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Abstract

A rough set is a formal approximation of a crisp set which gives lower and upper ap-

proximation of original set to deal with uncertainties. The concept of neutrosophic set is

a mathematical tool for handling imprecise, indeterministic and inconsistent data. In this

paper, we introduce the concepts of Rough Fuzzy Neutrosophic Sets and Fuzzy Neutrosophic

Rough Sets and investigate some of their properties. Further as the characterisation of fuzzy

neutrosophic rough approximation operators, we introduce various notion of cut sets of neu-

trosophic fuzzy sets.

1 Introduction

Rough set theory is a [9], is an extension of set theory for the study of intelligent systems

characterized by inexact, uncertain or insufficient information. Moreover, it is a mathematical

tool for machine learning, information sciences and expert systems and successfully applied

in data analysis and data mining. There are two basic elements in rough set theory, crisp set

and equivalence relation, which constitute the mathematical basis of rough set. The basic

idea of rough set is based upon the approximation of sets by a pair of sets known as the lower

approximation and the upper approximation of a set . In classical rough set theory partition

or equilence relation is the basic concept. Now fuzzy sets are combined with rough sets in

a fruitful way and defined by rough fuzzy sets and fuzzy rough sets [5,6]. Also fuzzy rough

sets, generalize fuzzy rough, intuitionistic fuzzy rough sets, rough intuitionistic fuzzy sets,

rough vague sets are introduced. The theory of rough sets is based upon the classification

mechanism, from which the classification can be viewed as an equivalence relation and knowl-

edge blocks induced by it be a partition on universe. One of the interesting generalizations

of the theory of fuzzy sets and intuitionistic fuzzy sets is the theory of neutrosophic sets

introduced by F. Smarandache. Neutrosophic sets described by three functions: Truth func-

tion indeterminacy function and false function that are independently related. The theories

of neutrosophic set have achieved great success in various areas such as medical diagnosis,

database, topology, image processing, and decision making problem. While the neutrosophic
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set is a powerful tool to deal with indeterminate and inconsistent data, the theory of rough

sets is a powerful mathematical tool to deal with incompleteness. Neutrosophic sets and

rough sets are two different topics, none conflicts the other. Recently many researchers ap-

plied the notion of neutrosophic sets to relations, group theory, ring theory, Soft set theory

and so on. In this paper we combine the mathematical tools fuzzy sets, rough sets and neu-

trosophic sets and introduce a new class of set called fuzzy neutrosophic rough sets. Here

we give rough approximation of a fuzzy neutrosophic set and introduce fuzzy neutrosophic

rough sets

2 Preliminaries

Definition 2.1[1]

A Neutrosophic set A on the universe of discourse X is defined as

A = { 〈x, TA(x), IA(x), FA(x)〉 / x ∈ X} where

T, I, F : X −→ ] 0−, 1+ [ and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2.2[1]

A neutrosophice set A is contained in another neutrosophic set B (ie)

A ⊆ B ⇔ TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x).

Definition 2.3[1]

A fuzzy Neutrosophic set A on the universe of discourse X is defined as

A = {〈 x, TA(x), IA(x), FA(x)〉, x ∈ X} where T, F, I : X −→ [0, 1] and

0 ≤ TA(x) + IA(x) + FA(x) ≤ B.

Definition 2.4[1]

If A = {〈x, TA(x), IA(x), FA(x)〉 /x ∈ X} and B = {〈x, TB(x), IB(x), FB(x)〉 /x ∈ X}
are any two fuzzy neutrosophic sets of X then

(i) A ⊆ B ↔ TA(x) ≤ TB(x); IA(x) ≤ IB(x) and FA(x) ≥ FB(x)

(ii) A = B ↔ TA(x) = TB(x); IA(x) = IB(x) and FA(x) = FB(x) ∀x ∈ X
(iii) Ā = {〈x, FA(x), 1− IA(x), TA(x)〉 /x ∈ X}
(iv) A ∩B = {〈x, T(A∩B)(x), I(A∩B)(x), F(A∩B)(x)〉/x ∈ X} where

TA∩B(x) = min{TA(x), TB(x)} IA∩B(x) = min{IA(x), IB(x)} FA∩B(x) = max{FA(x), FB(x)}
(v) A ∪B = {〈x, T(A∪B)(x), I(A∪B)(x), F(A∪B)(x)〉/x ∈ X} where

TA∪B(x) = max{TA(x), TB(x)} IA∪B(x) = max{IA(x), IB(x)} FA∪B(x) = min{FA(x), FB(x)}.
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Definition 2.5[5]

Let R ⊆ U × U be a crisp binary relation on U. R is referred to as reflexive if (x, x) ∈ R
for all x ∈ U .R is referred to as symmetric if for all (x,y) ∈ U, (x,y) ∈ R implies (y,x) ∈
R and R is referred to as transitive if for all x,y,z ∈ U, (x,y) ∈ R and (y,z) ∈ R imply (x,z) ∈ R.

