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ABSTRACT 

A neutrosophic set is a more general platform, which can be used to present uncertainty, 

imprecise, incomplete and inconsistent. In this paper a score function and an accuracy 

function for single valued neutrosophic sets is firstly proposed to make the distinction 

between them. Then the idea is extended to interval neutrosophic sets.  A multi-criteria 

decision making method based on the developed score-accuracy functions is established 

in which criterion values for alternatives are single valued neutrosophic sets and interval 

neutrosophic sets. In decision making process, the neutrosophic weighted aggregation 

operators (arithmetic and geometric average operators) are adopted to aggregate the 

neutrosophic information related to each alternative. Thus, we can rank all alternatives 

and make the selection of the best of one(s) according to the score-accuracy functions.  

Finally, some illustrative examples are presented to verify the developed approach and to 

demonstrate its practicality and effectiveness. 

1. Introduction 

The concept of neutrosophic set developed by Smarandache 

([16], [17]) is a more general platform which generalizes the 

concept of the classic set, fuzzy set [34], intuitionistic fuzzy set 

[1] and interval valued intuitionistic fuzzy sets ([2],[3]). In 

contrast to intuitionistic fuzzy sets and also interval valued 

intuitionistic fuzzy sets, indeterminacy is characterized 

explicitly in the neutrosophic set. A neutrosophic set has three 

basic components such that truth membership, indeterminacy 

membership and falsity membership, and they are independent. 

However, the neutrosophic set generalizes the above mentioned 

sets from philosophical point of view and its functions 𝑇𝐴(𝑥), 

𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥)  are real standard or nonstandard subsets of 

]0−, 1+[  and are defined by 𝑇𝐴(𝑥): 𝑋 → ]0−, 1+[ , 𝐼𝐴(𝑥): 𝑋 →
]0−, 1+[  and 𝐹𝐴(𝑥): 𝑋 → ]0−, 1+[ . That is, its components 

𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)  are non-standard subsets included in the 

unitary nonstandard interval ]0−, 1+[ or standard subsets 

included in the unitary standard interval [0, 1] as in the 

intuitionistic fuzzy set. Furthermore, the connectors in the 

intuitionistic fuzzy set are only defined by 𝑇(𝑥) and 𝐹(𝑥) (i.e. 

truth-membership and falsity-membership), hence the 

indeterminacy 𝐼(𝑥)  is what is left from 1, while in the 

neutrosophic set, they can be defined by any of them (no 

restriction) [16]. For example, when we ask the opinion of an 

expert about certain statement, he/she may say that the 

possibility in which the statement is true is 0.6  and the 

statement is false is 0.5 and the degree in which he/she is not 

sure is 0.2. For neutrosophic notation, it can be expressed as 

𝑥(0.6,0.2,0.5) . For another example, suppose there are 10 

voters during a voting process. Five vote “aye”, two vote 

“blackball” and three are undecided. For neutrosophic notation, 

it can be expressed as 𝑥(0.5,0.3,0.2) . However, these 

expressions are beyond the scope of the intuitionistic fuzzy set. 

Therefore, the notion of neutrosophic set is more general and 

overcomes the aforementioned issues. But, a neutrosophic set 

will be difficult to apply in real scientific and engineering fields. 

Therefore, Wang et al. ([25], [26]) proposed the concepts of 

interval neutrosophic set INS and single valued neutrosophic set 

(SVNS), which are an instance of a neutrosophic set, and 

provided the set- theoretic operators and various properties of 

INSs and SVNSs, respectively. Then, SVNSs (or INSs) present 

uncertainty, imprecise, inconsistent and incomplete information 

existing in real world. Also, it would be more suitable to handle 

indeterminate information and inconsistent information. 

Majumdar et al. [11] introduced a measure of entropy of 

SVNSs. Ye [32] and proposed the correlation coefficients of 

SVNSs and developed a decision-making method under single 

valued neutrosophic environment. Broumi and Smarandache 

[14] extended this idea in INSs. Ye [33] also introduced the 

concept of simplified neutrosophic sets (SNSs), and applied the 

sets in an MCDM method using the aggregation operators of 
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SNSs. Peng et al. [44] showed that some operations in Ye [33] 

may also be unrealistic. They defined the novel operations and 

aggregation operators and applied them to MCDM problems. 

Ye [30,31] proposed the similarity measures between SVNSs 

and INSs based on the relationship between similarity measures 

and distances. Şahin and Küçük [15] proposed the concept of 

neutrosophic subsethood based on distance measure for SVNSs. 

We usually need the decision making methods because of 

the complex and uncertainty under the physical nature of the 

problems. By the multi-criteria decision making methods, we 

can choose the optimal alternative from multiple alternatives 

according to some criteria. The proposed set theories have 

provided the different multi-criteria decision making methods. 

Some authors ([7],[8],[9],[10],[18],[19],[ 23],[27]) studied on 

multi-criteria fuzzy decision-making methods based on 

intuitionistic fuzzy sets while some authors 

([5],[13],[20],[21],[22],[28],[29]) proposed the multi-criteria 

fuzzy decision-making methods based on interval-valued 

intuitionistic fuzzy environment. 

Xu and Yager [23] defined some geometric aggregation 

operators named the intuitionistic fuzzy weighted geometric 

operator, the intuitionistic fuzzy ordered weighted geometric 

operator and the intuitionistic fuzzy hybrid weighted geometric 

operator, and applied the intuitionistic fuzzy hybrid weighted 

geometric operator to a multi-criteria decision making problem 

under intuitionistic fuzzy environment. Then Xu [19] proposed 

the arithmetic aggregation operators which are arithmetic types 

of above mentioned ones. Xu and Chen [20] generalized the 

arithmetic aggregation operators to interval valued intuitionistic 

fuzzy such that the interval-valued intuitionistic fuzzy weighted 

geometric operator, the interval-valued intuitionistic fuzzy 

ordered weighted geometric operator and the interval-valued 

intuitionistic fuzzy hybrid weighted geometric operator, and 

applied the aggregation operators to a multi-criteria decision 

making problems by using the score function and accuracy 

function of  interval-valued intuitionistic fuzzy numbers. The 

geometric aggregation operators for interval valued 

intuitionistic fuzzy sets are also proposed in [18]. 

 But, until now there have been no many studies on multi-

criteria decision making methods based on score-accuracy 

functions in which criterion values for alternatives are single 

valued neutrosophic sets or interval neutrosophic sets. Ye [30] 

proposed a multi-criteria decision making method for interval 

neutrosophic sets by means of the similarity measure between 

each alternative and the ideal alternative. Also, Ye [31] 

presented the correlation coefficient of SVNSs and the cross-

entropy measure of SVNSs and applied them to single valued 

neutrosophic decision-making problems. Recently, Zhang et al. 

