of group rings
several researchers have studied about the
zero divisors, idempotents, units etc;3,4.
Likewise study of semigrouprings that is
semigroups over rings or fields have been
studied and also special elements like zero
divisors, units  are analysed by several
researchers3,4.  However5 have studied
semirings and group semirings.

In this paper study of group semigroups
where the groups over semirings where

semirings are taken as distributive lattices is
carried out. This study is very new for group
semirings have been studied by researchers
very sparingly5. In this paper a systematic
study of this type is carried out. This paper
has four sections. Section one is introductory
in  nature. Section two studies group semirings
where semirings are chain lattices. Section
three introduces the new study of group
semirings by taking semirings which are
distributive lattices as well as Boolean
algebras.  The conclusions are given in the
final section.

2 Group Semirings of Semirings which are
chain lattices and their Properties :

Throughout this section Cn will denote
a chain lattice of length n and G will denote a



282 K. Jayshree, et al.

group under multiplication. First for the sake
of completeness the definition of group
semiring is recalled.

Definition 2.1: Let S = Cn be the
chain lattice, a semiring. G be any group.
The group semiring CnG = SG of the group
G over the semiring Cn ( = S) contains all
finite formal sums of the form
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where k =  i  j  G and k  S.

iii) For e = 1  G (the identity of G)

       1 si = si1= si  for all si  Cn and sig =
      gi for all g G.
iv)   For 1  Cn = S we have
      1  gi = gi  1 = gi  for all gi  G.
v)   For 0  Cn = S we have
     0  gi = gi  0 = 0 for all gi  G.
vi) Further 1  G  SG and S.1  SG
    (Here 1 of G and 1 of Cn=S is defined 1).

The identity element 1 of SG = CnG.
SG is a semiring.

Some examples of the group semirings
is given in the following.

Example 2.1:  Let

C7  =

be the semiring (chain semi lattice) and G =
 g | g20 = 1 be the cyclic group of order 20.
C7G be the group semiring of the group G over
the semiring C7.

Clearly number of elements in C7G is
finite so the group semiring is of finite order.
Since G is a commutative group so is the group
semiring C7G.
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Let
 = a2g6 + a3g2 + a4g + a5 and  = a3g7 +

 a4g6 + a1g + 1  C7G.
 +  = (a2g6 + a3g2 + a4g + a5) + (a3g7 + a4g6

+ a1g + 1)
         = a3g7 + (a2  a4) g6 + a3g2 + (a4  a1)g

+ a5  1
         =  a3g7 + a2g6 + a3g2 + a1g + 1  SG.

 ×  = (a2g6 + a3g2 + a4g + a5)  (a3g7 + a4g6

+ a1g + 1)
         = (a2  a3) g6  g7 + (a3  a3) g2  g7 +

(a4  a3) g  g7

+ (a5  a3) g7 + (a2  a4) g6  g6 + (a3

 a4) g2  g6

+ (a4  a4)g  g6
 + (a5  a4) g6 + (a2 

   a1) g6  g
+ (a3  a1)g2  g + (a4  a1) g  g + (a5

 a1) g
+ (a2  1) g6

 + (a3  1) g2 + (a4  1) g
   + a5  1

        = a3 g13
 + a3g9 + a4 g8 + a5g7 + a4g12 +

a4g8 + a4g7 + a5g6

+ a2g7 + a3g3 + a4g2 + a5g + a2g6 +
   a3g2 + a4g + a5

                = a3g13 + a4g12 + a3g9 + a4g8 + (a5g7 +
a4g7 + a2g7)
+ (a5g6 + a2g6) + a3 g3 + (a3g2 + a3g2)
  + (a5g + a4g) + a5

        = a3g13 + a4g12
 + a3g9 + a4g8 + a2g7 +

a2g6 + a3g3 + a3g2 + a4g + a5  C7G

This is the way sum and product are
performed of the group semiring using the

semiring as the chain lattice Cn.

Example 2.2: Let G = S3 the permu-
tation group of degree three and S = C10 be
the chain lattice. SG be the group semiring of
the group G over the semiring C10. Clearly order
of SG is finite but SG is non commutative.
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be the symmetric group of degree three.