Definition 2.6[5]

Let U be a non empty universe of discourse and R ⊆ U × U , an arbitrary crisp relation

on U. Denote xR = y ∈ U/(x, y) ∈ R x ∈ U
xR is called the R-after set of x (Bandler and kohout 1980) or successor neighbourhood of

x with respect to R (Yao 1998 b). The pair (U,R) is called a crisp approximation space.

For any A ⊆ U the upper and lower approximation of A with respect to (U,R) denoted by

R̄ and R are respectively defined as follows

R̄ = {x ∈ U/xR ∩A 6= ϕ}
R = {x ∈ U/xR ⊆ A}
The pair (R(A), R̄(A)) is referred to as crisp rough set of A with respect to (U,R) and R̄, R :

ρ(U) −→ ρ(U) are referred to upper and lower crisp approximation operator respectively.

The crisp approximation operator satisfies the following properties for all A, B ∈ ρ(U)

(L1) R(A) = R̄′(A
′
) (U1)R̄ = R( A)

(L2)R(U) = U (U2)R̄ ϕ = ϕ

(L3) R(A ∩B) = R(A) ∩R(B) (U3)R̄(A ∩B) = R̄(A) ∪ R̄(B)

(L4) A ⊆ B ⇒ R(A) ⊆ R(B) (U4)A ⊆ B = R̄(A) ⊆ R̄(B)

(L5) R(A ∪B) ⊇ R(A) ∪R(B) (U5)R̄(A ∩B) ⊆ R̄(A) ∩ R̄(B)

Properties (L1)and(U1) show that the approximation operators RandR̄ are dual to each other.

Properties with the same number may be considered as a dual properties. If R is equivalence

relation in U then the pair (U,R) is called a Pawlak approximation space and (R(A), R̄(A))

is a Pawlak rough set, in such a case the approximation operators have additional properties.

3 Fuzzy Neutrosophic rough sets

In this section, we introduce fuzzy neutrosophic approximation operators induced from the

same. Further we define a new type of set called fuzzy neutrosophic rough set and investigate

some of its properties.

Definition 3.1:

A constant fuzzy Neutrosophic set (α, β, γ) = { 〈x, α, β, γ 〉/ x ∈ U}
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where 0 ≤ α, β, γ ≤ 1 and α+ β + γ ≤ 3.

We introduce a special Fuzzy Neutrosophic set ly for y ∈ U as follows

T1y(x) =

{
1, if x = y

0, if x 6= y

T1u−{y}(x) =

{
0, if x = y

1, if x 6= y

I1y =

{
1, if x = y

0, if x 6= y

I1u−{y}(x) =

{
0, if x = y

1, if x 6= y

F1y(x) =

{
0, if x = y

1, if x 6= y

F1u−{y}(x) =

{
1, if x = y

0, if x 6= y.

Definition 3.2:

A Fuzzy Neutrosophic relation on U is a Fuzzy Neutrosophic subset

R = {〈x, y〉, TR(x, y), IR(x, y), FR(x, y)/x, y ∈ U}
TR : U × U −→ [0, 1]; IR : U × U −→ [0, 1]; FR : U × U −→ [0, 1] satisfies

0 ≤ TR(x, y) + IR(x, y) + FR(x, y) ≤ 3 for all (x, y) ∈ U × U . We denote the family of all

Fuzzy Neutrosophic relation on U by FNR(U × U).

Definition 3.3:

Let U be a non empty universe of discourse. For an arbitrary fuzzy neutrosophic relation

R over U × U the pair (U,R) is called fuzzy neutrosophic approximation space. For any A ∈
FN(U), we define the upper and lower approoximations with respect to (U, R), denoted by

R(A) and R̄(A) respectively.