[6] established two interval neutrosophic aggregation operators 

such as interval neutrosophic weighted arithmetic operator and 

interval neutrosophic weighted geometric operator and 

presented a method for multi-criteria decision making problems 

based on the aggregation operators. Therefore the main purposes 

of this paper were (1) to define two measurement functions such 

that score function and accuracy function to rank single valued 

neutrosophic numbers and extend the idea in interval 

neutrosophic numbers, (2) to establish a multi-criteria decision 

making method by use of the proposed functions and 

neutrosophic aggregation operators for neutrosophic sets, and 

(3) to demonstrate the application and effectiveness of the 

developed methods by some numerical examples. 

This paper is organized as follows. The definitions of 

neutrosophic sets, single valued neutrosophic sets, interval 

neutrosophic sets and some basic operators on them as well as 

arithmetic and geometric aggregation operators are briefly 

introduced in section 2. In section 3, the score function and the 

accuracy function for single valued neutrosophic numbers are 

introduced and studied by giving illustrative properties. Also the 

concepts is extended to interval neutrosophic sets in section 4. 

This is followed by applications of the proposed this functions 

to multi-criteria decision making problems in Section 5. The 

section 6 includes a comparison analyze. This paper is 

concluded in Section 7. 

2. Preliminaries 

In the following we give a brief review of some preliminaries. 

2.1 Neutrosophic set 

Definition 2.1 [16] Let 𝑋 be a space of points (objects) and 𝑥 ∈

𝑋. A neutrosophic set 𝐴 in 𝑋 is defined by a truth-membership 

function 𝑇𝐴(𝑥) , an indeterminacy-membership function 𝐼𝐴(𝑥) 

and a falsity-membership function 𝐹𝐴(𝑥) . 𝑇𝐴(𝑥) ,  𝐼𝐴(𝑥)  and 

𝐹𝐴(𝑥) are real standard or real nonstandard subsets of ]0−, 1+[. 

That is 𝑇𝐴(𝑥): 𝑋 → ]0−, 1+[ , 𝑇𝐴(𝑥): 𝑋 → ]0−, 1+[  and 

𝑇𝐴(𝑥): 𝑋 → ]0−, 1+[ . There is not restriction on the sum of 

𝑇𝐴(𝑥) ,  𝐼𝐴(𝑥)  and 𝐹𝐴(𝑥) , so 0− ≤ sup 𝑇𝐴(𝑥) ≤ sup 𝐼𝐴(𝑥) ≤

sup 𝐹𝐴(𝑥) ≤ 3+.  

Definition 2.2 [17] The complement of a neutrosophic set 𝐴 is 

denoted by 𝐴𝑐  and is defined as 𝑇𝐴
𝑐(𝑥) = {1+}  ⊝ 𝑇𝐴(𝑥) , 

𝐼𝐴
𝑐(𝑥) = {1+}  ⊝ 𝐼𝐴(𝑥) and 𝐹𝐴

𝑐(𝑥) = {1+}  ⊝ 𝐹𝐴(𝑥) for all 𝑥 ∈

𝑋.  

Definition 2.3 [17] A neutrosophic set 𝐴  is contained in the 

other neutrosophic set 𝐵 , 𝐴 ⊆ 𝐵  iff inf 𝑇𝐴(𝑥) ≤ inf 𝑇𝐵(𝑥) , 

sup 𝑇𝐴(𝑥) ≤ sup 𝑇𝐵(𝑥) , inf 𝐼𝐴(𝑥) ≥ inf 𝐼𝐵(𝑥) , sup 𝐼𝐴(𝑥) ≥

sup 𝐼𝐵(𝑥) and inf 𝐹𝐴(𝑥) ≥ inf 𝐹𝐵(𝑥) , sup 𝐹𝐴(𝑥) ≥ sup 𝐹𝐵(𝑥) 

for all 𝑥 ∈ 𝑋. 

In the following, we adopt the representations 𝑢𝐴(𝑥) , 𝑤𝐴(𝑥) 

and 𝑣𝐴(𝑥) instead of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), respectively. 

2.2 Single valued neutrosophic sets 

A single valued neutrosophic set has been defined in [25] as 

follows: 
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Definition 2.4 [25] Let 𝑋 be a universe of discourse. A single 

valued neutrosophic set 𝐴 over 𝑋 is an object having the form  

𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 

where 𝑢𝐴(𝑥): 𝑋 → [0,1] , 𝑤𝐴(𝑥): 𝑋 → [0,1]  and 𝑣𝐴(𝑥): 𝑋 →

[0,1] with 0 ≤ 𝑢𝐴(𝑥) + 𝑤𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. The 

intervals 𝑢𝐴(𝑥), 𝑤𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth- membership 

degree, the indeterminacy-membership degree and the falsity 

membership degree of 𝑥 to 𝐴, respectively. 

Definition 2.5 [25] The complement of an SVNS 𝐴 is denoted 

by 𝐴𝑐  and is defined as 𝑢𝐴
𝑐(𝑥) = 𝑣(𝑥) , 𝑤𝐴

𝑐(𝑥) = 1 − 𝑤𝐴(𝑥) , 

and 𝑣𝐴
𝑐(𝑥) = 𝑢(𝑥) for all 𝑥 ∈ 𝑋. That is,  

𝐴𝑐 = {〈𝑥, 𝑣𝐴(𝑥), 1 − 𝑤𝐴(𝑥), 𝑢𝐴(𝑥)〉: 𝑥 ∈ 𝑋}. 

Definition 2.6 [25] A single valued neutrosophic set 𝐴  is 

contained in the other SVNS 𝐵 , 𝐴 ⊆ 𝐵 , iff 𝑢𝐴 (𝑥) ≤ 𝑢𝐵(𝑥) , 

𝑤𝐴(𝑥) ≥ 𝑤𝐵(𝑥)and 𝑣𝐴(𝑥) ≥ 𝑣𝐵(𝑥) for all 𝑥 ∈ 𝑋. 

Definition 2.7 [25] Two SVNSs 𝐴 and 𝐵 are equal, written as 

𝐴 = 𝐵, iff 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 

We will denote the set of all the SVNSs in 𝑋 by SVNS(𝑋). A 

SVNS value is denoted by 𝐴 = (𝑎, 𝑏, 𝑐) for convenience. 

Based on the study given in [6], we define two weighted 

aggregation operators related to SVNSs as follows: 

Definition 2.8 Let 𝐴𝑘 (𝑘 = 1,2, … , 𝑛) ∈ SVNS(𝑋). The single 

valued neutrosophic weighted average operator is defined by 

𝐹𝜔 = (𝐴1, 𝐴2, … , 𝐴𝑛) = ∑ 𝜔𝑘𝐴𝑘

𝑛

𝑘=1

 

= (1 − ∏ (1 − 𝑢𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

, 

∏ (𝑤𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

, ∏ (𝑣𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

)             (1) 

where 𝜔𝑘  is the weight of 𝐴𝑘 (𝑘 = 1,2, … , 𝑛), 𝜔𝑘 ∈ [0,1] and 

∑ 𝜔𝑘
𝑛
𝑘=1 = 1. Especially, assume 𝜔𝑘 = 1/𝑛  (𝑘 = 1,2, … , 𝑛) , 

then 𝐹𝜔 is called an arithmetic average operator for SVNSs.  