Let  = a1p5 + a3p3 + a2p1 + a7 and  = a8p4 +
a2p3 + a5p1 + a6  CnG = SS3.
+= (a1p5 + a3p3 + a2p1 + a7) + (a8p4 + a2p3

+ a5p1 + a6)
        = a1p5 + a8p4 + (a3p3 + a2p3) + (a2p1 +

a5p1) + (a7 + a­6)
        = a1p5 + a8p4 + (a3  a2) p3 + (a2  a5)

p1 + a7  a6

        = a1p5 + a8p4 + a2p3 + a2p1 + a6  SS3
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Consider   
       = (a1p5 + a3p3 + a2p1 + a7)  (a8p4 +

a2p3 + a5p1 + a6)
       = (a1  a8) p5  p4 + (a3  a8) p3  p4 +

(a2  a8) p1  p4 + (a7  a8) p4 +
(a1  a2) p5  p3 + (a3  a2) p3  p3 +
(a2  a5) p1  p3 + (a7  a2)  p3 +
(a1  a5) p5  p1 + (a3  a5)p3 × p1 +
(a2  a5) p1 × p1 + (a3  a6)  p3 +
(a7  a5) p1 + (a1  a6) p5 + (a2  a6) p1

+ a7  a6

      = a8 + a8 p2 + a8 p3 + a8 p4 + a2p2 + a3 
1 + a5p4 + a7p3 + a5p3 + a5p5 + a5 .1
+ a7p1 + a6 p5 + a6p3 + a6p1 + a7

      = (a8  a7  a5) + (a8  a2) p2 + (a8 
a7  a5  a6)p3 + (a8  a5)p4

+ (a5  a6)p5   + (a6  a7) p1

      = a3 + a2p2 + a5p3 + a5p4 + a5p5 + a6p1 
SS3.   I

Now find   
      = (a8p4 + a2p3 + a5p1 + a6)  (a1p5 +a3p3

+ a2p1 + a7)
      = (a8  a1) p4p5 + (a2  a1) p3p5 + (a5

 a1) p1   p5 + (a6   a1) p5 +
(a8  a3)p4p3 +  (a2  a3) p3  p3 +
(a5  a3) p1  p3 + (a6  a3) p3  +
(a8  a2) p4  p1 + (a2  a2) p3  p1 +
(a5  a2) p1 p1 + (a6  a2) p1  +
(a8  a7) p4 + (a2  a7) p3 +   (a5 
a7) p1 + (a6  a7)

     = a8   1 + a2p1 + a5p2 + a6p5 + a8p1 + a3
1 + a5p4 +
a6p3 + a8p2 + a2p5 + a5  1 + a6p1 + a8p4

+ a7p3 + a7p1 + a7

     = (a8  a3  a5  a7) + (a2  a8  a6 

a7)p1 + (a5  a8)p2 + (a6  a2)p5

+ (a5  a8) p4 + (a6  a7) p3

     = a3 + a2p1 + a5p2 + a2p5 + a5p4 + a6p3 
SS3.  II

Clearly I and II are not equal so 
  for this ,   SS3, hence SS3 is a non
commutative group semiring of finite order.

The following proposition characterizes
the group semiring of a group G over the
semiring which is a chain lattice.

Proposition 2.1: Let Cn be a finite
chain lattice. G be a group and CnG be the
group semiring of the group G over the
semiring, Cn.

CnG is a commutative group semiring
if and only if G is a commutative group.

Proof:  Given Cn is a chain lattice so
Cn is a commutative semiring. Let G be a
commutative group clearly the group semiring
CnG is a commutative group semiring.

Suppose let CnG be a commutative
group semiring of the group G over the lattice
Cn. To prove G is a commutative group, it
enough to prove for every g, h  G; gh = hg.

Given SG is commutative let g, h 
SG (g, h  G) then gh = hg as SG is commutative.
This is true for every g, h  G hence G is a
commutative group.

Next it is proved CnG is a finite group
semiring.
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Proposition 2.2: Let Cn be a
semiring (chain lattice of order n) and G a
group. CnG be the group semiring. CnG is
of finite order if and only if  G is a finite
group.