R̄(A) = {〈x, TR̄(A)(x), IR̄(A)(x), FR̄(A)(x)〉/x ∈ U}

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U}

where,

TR̄(A)(x) =
∨
y∈U

[ TR(x, y) ∧ TA(y) ]
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IR̄(A)(x) =
∨
y∈U

[ IR(x, y) ∧ IA(y) ]

FR̄(A)(x) =
∧
y∈U

[ FR(x, y) ∨ FA(y) ]

TR(A)(x) =
∧
y∈U

[ FR(x, y) ∨ TA(y) ]

IR(A)(x) =
∧
y∈U

[ 1− IR(x, y) ∨ IA(y) ]

FR(A)(x) =
∨
y∈U

[ TR(x, y) ∧ FA(y) ]

The pair (R(A), R̄(A)) is called Fuzzy Neutrosophic Rough set of A with respect to (U,R)

and R, R̄ : FN(U) −→ FN(U) are referred to as upper and lower Fuzzy Neutrosophic rough

approximation operators respectively.

Remark 3.4:

If R is an intuitionistic fuzzy relation on U then (U,R) is a intuitionistic Fuzzy approx-

imation space, Fuzzy neutrosophic rough operators are induced from a intuitionistic fuzzy

approximation space that is

R̄(A) = {〈x, TR̄(A)(x), IR̄(A)(x), FR̄(A)(x)〉/x ∈ U} A ∈ FN(U)

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U} A ∈ FN(U)

where,

TR̄(A)(x) =
∨
y∈U

[ µR(x, y) ∧ TA(y) ]

IR̄(A)(x) =
∨
y∈U

[ 1− (µR(x, y) + γR(x, y)) ∧ IR(y)]

FR̄(A)(x) =
∧
y∈U

[ γR(x, y) ∨ FA(y) ]

TR(A)(x) =
∧
y∈U

[ γR(x, y) ∨ TA(y) ]

IR(A)(x) =
∧
y∈U

[ (µR(x, y) + γR(x, y)) ∨ IA(y) ]

FR(A)(x) =
∨
y∈U

[ µR(x, y) ∧ FA(y) ] .

Remark 3.5:

If R is a crisp binary relation on U then (U,R) is a crisp approximation space, the Fuzzy

neutrosophic rough approximation operators are induced from a crisp approximation space,

that ∀A ∈ FN(U)

R̄(A) = {〈x, TR̄(A)(x), IR̄(A)(x), FR̄(A)(x)〉/x ∈ U}
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R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/U ∈ U}
where,

TR̄(A)(x) =
∨

y∈[x]R

TA(y) IR̄(A)(x) =
∨

y∈[x]R

IA(y) FR̄(A)(x) =
∧

y∈[x]R

FA(y)

TR(A)(x) =
∧

y∈[x]R

TA(y) IR(A)(x) =
∧

y∈[x]R

IA(y) FR(A)(x) =
∨

y∈[x]R

FA(y)

Theorem 3.6:

Let (U,R) be a Fuzzy Neutrosophic approximation space. Then the upper and lower

fuzzy Neutrosophic rough approximation operators induced from (U,R) satisfy the following

properties. ∀ A,B ∈ FN(U) , ∀ α, β, γ ∈ [0, 1] with α+ β + γ ≤ 3

(FNL1)R(A) = R̄′(A
′
), (FNU1)R̄(A) = R

′
(A)

′

(FNL2)R(A ∪ α, β, γ) = R(A) ∪ (α, β, γ), (FNU2)R̄(A ∩ α, β, γ) = R̄(A) ∩ (α, β, γ)

(FNL3)R(A ∩B) = R(A) ∩R(B), (FNU3)R̄(A ∪B) = R̄(A) ∪ R̄(B)

(FNL4)A ⊆ B ⇒ R(A) ⊆ R(B) (FNU4)A ⊆ B ⇒ R̄(A) ⊆ R̄(B)

(FNL5)R(A ∪B) ⊇ R(A) ∪R(B) (FNU5)R̄(A ∩B) ⊆ R̄(A) ∩ R̄(B)

(FNL6)R1 ⊆ R2 ⇒ R1(A) ⊇ R2(A) (FNU6)R1 ⊆ R2 ⇒ R̄1(A) ⊆ R̄2(A)

proof:

It follows directly from Definition 3.1.

Properties (FNL1) and (FNU1) show that FN rough approximation operators R and R̄ are

dual to each other.