Similarly, we can define the single valued neutrosophic 

weighted geometric average operator as follows: 

Definition 2.9 Let 𝐴𝑘 (𝑘 = 1,2, … , 𝑛) ∈ SVNS(𝑋). The single 

valued neutrosophic weighted geometric average operator is 

defined by 

𝐺𝜔 = (𝐴1, 𝐴2, … , 𝐴𝑛) = ∏ 𝐴𝑘
𝜔𝑘

𝑛

𝑘=1

= (∏ (𝑢𝐴𝑘
(𝑥))

𝜔𝑘

, 1 − ∏ (1 − 𝑤𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

𝑛

𝑘=1

, 

   1 − ∏ (1 − 𝑣𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

)                                 (2) 

where 𝜔𝑘  is the weight of 𝐴𝑘 (𝑘 = 1,2, … , 𝑛), 𝜔𝑘 ∈ [0,1] and 

∑ 𝜔𝑘
𝑛
𝑘=1 = 1. Especially, assume 𝜔𝑘 = 1/𝑛  (𝑘 = 1,2, … , 𝑛) , 

then 𝐺𝜔 is called a geometric average for SVNSs. 

The aggregation results 𝐹𝜔 and 𝐺𝜔 are still SVNSs. Obviously, 

there are different emphasis points between Definitions 2.8 and 

2.9. The weighted arithmetic average operator indicates the 

group’s influence, so it is not very sensitive to 𝐴𝑘  (𝑘 =

1,2, … , 𝑛) ∈ SVNS(𝑋) , whereas the weighted geometric 

average operator indicates the individual influence, so it is more 

sensitive to 𝐴𝑘 (𝑘 = 1,2, … , 𝑛) ∈ SVNS(𝑋). 

Definition 2.10 Let 𝐴 be a single valued neutrosophic set over 

𝑋.  

(i) A single valued neutrosophic set over 𝑋 is empty, denoted 

by �̃� if 𝑢𝐴(𝑥) = 1, 𝑤𝐴(𝑥) = 0 and 𝑣𝐴(𝑥) = 0 for all 𝑥 ∈

𝑋. 

(ii) A single valued neutrosophic set over 𝑋  is absolute, 

denoted by Φ  if 𝑢𝐴(𝑥) = 0 , 𝑤𝐴(𝑥) = 1  and 𝑣𝐴(𝑥) = 1 

for all 𝑥 ∈ 𝑋. 

 

2.3 Interval neutrosophic sets 

An INS is an instance of a neutrosophic set, which can be used 

in real scientific and engineering applications. In the following, 

we introduce the definition of an INS. 

Definition 2.11 [26] Let 𝑋 be a space of points (objects) and 

Int[0,1] be the set of all closed subsets of [0,1]. An INS �̃� in 𝑋 

is defined with the form  

�̃� = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 

where 𝑢𝐴(𝑥): 𝑋 → int[0,1] , 𝑤𝐴(𝑥): 𝑋 → int[0,1]  and 

𝑣𝐴(𝑥): 𝑋 → int[0,1]  with 0 ≤ sup 𝑢𝐴(𝑥) + sup 𝑤𝐴(𝑥) +

sup 𝑣𝐴(𝑥) ≤ 3  for all 𝑥 ∈ 𝑋 . The intervals 𝑢𝐴(𝑥), 𝑤𝐴(𝑥)  and 

𝑣𝐴(𝑥) denote the truth-membership degree, the indeterminacy-

membership degree and the falsity membership degree of 𝑥 to 

�̃�, respectively. 

For convenience, if let 𝑢𝐴(𝑥) = [𝑢�̃�
−(𝑥), 𝑢𝐴

+(𝑥)] , 𝑤𝐴(𝑥) =

[𝑤𝐴
−(𝑥), 𝑤𝐴

+(𝑥)] and 𝑣(𝑥) = [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)], then  

�̃� = {〈𝑥, [𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥), 𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉: 𝑥 ∈ 𝑋} 

with the condition, 0 ≤ sup 𝑢𝐴
+(𝑥) + sup 𝑤𝐴

+(𝑥) +

sup 𝑣𝐴
+(𝑥) ≤ 3 for all 𝑥 ∈ 𝑋. Here, we only consider the sub-

unitary interval of [0,1] . Therefore, an INS is clearly 

neutrosophic set.  

Definition 2.12 [26] The complement of an INS �̃� is denoted by 

�̃�𝑐  and is defined as 𝑢𝐴
𝑐(𝑥) = 𝑣(𝑥) , (𝑤𝐴

−)
𝑐
(𝑥) = 1 − 𝑤𝐴

+(𝑥) , 
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(𝑤𝐴
+)

𝑐
(𝑥) = 1 − 𝑤𝐴

−(𝑥) and 𝑣𝐴
𝑐(𝑥) = 𝑢(𝑥) for all 𝑥 ∈ 𝑋. That 

is,  

�̃�𝑐 = {〈𝑥, [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)], [1 − 𝑤𝐴
+(𝑥), 1

− 𝑤𝐴
−(𝑥)], [𝑢𝐴

−(𝑥), 𝑢𝐴
+(𝑥)]〉: 𝑥 ∈ 𝑋}. 

Definition 2.13 [26] An interval neutrosophic set �̃� is contained 

in the other INS �̃� , �̃� ⊆ �̃� , iff 𝑢𝐴
−(𝑥) ≤ 𝑢�̃�

−(𝑥) , 𝑢𝐴
+(𝑥) ≤

𝑢�̃�
+(𝑥) , 𝑤𝐴

−(𝑥) ≥ 𝑤�̃�
−(𝑥) , 𝑤𝐴

+(𝑥) ≥ 𝑤�̃�
+(𝑥)  and 𝑣𝐴

−(𝑥) ≥

𝑣�̃�
−(𝑥), 𝑣𝐴

+(𝑥) ≥ 𝑣�̃�
+(𝑥) for all 𝑥 ∈ 𝑋. 

Definition 2.14 [26] Two INSs �̃� and 𝐵 are equal, written as 

�̃� = �̃�, iff �̃� ⊆ �̃� and �̃� ⊆ �̃�. 

We will denote the set of all the INSs in 𝑋 by INS(𝑋). An INS 

value is denoted by �̃� = ([𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]) for convenience. 

Next, we give two weighted aggregation operators related to 

INSs.  