Proof.  Given the group semiring CnG
is of finite order.

Clearly if G is not of finite order, since
G  CnG; CnG would be of infinite order.
Hence G must be a group of finite order.

Suppose G is a group of finite order
clearly CnG the group semiring will be of finite
order as Cn is a finite semiring.

Now an example of group ring of
infinite order is given.

Example 2.3: Let G = R \ {0} be the
group of real numbers under product and C15

be the semiring (chain lattice of order 15). CnG
be the group semiring. Clearly CnG is of infinite
order as R \ {0} is an infinite group; so CnG is
of infinite order.

Cn = 0 < an-2 < an-1 < … < a1 < 1 be the
chain lattice of order n.
Let

 = a1 + a5 0.3 + a9 120 + a10 6.2
and

 = a5 + a8 0.3 + a13 9  CnG.
 + = a1 + a5 0.3 + a9 120 + a10 6.2 + a5 + a8

0.3 + a13 9
        = (a1  a5) + (a5  a8) 0.3 + a9 120 +

a10 6.2 + a13 9
        = a1 + a5 0.3 + a9 120 + a10 6.2 + a13 9 

Cn G
  = (a1 + a5 0.3 + a9 120 + a10 6.2)  (a5 +

a8 0.3 + a13 9)
        = a1  a5 + (a5  a5) 0.3 + (a9  a5) 120

+ (a10  a5) 6.2 + (a1  a­8)0.3
+ (a5  a8) (0.3  0.3) + (a9  a8)
(120  0.3) + (a10  a8) (6.2  0.3)
+ (a1  a13) 9 + (a5  a13) (0.3  9) +
(a9  a13) (120  9) + (a10  a13)  6.2
 9.

       = a5 + a5 0.3 + a9 120 + a10 6.2 + a8 0.3
+ a8  0.09 +
a9 36 + a10 1.86 + a139 + a13 2.7 + a13

1080 + a13 55.8
       = a5 + (a5  a8) 0.3 + a9 120 + a10 6.2 +

a8­ 0.09 + a9 3.6 +
a10 1.86 + a139 + a13 1080 + a13 2.7 +
a13 55.8  CnG.

This is the way product is defined on the infinite
group semiring.

There are several group semirings of
infinite order.

Just recall all chain lattices are semifield.
For more about semifields refer5.

Theorem 2.1:  Let Cn be the semiring
which is a semifield G be a commutative group.
Cn G the group semiring is a semifield.

Proof: Given CnG is a commutative
group semiring.

Clearly if ,   CnG; + = 0 is possible
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only when  = 0 and  = 0.

For in Cn; ai + aj = 0 = ai  aj if only
if ai = 0 = aj for

Cn = 0 < an-2 < an-3 < … < a1 < 1.

Further    = 0 is possible in CnG
only if  = 0 and  = 0.  For in Cn; aia­j = 0 =
ai  aj if and only if ai = 0 or aj = 0.

Thus CnG is a semifield.

Corollary 2.1: Let CnG be a group
semiring of a group G; if G is a non commu-
tative group then CnG is a semidivision ring.

Proof:  Since CnG has no zero divisors
and for every ,   CnG;  +  = 0 implies 
= 0 and  = 0. CnG is a semidivision ring as G
is a non commutative group.

Example 2.4: Let G = < g | g15 = 1 >
be the cyclic group of order 15. C16 be the
chain lattice of order 16. C16G be the group
semiring of the group G over the semiring C16.
C16G is a semifield of finite order.

Example 2.5:  Let G = < a, b | a2 = b7

= 1, bab = a > be the dihedral group of order
14. C27 be the semiring of order 27. C27G is
the group semiring of finite order which is a
semidivision ring.

This proves that group semiring, CnG
where Cn is a chain lattice has no zero divisors.
This is in contrast with group rings for every
group ring of a finite group G over any field
finite or infinite field has zero divisors.

Next the units and idempotents in CnG

are discussed in the following.

Cn, the chain lattice has only idempo-
tents and has no units.

For any x, y  Cn we have x  y = 1
is not possible unless x = y = 1.