Definition 2.15 [6] Let �̃�𝑘  (𝑘 = 1,2, … , 𝑛) ∈ INS(𝑋) . The 

interval neutrosophic weighted average operator is defined by 

𝐹𝜔 = (�̃�1, �̃�2, … , �̃�𝑛) = ∑ 𝜔𝑘�̃�𝑘

𝑛

𝑘=1

 

= ([1 − ∏ (1 − 𝑢𝐴𝑘

− (𝑥))
𝜔𝑘

𝑛

𝑘=1

, 1 − ∏ (1 − 𝑢𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

], 

[∏ (𝑤𝐴𝑘

− (𝑥))
𝜔𝑘

𝑛

𝑘=1

, ∏ (𝑤𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

],                            

[∏ (𝑣𝐴𝑘

− (𝑥))
𝜔𝑘

𝑛

𝑘=1

, ∏ (𝑣𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

])                    (3) 

where 𝜔𝑘  is the weight of �̃�𝑘 (𝑘 = 1,2, … , 𝑛), 𝜔𝑘 ∈ [0,1] and 

∑ 𝜔𝑘
𝑛
𝑘=1 = 1. Especially, assume 𝜔𝑘 = 1/𝑛  (𝑘 = 1,2, … , 𝑛) , 

then 𝐹𝜔 is called an arithmetic average operator for INSs.  

Definition 2.16 [6] Let �̃�𝑘  (𝑘 = 1,2, … , 𝑛) ∈ INS(𝑋) . The 

interval neutrosophic weighted geometric average operator is 

defined by 

𝐺𝜔 = (�̃�1, �̃�2, … , �̃�𝑛) = ∏ 𝐴𝑘
𝜔𝑘  

𝑛

𝑘=1

= ([∏ (𝑢𝐴𝑘

− (𝑥))
𝜔𝑘

𝑛

𝑘=1

, ∏ (𝑢𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

] ,    

[1 − ∏ (1 − 𝑤𝐴𝑘
(𝑥))

𝜔𝑘

𝑛

𝑘=1

, 1 − ∏ (1 − 𝑤𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

],            

[1 − ∏ (1 − 𝑣𝐴𝑘

− (𝑥))
𝜔𝑘

𝑛

𝑘=1

, 1 − ∏ (1 − 𝑣𝐴𝑘

+ (𝑥))
𝜔𝑘

𝑛

𝑘=1

])      (4) 

where 𝜔𝑘  is the weight of �̃�𝑘 (𝑘 = 1,2, … , 𝑛), 𝜔𝑘 ∈ [0,1] and 

∑ 𝜔𝑘
𝑛
𝑘=1 = 1. Especially, assume 𝜔𝑘 = 1/𝑛  (𝑘 = 1,2, … , 𝑛) , 

then 𝐺𝜔 is called a geometric average for INSs. 

The aggregation results 𝐹𝜔  and 𝐺𝜔  are still INSs. Obviously, 

there are different emphasis points between Definitions 2.15 and 

2.16. The weighted arithmetic average operator indicates the 

group’s influence, so it is not very sensitive to �̃�𝑘  (𝑘 =

1,2, … , 𝑛) ∈ INS(𝑋), whereas the weighted geometric average 

operator indicates the individual influence, so it is more 

sensitive to �̃�𝑘 (𝑘 = 1,2, … , 𝑛) ∈ INS(𝑋). 

Definition 2.17 [26] Let 𝐴 be an interval neutrosophic set over 

𝑋.  

(i) An interval neutrosophic set over 𝑋 is empty, denoted by 

�̃�  if 𝑢𝐴 (𝑥) = [1,1] , 𝑤𝐴 (𝑥) = [0,0]  and 𝑣𝐴 (𝑥) = [0,0] 

for all 𝑥 ∈ 𝑋. 

(ii) An interval neutrosophic set over 𝑋 is absolute, denoted 

by Φ  if 𝑢𝐴 (𝑥) = [0,0] , 𝑤𝐴 (𝑥) = [1,1]  and 𝑣𝐴 (𝑥) =

[1,1] for all 𝑥 ∈ 𝑋. 

3. Ranking by score function 

In the following, we introduce a score function for ranking 

SVN numbers by taking into account the truth-membership 

degree, indeterminacy-membership degree and falsity 

membership degree of SVNSs (and INSs), and discuss some 

basic properties. 

Definition 3.18 Let 𝐴 =  (𝑎, 𝑏, 𝑐)  be a single valued 

neutrosophic number, a score function 𝐾  of a single valued 

neutrosophic value, based on the truth-membership degree, 

indeterminacy-membership degree and falsity membership 

degree is defined by 

𝐾(𝐴) =
1 + 𝑎 − 2𝑏 − 𝑐

2
                                       (5) 

where 𝐾(𝐴) ∈ [−1,1]. 

The score function 𝐾 is reduced the score function proposed by 

Li ([8]) if 𝑏 = 0 and 𝑎 + 𝑐 ≤ 1. 

It is clear that if truth-membership degree 𝑎 is bigger, and the 

indeterminacy-membership degree 𝑏  and falsity membership 

degree 𝑐  are smaller, then the score value of the SVNN 𝐴  is 

greater. 

We give the following example. 

Example 3.19 Let 𝐴1  =  (0.5,0.2,0.6) and 𝐴2  =  (0.6,0.4,0.2) 

be two single valued neutrosophic values for two alternatives. 

Then, by applying Definition 3.18, we can obtain 

𝐾(𝐴1) =
1 + 0.5 − 2 × 0.2 − 0.6

2
=  0.25 

𝐾(𝐴2) =
1 + 0.6 − 2 × 0.4 − 0.2

2
=  0.3. 

In this case, we can say that alternative 𝐴2 is better than 𝐴1. 



5 

 

Proposition 3.20 Let 𝐴 =  (𝑎, 𝑏, 𝑐)  be a single valued 

neutrosophic value. Then the score function 𝐾  has some 

properties as follows: 

(i) 𝐾 (𝐴)  =  0 if and only if 𝑎 = 2𝑏 + 𝑐 − 1. 

(ii) 𝐾 (𝐴)  =  1 if and only if 𝑎 = 2𝑏 + 𝑐 + 1. 

(iii) 𝐾 (𝐴) =  −1 if and only if 𝑎 = 2𝑏 + 𝑐 − 3. 

Moreover, we have that 𝐾 (�̃�)  =  1, which �̃� is the absolute 

single valued neutrosophic value, and 𝐾 (Φ) =  −1, which Φ is 

the null single valued neutrosophic value. 

Theorem 3.21 Let 𝐴1  =  (𝑎1, 𝑏1, 𝑐1) and 𝐴2  =  (𝑎2, 𝑏2, 𝑐2)  be 

two single valued neutrosophic sets. If 𝐴1  ⊆ 𝐴2, then 𝐾(𝐴1)  ≤

𝐾(𝐴2). 