So Cn has no units. Further every
element in Cn is an idempotent as Cn as ai 
ai = ai for every ai  Cn as Cn is a is the chain
lattice.

In view of this the following theorems
are proved.

Theorem 2.2: Let Cn be the chain
lattice and G any group. The group semiring
CnG has no nontrivial zero divisors.

Proof:  Follows from the fact CnG is
a semifield.

Theorem 2.3: Let CnG be the group
semiring.  The only units of CnG are 1  g =
g for every g  G  CnG.

Proof: Follows from the fact G  CnG
and every g  G has a unique inverse.
However if   Cn \ {1} then it not a unit only
an idempotent as Cn is a chain lattice.

If ii

n

1i
g 


 then 2 = 1 is impo-

ssible as CnG is proved to be a semifield so no
zero divisors to cancel of or add to 1.

Hence the chain.
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However CnG has idempotents if G is
a group of finite order.

Example 2.6: Let G = < g | g12 = 1 >
be the cyclic group of order 12. C8 be the chain
lattice. CnG be the group semiring. Consider
 = (1 + g6)  G,

2 = (1 + g6)  (1 + g6)
= (1 + g6 + g6 + g12)
= 1  1 + (1  1) g6

= 1 + g6 = .

Thus  is an idempotent in CnG. Consider

    = 1 + g3 + g6 + g9  CnG
2   = (1 + g3 + g6 + g9)   (1 + g3 + g6 + g9)
      = 1 + g3 + g6 + g9  + g3 + g6 + g9

          g12 +g6 + g9 + g12+g3 + g9+ g12 + g3 + g6

      = 1 + g3 + g6 + g9   (as 1  1 = 1)
      =  .

Thus  is an idempotent. Similarly  =
1 +g4 + g8  CnG.  Clearly 2 =  is an
idempotent in CnG,

Finally  = 1 + g + g2 … + g11  CnG
is also an idempotent of CnG.

Thus apart from all elements Cn as
Cn  CnG are also idempotents of CnG as
ai  ai = ai  ai for all ai  Cn.

In view of this we have the following
theorem.

Theorem 2.4: Let Cn be the group
semiring of the group G of finite order over
the chain lattice Cn.
i) All   Cn; Cn  CnG  are idempotents

of CnG.
ii) If Hi  G is a subgroup of G and Hi =

{1, h1, …, ht} then  = 1 + h1 + … + ht
 CnG is an idempotent of CnG.  This is
true for every subgroup of G.

iii) If G = {1, g1, …, gm} then  = 1 +g1 + g2
+…+ gm  CnG is an idempotent of CnG.

Proof:  For every   Cn it is clear 
  =    is an idempotent of CnG as Cn 
CnG,

Further | G | <  if G = {1, g1, …, gm}
then  = 1 + g1 + … + gm  CnG is such that
2 = . Finally every Hi a subgroup in G is of
finite order and if Hi = {1, h1, h2, …, ht} then 
= 1 +h1 + … + ht  CnG is such that 2 = .

Hence the theorem.

Next subsemirings and ideals of the
group semiring CnG are discussed in the
following.

Example 2.7:  Let C9 be a chain
lattice and G = g | g18 = 1 be the cyclic group
of order 18.  C9G be the group semiring.

A1 = {0, 1, (1 + g + … + g17)}  C9G
is a subsemiring of order 3.

A2 = {0, 1, (1 + g2 + g4 + … + g16)} 
C9G is again a subsemiring of order 3.

A3 = {0, 1, (1 + g3 + g6 + g9 + … +
g15)}  C9G is also a subsemiring of order 3.

A4 = {0, 1, {1 + g6 + g12}}  C9G is
also a subsemigroup of C9G.

A5 = {0, 1, {1 + g9}}  C9G is a
subsemiring of order 3.
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Now let P1 = {1, g2, g4, …, g16}  G
be a subgroup of G. C9 P1  C9G is a
subsemiring of C9G.

Let P2 = {1, g9}  G be a subgroup of
G. C9P2  C9G is a subsemiring of C9G.

Let P3 = {1, g6,  g12}  G be a
subgroup of G. C9P3  C9G is a subsemiring
of C9G.

Let P4 = {1, g3, g6, .., g15}  G  be a
subgroup C9P4   C9G be a subsemiring of
C9G.

Let M1 = {0, a5, 1}  C9 is a sublattice
of C9 = 0 < a7 < a6 < … a2 < a1 < 1.

Now M1P1  C9G is a subsemiring of
C9G.

Let M2 = {0, a6, 1}  C9 is a sublattice
of C9 and M2P1, M2P2, M2P3 and M2P4 are all
subsemirings of C9G.

Thus C9G has several subsemirings
but all of them are not ideals of C9G only a
few of them are ideals.

Further M2P1, M2P2, M2P3 and M2P4
are only subsemirings and none of them are
ideals of C9G.

Example 2.8: Let C2 be the chain
lattice. G = <g | g3 = 1> be the cyclic group of
degree three. C2G be the group semiring of
the group G over the semiring C2.

P = {0, 1, 1 + g + g2}  C2G is a
subsemiring. This is not an ideal of C2G.

In view of all these the following
proposition is proved.

Proposition 2.3: Let CnG be the
group semiring of the group G over the
semiring Cn.  If M is a subsemiring of CnG
then M is not an ideal of CnG.

Proof: Proved using an example. In
the example 2.7 of this paper there are several
subsemirings of the group semiring which is
not an ideal.

Next the concept of right and left ideal
exist only when CnG is a non commutative
group semiring. Consider the following
example.

Example 2.9: Let C2S3 be the group
semiring of the symmetric group S3 over the
semiring C2. C2S3 has right ideals which are
not left ideal. Thus as in case of group rings
which are non commutative in case of group
semirings which are non commutative has right
ideals that are not left ideals and vice versa.

Another interesting feature is in case
of a field, field has no ideals other than (0) and
F but however semifields which are  group
semirings of the form CnG has ideals.

In the next section the study of
groupsemirings using distributive lattices which
are not chain lattice is carried out.

3 Study of group semirings using
distributive lattices which are not chain
lattices:
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In this section a study of group
semirings using distributive lattices L which are
not chain lattices is carried out. Unlike chain
lattices in case of distributive lattices the group
semi rings in general are not semifields.
However in case of certain lattices the group
semiring can be a semifield.

Since the replacing of semiring (chain
lattice) by a distributive lattice will not alter
the definition of a group semiring so here the
definition of group semiring using distributive
lattices are not made once again1-2.

First a few examples of them are
given.

Example 3.1: Let L

be a distributive lattice.

G = g  g10 = 1 be the cyclic group of
order 10. LG be the group semiring of the
group G over the semiring L which is a
distributive lattice. LG is not a field. In the first
place L is a semiring and not a semifield as a5
 a6 = 0. Thus LG has zero divisors so LG is
only a semiring.

Example 3.2: Let L

 

a1 

1 

a2 

a3 
a4 

a6 a5 

0 

 

a1 

1 

a2 

a3 

 a4 

 a6 

 a5 

0 

be a distributive lattice. G = S4 be the
symmetric group of degree 4. LG the group
semiring is a semi division ring. Further L is
not a semi field as LG is non commutative
semiring. Thus LG has no zero divisors but
LG is a non-commutative semi ring.

Example 3.3: Let B

be the Boolean algebra. G = g  g12 = 1 be
the cyclic group of order 12. BG the group
semiring. BG has zero divisors, units and
idempotents α = (a6g6 + a5g2) and β = a4g2
BG.
αβ = (a6g

6 + a5g
2) × a4g2  =  0.  Let α = 1+ g3

+ g6 + g9 BG.

Clearly α2 = α so α is an idempotent.
Let g7 BG, g5 BG is such that g7 × g5 = 1.
All elements in G are units of BG as G  BG.

Theorem 3.1: Let L be a distributive

 

a1 

1 

a3 

a5 a4 a6 

0 

a2 
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lattice and G any group. LG the group
semiring of the group G over the semiring
L.. LG has zero divisors if and only if L is a
distributive lattice which is not a semi field.