Proof. By Definition 3.18, we have that 𝐾(𝐴1) =
1+𝑎1−2𝑏1−𝑐1

2
 

and 𝐾(𝐴2) =
1+𝑎2−2𝑏2−𝑐2

2
.  Now, 𝐾(𝐴2) − 𝐾(𝐴1) = ((𝑎2 −

𝑎1) + 2(𝑏1 − 𝑏2) + (𝑐1 − 𝑐2))/2 . Since 𝐴1  ⊆ 𝐴2 , 𝑎1 ≤ 𝑎2 , 

𝑏1 ≥ 𝑏2 , 𝑐1 ≥ 𝑐2  and hence (𝑎2 − 𝑎1) ≥ 0, (𝑏1 − 𝑏2) ≥ 0 and 

(𝑐1 − 𝑐2) ≥ 0. Then it follows that 𝐾(𝐴2) − 𝐾(𝐴1) ≥ 0.  

Now, we define a score function for the ranking order of the 

interval neutrosophic numbers (INSs). 

Definition 3.22 Let �̃�   =  ([𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓])  be an interval 

neutrosophic number, a score function 𝐿  of an interval 

neutrosophic value, based on the truth-membership degree, 

indeterminacy-membership degree and falsity membership 

degree is defined by 

𝐿(�̃� ) =
2 + 𝑎 + 𝑏 − 2𝑐 − 2𝑑 − 𝑒 − 𝑓

4
                                 (6) 

where 𝐿(�̃� ) ∈ [−1,1].  

We give the following example. 

Example 3.23 Let �̃�1  =  ([0.6,0.4], [0.3,0.1], [0.1,0.3])  and 

�̃�2  =  ([0.1,0.6], [0.2,0.3], [0.1, 0.4])  be two interval 

neutrosophic values for two alternatives. Then, by applying 

Definition 3.22, we can obtain 

𝐿(�̃�1) =
2 + 0.6 + 0.4 − 2 × 0.3 − 2 × 0.1 − 0.1 − 0.3

4
=  0.45, 

  

𝐿(�̃�2) =
2 + 0.1 + 0.6 − 2 × 0.2 − 2 × 0.3 − 0.1 − 0.3

4
=  0.32. 

In this case we can say that alternative 𝐴1 is better than 𝐴2. 

Proposition 3.24 Let �̃�  =  ([𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]) be an interval 

neutrosophic value. Then the score function 𝐿  has some 

properties as follows: 

(i) 𝐿 (�̃� ) =  0 if and only if 𝑎 + 𝑏 =  2𝑏 + 2𝑑 + 𝑒 + 𝑓 − 2. 

(ii) 𝐿 (�̃� ) =  1 if and only if 𝑎 + 𝑏 =   2𝑏 + 2𝑑 + 𝑒 + 𝑓 + 2. 

(iii) 𝐿 (�̃� ) =  −1 if and only if 𝑎 + 𝑏 =   2𝑏 + 2𝑑 + 𝑒 + 𝑓 − 6. 

Moreover, we have that 𝐿 (�̃�)  =  1, which �̃�  is the absolute 

interval neutrosophic value, and 𝐿 (Φ) =  −1, which Φ is the 

null interval neutrosophic value. 

Theorem 3.25 Let �̃�1  =  ([𝑎1, 𝑏1], [𝑐1, 𝑑1], [𝑒1, 𝑓1]) and �̃�2  =

 ([𝑎2, 𝑏2], [𝑐2, 𝑑2], [𝑒2, 𝑓2]) be two interval neutrosophic sets. If 

�̃�1 ⊆ �̃�2, then 𝐿(�̃�1)  ≤ 𝐿(�̃�2). 

Proof. By Definition 3.22, we have 𝐿(�̃�1) =
2+𝑎1+𝑏1−2𝑐1−2𝑑1−𝑒1−𝑓1

4
 and 𝐿(�̃�2) =

2+𝑎2+𝑏2−2𝑐2−2𝑑2−𝑒2−𝑓2

4
.  

Now, 𝐿(�̃�2) − 𝐿(�̃�1) = (𝑎2 − 𝑎1) + (𝑏2 − 𝑏1) + 2(𝑐1 −

𝑐2) + 2(𝑑1 − 𝑑2) + (𝑒1 − 𝑒2) + (𝑑1 − 𝑑2) . Since �̃�1 ⊆ �̃�2 , 

𝑎1 ≤ 𝑎2 , 𝑏1 ≤ 𝑏2 , 𝑐1 ≥ 𝑐2 , 𝑑1 ≥ 𝑑2  and 𝑒1 ≥ 𝑒2 , 𝑓1 ≥ 𝑓2  and 

hence (𝑎2 − 𝑎1) ≥ 0 , (𝑏2 − 𝑏1) ≥ 0 ,  (𝑐1 − 𝑐2) ≥ 0 , (𝑑1 −

𝑑2) ≥ 0, (𝑒1 − 𝑒2) ≥ 0and (𝑓1 − 𝑓2) ≥ 0. Then it follows that 

𝐿(�̃�2) − 𝐿(�̃�1) ≥ 0.  

4. Ranking by accuracy function 

Definition 4.26 Let 𝐴 =  (𝑎, 𝑏, 𝑐)  be a single valued 

neutrosophic number, an accuracy function 𝑀 of a single valued 

neutrosophic value, based on the truth-membership degree, 

indeterminacy-membership degree and falsity membership 

degree is defined by 

𝑀(𝐴) = 𝑎 − 𝑏(1 − 𝑎) − 𝑐(1 − 𝑏)                                   (7) 

where 𝑀(𝐴) ∈ [−1,1]. 

Example 4.27 Let 𝐴1  =  (0.5,0.2,0.6) and 𝐴2  =  (0.6,0.4,0.2) 

be two single valued neutrosophic values for two alternatives. 

Then, by applying Definition 4.26, we can obtain 𝑀(𝐴1) =

−0.08 and 𝑀(𝐴2) = 0,32. 

In this case, we can say that alternative 𝐴2 is better than 𝐴1. 

Now, we extend the concept of accuracy function to interval 

neutrosophic numbers. 

Definition 4.28 Let 𝐴 =  ([𝑎, 𝑏], [𝑐, 𝑑], [𝑒, 𝑓]) be an interval 

neutrosophic number. Then an accuracy function 𝑁  of an 

interval neutrosophic value, based on the truth-membership 

degree, indeterminacy-membership degree and falsity 

membership degree is defined by 

𝑁(𝐴) =
1

2
(𝑎 + 𝑏 − 𝑑(1 − 𝑏) − 𝑐(1 − 𝑎) 

−𝑓(1 − 𝑐) − 𝑒(1 − 𝑑))                                (8) 

where 𝐿(𝐴) ∈ [−1,1]. 

The accuracy function 𝑁  is reduced the accuracy function 

proposed by Nayagam et al. ([13]) if 𝑐, 𝑑 = 0 and 𝑏 + 𝑓 ≤ 1. 