Proof: If L is not a semi field. That is
there exist ai , aj L \ {0}, ai  aj such that
ai aj = 0. Take α = aig1 and β = ajg2  LG;
g1, g2 G.

α  β = aig1  aj g2

= (a1  aj) (g1g2)
= 0 (g1g2) = 0.

Thus LG has zero divisors.

Corollary 3.1: If L is a semifield
then the group semiring LG has no zero
divisors.

Proof follows from the fact L is a
semifield and no α, β  LG \ {0} is such that
α × β = (0).

Example 3.4: Let L lattice given by following
diagram.

G = S3 be the symmetric group of degree three.

LG be the group semiring of the group

 
a1 

1 

a2 

a3 
a4 

a6 a5 

0 

G over S3.
Let R1 = {1, p1} be a subgroup. LR1
is a subsemiring which is not an ideal.
Let R2 = {1,p2 }  S3 be the subgroup.
LR2 is again a subsemiring.
LR1 and LR2 are isomorphic as

subsemirings by mapping p1 to p2 and rest of
the elements to itself.

The following theorem is interesting
which describes a semiring which is not a
semifield.

Theorem 3.2: Let a be a finite group.
L is a Boolean algebra of order greater
than or equal to four. LG the group semiring
has zero divisors.

Proof: Follows from the fact all
Boolean algebras of order greater than or equal
to four has elements a, b  L \ {0} with a  b
= 0. This will contribute for zero divisors of
the form αβ = 0 when α = ag1 and β = bg2
with α × β = αβ = ag1 × bg2 = (a  b) g1g2 = 0.

Theorem 3.3: Let G be a group of
finite order L be a distributive lattice which
is not a chain lattice. LG be the group
semiring of the group G over the lattice L.
LG has non trivial idempotents.

Proof: Given  G  = n <  a finite
group. LG the group semiring.

Take α = (1 + g1 + …+ gn-1)  LG.
Clearly α2 = α so α is an idempotent of LG.

Likewise if H1, H2, …, Ht are non-
trivial subgroups of order p1, p2, …, pt

respectively then β1 = 1 + h1 + h2 + …+ 
1 1ph 
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 LG where H1 = {1, h1, h2,  …, 
1 1ph  }  G is

such that  2
1 1   .

Let β2 = 
21 2 p 11 k k .... k    

 LG, where H2 = { 
21 2 p 11, k , k , , k  } 

G is   2
2 2   .

     Likewise if Ht={ 
t1 2 p 11, m , m , , m  }

 G the subgroup.

     βt  =  
t1 2 p 11 m m m       LG

     is such that  2
t t   .

Hence the theorem.

The idempotent in L will be called as
trivial idempotents. Likewise zero divisors in
L will be defined as trivial zero divisors of LG.

Clearly L has no units and units
contributed by the group G will be termed as
trivial units of LG.

For the definition and properties of
Smarandache zero divisors please refer5.

Conditions for Smarandache zero
divisors to exist in group semirings; BG where
B is a Boolean algebra is obtained in the
following.

Example 3.5: Let B  

a1 

1 

a3 

a5 a6 a4 

0 

a2 

be a Boolean algebra. G = g  g16 = 1 be the
cyclic group of order 16. BG be the group
semiring of the group G over the semiring B.

Let x= a4 (g12 + g2) and y = a5 (g7 + g5)BG
x × y= a4 (g12 + g2) × a5 (g7 + g5)
       = (a4  a5) (g12 + g2) (g7 + g5)
        = 0.

Let a = a6 (g10 + g)  and b = a2 (g3 + g11 +
g13)  BG. x × a = 0 and y × b = 0 but a × b 
0. Thus x, y  BG is a Smarandache zero
divisor1-5.

Example 3.6: Let B

Be a Boolean algebra or order four and G be
any group. BG be the group semiring of the
group G over the semiring B. BG has no S-
zero divisors.
In view of this the following theorem is proved.

Proposition 3.1: Let G be any group
and B a Boolean algebra BG the group
semiring.
i. BG the group semiring has S-zero divisors

if  B  > 4
ii. BG has only zero divisors and no S-zero

divisors if  B  = 4
iii. BG has no zero divisors if  B  = 2.