Example 4.29 Let �̃�1  =  ([0.6,0.4], [0.3,0.1], [0.1,0.3])  and 

�̃�2  =  ([0.1,0.6], [0.2,0.3], [0.1, 0.4])  be two interval 

neutrosophic values for two alternatives. Then, by applying 
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Definition 4.28, we can obtain 𝑀(𝐴1) = 0,26  and 𝑀(𝐴2) =

0,34. 

In this case we can say that alternative 𝐴2 is better than 𝐴1. 

According to score and accuracy functions for SVNNs, we can 

obtain the following definitions. 

Definition 4.30 Suppose that 𝐴1  =  (𝑎1, 𝑏1, 𝑐1)  and 𝐴2  =

 (𝑎2, 𝑏2, 𝑐2) are two single valued neutrosophic number. Then 

we define the ranking method as follows: 

(i) If 𝐾(𝐴1) > 𝐾(𝐴2), then 𝐴1 > 𝐴2. 

(ii) If  𝐾(𝐴1) = 𝐾(𝐴2) and 𝐿(𝐴1) > 𝐿(𝐴2), then 𝐴1 > 𝐴2. 

Definition 4.31 Suppose that �̃�1  =  ([𝑎1, 𝑏1], [𝑐1, 𝑑1], [𝑒1, 𝑓1]) 

and �̃�2  =  ([𝑎2, 𝑏2], [𝑐2, 𝑑2], [𝑒2, 𝑓2])  are two interval 

neutrosophic sets Then we define the ranking method as 

follows: 

(i) If 𝐾(�̃�1) > 𝐾(�̃�2), then �̃�1 > �̃�2. 

(ii) If  𝐾(�̃�1) = 𝐾(�̃�2) and 𝐿(�̃�1) > 𝐿(�̃�2), then �̃�1 > �̃�2. 

Example 4.32 Let 𝐴1  =  (0.5,0.2,0.6) and 𝐴2  =  (0.6,0.4,0.2) 

be two single valued neutrosophic values for two alternatives. 

Then, by applying Definition 3.18, we can obtain 𝐾(𝐴1) =

𝐾(𝐴2) = 0.6  and 𝐿(𝐴1) = 0.26 , 𝐿(𝐴2) = −0.16 . Then it 

implies that 𝐴1 > 𝐴2. 

From the above analysis, we develop a method based on the 

score function 𝐾 and the accuracy function 𝐿 for multi criteria 

decision making problem, which are criterion values for 

alternatives are the single valued neutrosophic value and the 

interval neutrosophic value, and define it as follows. 

5. Multi-criteria neutrosophic decision-making method 

based on the score-accuracy function 

Here, we propose a method for multi-criteria neutrosophic 

decision making problems with weights. 

Suppose that 𝐴 =  {𝐴1, 𝐴2, . . . , 𝐴𝑚}  be the set of 

alternatives and 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛}  be a set of criteria. 

Suppose that the weight of the criterion 𝐶𝑠 (𝑠 = 1,2, … , 𝑛), 

stated by the decision-maker, is 𝜔𝑠 , 𝜔𝑠 ∈ [0,1]  and 

∑ 𝜔𝑠
𝑛
𝑠=1 =1. Thus, the characteristic of the alternative 𝐴𝑘 

(𝑘 = 1,2, … , 𝑚) is introduced by the following SVNS and 

INS, respectively: 

Method 1 

𝐴𝑘 = {〈𝐶𝑠, 𝑢𝐴𝑘
(𝐶𝑠), 𝑤𝐴𝑘

(𝐶𝑠), 𝑣𝐴𝑘
(𝐶𝑠)〉: 𝐶𝑠 ∈ 𝐶} 

where 0 ≤ 𝑢𝐴𝑘
(𝐶𝑠) + 𝑤𝐴𝑘

(𝐶𝑠) + 𝑣𝐴𝑘
(𝐶𝑠) ≤ 3, 𝑢𝐴𝑘

(𝐶𝑠) ≥ 0, 

𝑤𝐴𝑘
(𝐶𝑠) ≥ 0 , 𝑣𝐴𝑘

(𝐶𝑠) ≥ 0 , 𝑠 = 1,2, … , 𝑛  and  𝑘 =

1,2, … , 𝑚. The SVNS value that is the triple of values for 𝐶𝑠  

is denoted by 𝛼𝑘𝑠 =  (𝑎𝑘𝑠 , 𝑏𝑘𝑠, 𝑐𝑘𝑠), where 𝑎𝑘𝑠 indicates the 

degree that the alternative 𝐴𝑘  satisfies the criterion 𝐶𝑠 and 𝑏𝑘𝑠  

indicates the degree that the alternative 𝐴𝑘  is indeterminacy 

on the criterion 𝐶𝑠, where as 𝑐𝑘𝑠 indicates the degree that the 

alternative 𝐴𝑘  does not satisfy the criterion 𝐶𝑠  given by the 

decision-maker. So we can express a decision matrix  =

(𝛼𝑘𝑠)𝑚×𝑛  . The aggregating single valued neutrosophic 

number 𝛼𝑘  for 𝐴𝑘  (𝑘 = 1,2, … , 𝑚)  is 𝛼𝑘 = (𝑎𝑘, 𝑏𝑘 , 𝑐𝑘) =

𝐹𝑘𝜔(𝐴𝑘1, 𝐴𝑘2, … , 𝐴𝑘𝑛)  or 𝛼𝑘 = (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘) =

𝐺𝑘𝜔(𝐴𝑘1, 𝐴𝑘2, … , 𝐴) , which is obtained by applying 

Definition 2.8 or Definition 2.9 according to each row in the 

decision matrix. 

We can summarize the procedure of proposed method as 

follows: 

Step (1)   Obtain the weighted arithmetic average values by 

using Eq. (1) or the weighted geometric average values by 

Eq. (2) 

Step (2) Obtain the score (or accuracy) 𝐾(𝐴𝑘)  of single 

valued neutrosophic value 𝛼𝑘 (𝑘 = 1,2, … , 𝑚) by using Eq. 

(5). 

Step (3) Rank the alternative 𝐴𝑘  =  (𝑘 = 1,2, … , 𝑚)  and 

choose the best one(s) according to (𝛼𝑘) (𝑘 = 1,2, … , 𝑚). 

Method 2 

�̃�𝑘 = {⟨𝐶𝑠, [𝑢𝐴𝑘

− (𝐶𝑠), 𝑢𝐴𝑘

+ (𝐶𝑠)], [𝑤𝐴𝑘

− (𝐶𝑠), 𝑤𝐴𝑘

+ (𝐶𝑠)], 

[𝑣𝐴𝑘

− (𝐶𝑠), 𝑣𝐴𝑘

+ (𝐶𝑠)]⟩ : 𝐶𝑠 ∈ 𝐶} 

where 0 ≤ 𝑢𝐴𝑘

+ (𝐶𝑠) + 𝑤𝐴𝑘

+ (𝐶𝑠) + 𝑣𝐴𝑘

+ (𝐶𝑠) ≤ 3, 𝑢𝐴𝑘

− (𝐶𝑠) ≥ 0, 

𝑤𝐴𝑘

− (𝐶𝑠) ≥ 0 , 𝑣𝐴𝑘

− (𝐶𝑠) ≥ 0 , 𝑠 = 1,2, … , 𝑛  and  𝑘 =

1,2, … , 𝑚. The INS value that is the trible of intervals for 𝐶𝑠  

is denoted by 𝛼𝑘𝑠 =  ([𝑎𝑘𝑠, 𝑏𝑘𝑠], [𝑐𝑘𝑠, 𝑑𝑘𝑠], [𝑒𝑘𝑠, 𝑓𝑘𝑠]), where 

[𝑎𝑘𝑠 , 𝑏𝑘𝑠] indicates the degree that the alternative  �̃�𝑘  satisfies 

the criterion 𝐶𝑠  and [𝑐𝑘𝑠 , 𝑑𝑘𝑠] indicates the degree that the 

alternative �̃�𝑘  is indeterminacy on the criterion 𝐶𝑠, where as 

[𝑒𝑘𝑠, 𝑓𝑘𝑠] indicates the degree that the alternative  �̃�𝑘 does not 

satisfy the criterion 𝐶𝑠  given by the decision-maker. So we 

can express a decision matrix = (�̃�𝑘𝑠)
𝑚×𝑛

 . The aggregating 

interval neutrosophic number 𝛼𝑘  for �̃�𝑘  (𝑘 = 1,2, … , 𝑚)  is 

�̃�𝑘 = ([𝑎𝑘, 𝑏𝑘], [𝑐𝑘 , 𝑑𝑘], [𝑒𝑘 , 𝑓𝑘]) = 𝐹𝑘𝜔(�̃�𝑘1, �̃�𝑘2, … , �̃�𝑘𝑛) 

or �̃�𝑘 = ([𝑎𝑘 , 𝑏𝑘], [𝑐𝑘, 𝑑𝑘], [𝑒𝑘, 𝑓𝑘]) =

𝐺𝑘𝜔(�̃�𝑘1, �̃�𝑘2, … , �̃�𝑘𝑛) , which is obtained by applying 

Definition 2.15 or Definition 2.16  according to each row in 

the decision matrix. 

We can summarize the procedure of proposed method as 

follows: 

Step (1)   Obtain the weighted arithmetic average values by 

using Eq. (3) or the weighted geometric average values by 

Eq. (4). 
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Step (2) Obtain the score (or accuracy) 𝐿(�̃�𝑘)  of interval 

neutrosophic value  �̃�𝑘 (𝑘 = 1,2, … , 𝑚) by using Eq. (6). 

Step (3) Rank the alternative �̃�𝑘 = (𝑘 = 1,2, … , 𝑚)  and 

choose the best one(s) according to (�̃�𝑘) (𝑘 = 1,2, … , 𝑚). 

 

4.1. Numerical examples 

Example 5.32 Let us consider decision making problem 

adapted from [32]. There is an investment company, which 

wants to invest a sum of money in the best option. There is a 

panel with four possible alternatives to invest the money: (1) 

𝐴1 is a food company; (2) 𝐴2 is a car company; (3) 𝐴3 is an 

arms company; (4) 𝐴4  is a computer company. The 

investment company must make a decision according to three 

criteria given below: (1) 𝐶1 is the growth analysis; (2) 𝐶2 is 

the risk analysis; (3) 𝐶3 is the environmental impact analysis. 

Then, the weight vector of the criteria is given by are 

0.35, 0.25  and 0.40 . Thus, when the four possible 

alternatives with respect to the above three criteria are 

evaluated by the expert, we can obtain the following single-

valued neutrosophic decision matrix: 

 𝐶1 𝐶2 𝐶3 

𝐴1 (0.4,0.2,0.3) (0.4,0.2,0.3) (0.2,0.2,0.5) 

𝐴2 (0.6,0.1,0.2) (0.6,0.1,0.2) (0.5,0.2,0.2) 

𝐴3 (0.3,0.2,0.3) (0.5,0.2,0.3) (0.5,0.3,0.2) 

𝐴4 (0.7,0.0,0.1) (0.6,0.1,0.2) (0.4,0.3,0.2) 

Suppose that the weights of 𝐶1 , 𝐶2  and 𝐶3  are 0.35, 0.25 and 

0.40. Then, we use the approach developed to obtain the most 

desirable alternative(s). 

Step (1) We can compute the weighted arithmetic average 

value 𝛼𝑘 for 𝐴𝑘  = (𝑘 = 1,2,3,4) by using Eq. (1) as follows: 

𝛼1 = (0.3268,0.2000,0.3680), 

𝛼2 = (0.5626,0.1319,0.2000), 

𝛼3 = (0.4375,0.2352,0.2550), 

𝛼4 = (0.5746,0.0000,0.1569). 

Step (2) By using Eq. (5), we obtain 𝐾(𝛼𝑘) (𝑘 = 1,2,3,4) as 

𝐾(𝛼1) = 0.2794, 𝐾(𝛼2) = 0.5494, 𝐾(𝛼3) = 0.3560, 

𝐾(𝛼4) = 0.7088. 

Step (3) Rank all alternatives according to the accuracy 

degrees of 𝐾(𝛼𝑘) (𝑘 = 1,2,3,4): 

𝐴4  >  𝐴2  >  𝐴3  >  𝐴1. 

Thus the alternative 𝐴4 is the most desirable alternative based 

weighted arithmetic average operator. 

Now, assuming the same weights for 𝐶1, 𝐶2 and 𝐶3, we use the 

weighted geometric average operator. 

Step (1) We can obtain the weighted arithmetic average value 

𝛼𝑘 for 𝐴𝑘  =  (𝑘 = 1,2,3,4) by using Eq. (2) as follows: 

𝛼1 = (0.2297,0.2000,0.3674), 

𝛼2 = (0.5102,0.1860,0.1614), 

𝛼3 = (0.3824,0.2000,0.2260), 

𝛼4 = (0.4799,0.1555,0.1261). 

Step (2) By applying Eq. (5), we obtain 𝐾(𝛼𝑘) (𝑘 = 1,2,3,4) 

as 

𝐾(𝛼1) = 0.2311, 𝐾(𝛼2) = 0.4884, 𝐾(𝛼3) = 0.3782,  

𝐾(𝛼4) = 0.5412. 

Step (3) Rank all alternatives according to the accuracy 

degrees of 𝐾(𝛼𝑘) (𝑘 = 1,2,3,4): 

𝐴4  >  𝐴2  >  𝐴3  >  𝐴1. 

Thus the alternative 𝐴4  is also the most desirable alternative 

based weighted geometric average operator. 