Proof: Proof of i. follows from the
fact if   B > 4 then B has zero divisors as well
as S-zero divisors.

 

a 

1 

b 

0 
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Hence BG will have S-zero divisors
(refer example 3.5).
Proof of ii. If  B  = 4 then

B =

Clearly a × b = 0 is a zero divisor and
cannot find another y  0 with ay = 0 and
a. x = 0 with bx = 0 and xy  0. Hence the
claim.

Proof of iii. If  B  = 2 then B is a
chain lattice hence BG has no zero divisors.

Next the study about the existence of
S-anti zero divisors is discussed.

Example 3.7: Let B =

be the Boolean algebra of order four; G = S3,
the symmetric group of degree 3. BS3 be the
group of semiring of the group S3 over the
semiring B.

Let α = (1 + p1 + p2), β = (1 + p4) 
BS3. Clearly α × β  (0).
Take x = a (p2 + p5) and y = b (p5 + p3

+ 1) BS3.
Consider
αx= (1 + p1 + p2) a (p2 + p5)

 

a 

1 

b 

0 

 

a 

1 

b 

0 

   = 1  a [(1 + p1 + p2) × (p2 + p5)]
   = a(p2 + p5 + 1 + p5 + p2 + p3)
   = a (p2 + 1+ p5 + p5 + p2 + p3)
   = a (1 + p5 + p2 + p3)  0.

Consider
y = (1 + p4) × b (1 + p3 + p5)
     = b  1 [(1 + p4) × (1 + p3 + p5)]
     = b (1 + p4 + p3 + p1 + 1 + p5)
     = b (1 + p1 + p3 + p4 + p5)  0.

So  βy  0 and αx  0 but
xy = a (p2 + p5) × b (p5 + p3 + 1)
    = a  b [(p2 + p5) × (p5 + p3 + 1)]
    = 0.

Thus  is a Smarandache anti-zero
divisor of BG.

In view of the following proposition is
proved.

Proposition 3.2: Let B be a Boolean
algebra of order four. G any group and BG
the group semiring of the group G over the
semiring B. BG has S-anti zero divisors.

Proof: Let α =  gi and β =  hi, gi,
hi  G (all coefficients of gi in α and hi in β are
1). Take x = ( aki) and y =  bmj (ki, mj
G). B =

Clearly αβ  0. Further αx  0 and βy
 0 but αβ = 0. Thus x is a S­anti zero divisor

 

a 

1 

b 

0 
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in BG.

Theorem 3.4: Let BG be the group
semiring of the group G over the Boolean
algebra of order four. Let α  BG be a S-
anti zero divisor then α need not be a zero
divisor.

Proof: Follows from the example 3.7.
For  in that example is not a zero divisor in
BG.

Proposition 3.3: Let BG be the group
semiring of the group G over the Boolean
algebra of order greater than 4. BG has
both S-zero divisors as well as S-anti zero
divisors.

Next we study the Smarandache
idempotents in these group semirings. At first
it is important to know that the distributive
lattices or for that matter any lattice L will not
contain any Smarandache idempotent as every
element in L is such that a × a = a  a = a2 =
a for all a L.

However it is an interesting feature
to analyse whether the group semiring of a
group G over a distributive lattice L have
Smarandache idempotents. Let BG be the
group semiring of the group G = S3 over the
semiring B which is a Boolean algebra.

Take a = (1 + p4 + p5) and b = (p1 + p2
+ p3) we see a2 = a and b2 = a; ab = a. Thus
group semiring has S-idempotents.

Example 3.8: Let G = g  g8 = 1 be
the cyclic group of order 8. B be any Boolean
algebra or a distributive lattice. BG be the
group semiring of the group G over the

semiring B.
Let α = 1 + g2 + g4 + g6 and β = g + g3

+ g5 + g7 BG.
Clearly α2 = α, β2 = α and αβ = β.

In view of all these the following
interesting theorem for cyclic groups of even
order is given.

Theorem 3.5: Let G = <g  g2n = 1>
be the cyclic group of order 2n. B be a
distributive lattice or a Boolean algebra.
BG the group semiring has a Smarandache
idempotent.