Example 5.33 Let us consider decision making problem 

adapted from [30]. Suppose that there is a panel with four 

possible alternatives to invest the money: (1) �̃�1  is a food 

company; (2) �̃�2  is a car company; (3) �̃�3  is an arms 

company; (4) �̃�4  is a computer company. The investment 

company must make a decision according to three criteria 

given below: (1) 𝐶1 is the growth analysis; (2) 𝐶2 is the risk 

analysis; (3) 𝐶3  is the environmental impact analysis. By 

using the interval-valued intuitionistic fuzzy information, the 

decision-maker has evaluated the four possible alternatives 

under the above three criteria and has listed in the following 

matrix: 

 𝐶1 𝐶2 

�̃�1 ([0.4,0.5], [0.2,0.3], [0.3,0.4]) ([0.4,0.6], [0.1,0.3], [0.2,0.4]) 

�̃�2 ([0.6,0.7], [0.1,0.2], [0.2,0.3]) ([0.6,0.7], [0.1,0.2], [0.2,0.3]) 

�̃�3 ([0.3,0.6], [0.2,0.3], [0.3,0.4]) ([0.5,0.6], [0.2,0.3], [0.3,0.4]) 

�̃�4 ([0.7,0.8], [0.0,0.1], [0.1,0.2]) ([0.6,0.7], [0.1,0.2], [0.1,0.3]) 

 

 𝐶3 

�̃�1 ([0.7,0.9], [0.2,0.3], [0.4,0.5]) 

�̃�2 ([0.3,0.6], [0.3,0.5], [0.8,0.9]) 

�̃�3 ([0.4,0.5], [0.2,0.4], [0.7,0.9]) 

�̃�4 ([0.6,0.7], [0.3,0.4], [0.8,0.9]) 

Suppose that the weights of 𝐶1 , 𝐶2  and 𝐶3  are 0.35, 0.25 and 

0.40. Then, we use the approach developed to obtain the most 

desirable alternative(s). 

Step (1) We can compute the weighted arithmetic average 

value �̃�𝑘 for �̃�𝑘  = (𝑘 = 1,2,3,4) by using Eq. (4) as follows: 
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�̃�1 = ([0.5452,0.7516], [0.1681,0.3000], [0.3041,0.4373]), 

�̃�2 = ([0.4996,0.6634], [0.1551,0.2885], [0.3482,0.4655]), 

�̃�3 = ([0.3946,0.5626], [0.2000,0.3365], [0.4210,0.5532]), 

�̃�4 = ([0.6383,0.7396], [0.0000,0.2070], [0.2297,0.4039]). 

Step (2) By using Eq. (6), we obtain 𝐿(�̃�𝑘) (𝑘 = 1,2,3,4) as 

𝐿(�̃�1) = 0.4048, 𝐿(�̃�2) = 0.3655, 𝐿(�̃�3) = 0.2275, 

𝐿(�̃�4) = 0.5825. 

Step (3) Rank all alternatives according to the accuracy 

degrees of 𝐿(�̃�𝑘) (𝑘 = 1,2,3,4): 

�̃�4  >  �̃�1  >  �̃�2  >  �̃�3. 

Thus the alternative �̃�4 is the most desirable alternative based 

weighted arithmetic average operator. 

Now, assuming the same weights for 𝐶1, 𝐶2 and 𝐶3, we use the 

weighted geometric average operator. 

Step (1) We can obtain the weighted arithmetic average value 

�̃�𝑘 for �̃�𝑘  =  (𝑘 = 1,2,3,4) by using Eq. (4) as follows: 

�̃�1 = ([0.5003,0.6620], [0.1760,0.3000], [0.3195,0.4422]), 

�̃�2 = ([0.4547,0.6581], [0.1860,0.3371], [0.5405,0.6758]), 

�̃�3 = ([0.3824,0.5578], [0.2000,0.3418], [0.5012,0.7069]), 

�̃�4 = ([0.6332,0.7334], [0.1555,0.2569], [0.5068,0.6632]). 

Step (2) By applying Eq. (6), we obtain 𝐿(�̃�𝑘) (𝑘 = 1,2,3,4) 

as 

𝐿(�̃�1) = 0.3621, 𝐿(�̃�2) = 0.2118, 𝐿(�̃�3) = 0.1621,  

𝐿(�̃�4) = 0.3429. 

Step (3) Rank all alternatives according to the accuracy 

degrees of 𝐿(�̃�𝑘) (𝑘 = 1,2,3,4): 

�̃�1  >  �̃�4  >  �̃�2  >  �̃�3. 

Thus the alternative �̃�1  is also the most desirable alternative 

based weighted geometric average operator. 

Note that we obtain the different rankings for single valued 

neutrosophic information and interval neutrosophic 

information. 

From the examples, we can see that the proposed neutrosophic 

decision-making method is more suitable for real scientific and 

engineering applications because it can handle not only 

incomplete information but also the indeterminate information 

and inconsistent information existing in real situations. The 

technique proposed in this paper extends the existing decision 

making methods and provides a new way for decision makers. 

6. Comparison Analysis and Discussion 

In this section, we will a comparison analysis to validate the 

feasibility of the proposed decision making method based on 

accuracy-score functions. To demonstrate the relationships, we 

utilize the same examples adapted from [32] and [30]. 

The score and accuracy functions has extremely important for 

process of multi criteria decision making.   But, until now there 

have been no many studies on multi-criteria decision making 

method based on accuracy-score functions, which are criterion 

values for alternatives are single valued neutrosophic sets or 

interval neutrosophic sets. Ye [30] defined the similarity 

measures between INSs based on the relationship between 

similarity measures and distances and proposed the similarity 

measures between each alternative and the ideal alternative to 

establish a multi criteria decision making method for INSs. 

After, Zhang et al. [6] presented a method based on the 

aggregation operators for multi criteria decision making under 

interval neutrosophic environment. By obtaining the different 

results than given in [30], they showed that the method proposed 

is more precise and reliable than the result produced in [30]. 

Although the same ranking results with [6] are obtained in here, 

the decision making method proposed in this paper has less 

calculation and it is more flexible and more sustainable for the 

multi criteria decision making with SVN or IVN information. 

7. Conclusions 

At present, many score-accuracy function technical are 

applied to the problems based on intuitionistic fuzzy 

information or interval valued intuitionistic fuzzy information, 

but they could not be used to handle the problems based on 

neutrosophic information. So, two measurement functions such 

that score and accuracy functions for single valued neutrosophic 

numbers and interval neutrosophic numbers is proposed in this 

paper, and a multi-criteria decision making method based on 

this functions is established for neutrosophic information. In 

decision making process, the neutrosophic weighted 

aggregation operators (arithmetic and geometric average 

operators) are adopted to aggregate the neutrosophic 

information related to each alternative. Finally, some numerical 

examples are presented to illustrate the application of the 

proposed approaches. 
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