Proof: Take α = (1 + g2 + g4 + g6 + g8

+ ….. + g2n-2)  BG

Let β = (g + g3 + g5 + g7 + …. + g2n-1)
 BG. Clearly α2 = α, αβ = β and β2 = α. So α
is a Smarandache idempotent.

Example 3.9: Let B be  a distributive
lattice or a Boolean algebra.

D = {a,b  a2 = b2 =1, bab = a} be the
dihedral group. BD be the group semiring of
the group BD over the semiring B.

Take α = (1 + b + b2 + …. + b19) and
β = (a + ab + ab2 + ….. + ab19)  BD.

Clearly α2 = α and β2 = α with αβ = β.
The α is a Smarandache idempotent in BD.

In view of this the following theorem.

Theorem 3.6: Let L be a distributive
lattice or a Boolean algebra. Let G = D2n
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= {a,b  a2 = bn = 1, bab = a}; n an even
integer say 2m. LG be the group semiring
of the group G over the semiring L. LG has
S-idempotents.

Proof: Consider α = (1 + b + b2 + …
+ b2m-1) and β = (a + ab + ab2 + … + ab2m-1) 

LG. Clearly α2 = α and β2 = α and αβ = β.
Thus α a Smarandache idempotent of LG.

Example 3.10: Let A4 be the alternating
subgroup of S4; L be a distributive lattice or a
Boolean algebra. LA4 the group semiring.

Let

    
 1 2 3 4 1 2 3 4

2 1 4 3 1 2 3 4
   

     
   

and

 
4

1 2 3 4 1 2 3 4
LA

3 4 1 2 4 3 2 1
   

      
   

α2      =      α.

    
 

2 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 1 2 3 4 2 1 4 3 1 2 3 4
       

             
       

  
 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 1 4 3 1 2 3 4 3 4 1 2 4 3 2 1
          

              
          

         = 
 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4 3 2 1 3 4 1 2 3 4 1 2 4 3 2 1
       

         
       

= β.

Thus α is a Smarandache idempotent
of LA4.

In view of all these the following
theorems are proved.

Theorem 3.7: Let G be a group of
order n and G has a subgroup of order m
(m/n; m an even number). L any distributive

lattice or a Boolean algebra. LG the group
semiring has S-idempotents.

Proof: Let H be a subgroup of order
say m = 2t and let P = {1, g1, …, gt-1} be a sub
group of H. Then take α = 1 + g1 + … + gt-1

and  
i

i
h H \ P

h LG


    .
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Clearly α2 = α and β2 = α and αβ = α. Thus α
is the S-idempotent of LG.

Theorem 3.8: Let Sn be the
symmetric group of degree n (n even or
odd). L any distributive lattice. LSn the
group semiring. LSn has S-idempotents.

Proof:
Case 1: n is even. Sn has a subgroup

of order n which is cyclic. Hence using this
subgroup say G = {1, g, …, gn-1} contributes
to the S-idempotent; α = 1 + g2 + … + gn-2 and
β = (g + g3 + … + gn-1)  LSn is such that α2

= α; β2 = α and αβ = β.

Let n be odd then n  1 is even. Let H
= cyclic group generated by h  Sn of order
n – 1.

Now (1 + h2 + h4 + … + hn-3) = α and
β = (h + h3 + … + hn-1)  LSn are such that α2

= α, β2 = α and αβ = β. Thus α is a S­idempotent
of LSn. Hence the theorem.

4. Conclusions

In this chapter group semirings of
groups over semirings which are distributive
lattices is carried out. Further in case of chain

lattices Cn the group semiring CnG is a
semifield in case G is abelian and a semi
division ring in case G is a non-commutative
group.

Further if the distributive lattice L has
zero divisors then only the group semiring LG
will have zero divisors.

Finally idempotents which are in LG\L
are identified. The concept of Smarandache
zero divisors and Smarandache idempotents
in group semirings (where semirings are
distributive lattices) are carried out and conditions
for their existence is also determined in this
paper. However in case of group semi rings
LG over distributive lattices it is impossible to
find units or S-unit in LG\G.
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