Remark 3.7: The properties (FNL2) and (FNU2) imply, following properties (FNL2)
′

and (FNU2)
′

(FNL2)
′
R(U) = U (FNU2)

′
= R̄(ϕ) = ϕ

Example 3.8:

Let (U,R) be a FN approximation space where U = {x1, x2, x3} and R ∈ FNR(U × U)

is defined as

R = {〈(x1, x1)0.8, 0.7, 0.1〉 〈(x1, x2), 0.2, 0.5, 0.4〉 〈(x1, x3)0.6, 0.5, 0.7〉 〈(x2, x1)0.4, 0.6, 0.3〉
〈(x2, x2)0.7, 0.8, 0.1〉 〈(x2, x3)0.5, 0.3, 0.1〉 〈(x3, x1)0.6, 0.2, 0.1〉 〈(x3, x2)0.7, 0.8, 0.1〉 〈(x3, x3)1, 0.9, 0.1〉}
If a Fuzzy Neutrosophic set

A = {〈x1, 0.8, 0.9, 0.1〉 〈x2, 0.5, 0.4, 0.3〉 〈x3, 0.5, 0.4, 0.7〉}
then TR(A)(x1) =

∨
y∈Y

[TR(x1, y) ∧ TA(y)] = 0.8

IR(A)(x1) =
∨
y∈Y

[IR(x1, y) ∧ IA(y)] = 0.7
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FR(A)(x1) =
∧
y∈Y

[FR(x1, y) ∨ FA(y)] = 0.1

Similarly we have TR(A)(x2) = 0.7 , IR(A)(x2) = 0.6 , FR̄(A)(x2) = 0.3 and

TR(A)(x3) = 0.6 , IR̄(A)(x3) = 0.4 , FR(A)(x3) = 0.1 .

Hence R(A) = {〈x1, 0.8, 0.7, 0.1〉 〈x2, 0.7, 0.6, 0.3〉 , 〈x3, 0.6, 0.4, 0.1〉 }.
Likewise we can calculate

R(A) = {〈x1, 0.5, 0.5, 0.4〉 〈x2, 0.5, 0.4, 0.3〉 , 〈x3, 0.5, 0.4, 0.7〉 }

Definition 3.9:

Let A ∈ FN(U) and α, β, γ ∈ [0, 1] with α+β+γ ≤ 3 with (α, β, γ) level set of A denoted

by A(αβγ) is defined as

A(αβγ) = {x ∈ U/TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}
We define

Aα = {x ∈ U/TA(x) ≥ α}
Aα+ = {x ∈ U/TA(x) > α}
the α level cut and strong α level cut of truth function generated by A.

Aβ = {x ∈ U/IA(x) ≥ β}
Aβ+ = {x ∈ U/IA(x) > β}
the β level cut and strong β level cut of indeterminacy function generated by A.

and

Aγ = {x ∈ U/FA(x) ≤ γ}
Aγ+ = {x ∈ U/FA(x) < γ}
the γ level cut and strong γ level cut of false value function generated by A.

Similarly, We can define other types level cuts

A(α+,β+,γ+) = {x ∈ U/TA(x) > α, IA(x) > β,FA(x) < γ} which is (α+ β + γ+) level cut set

of A.

A(α+,β,γ) = {x ∈ U/TA(x) > α, IA(x) ≥ β, FA(x) ≤ γ}
A(α,β+,γ) = {x ∈ U/TA(x) ≥ α, IA(x) > β,FA(x) ≤ γ}
A(α,β,γ+) = {x ∈ U/TA(x) ≥ α, IA(x) ≥ β, FA(x) < γ}
Like wise other level cuts can be defined.

Theorem 3.10:

The level cut sets of Fuzzy Neutrosophic sets satisfy the following properties ∀ A,B ∈
FN(U),

α, β, γ ∈ [0, 1] with α+ β + γ ≤ 3

α1, β1, γ1 ∈ [0, 1] with α1 + β1 + γ1 ≤ 3
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α2, β2, γ2 ∈ [0, 1] with α2 + β2 + γ2 ≤ 3

1) A(α,β,γ) = Aα
⋂
Aβ
⋂
Aγ

2) (A
′
)α = (A

′
)α+ : (A

′
)β = (A

′
)(1− β+); (A

′
)γ = (A

′
)α+

3)

(⋂
i∈J

Ai

)
α

=
⋂
i∈J

(Ai)α(⋂
i∈J

Ai

)
β =

⋂
i∈J

(Ai)β(⋂
i∈J

Ai

)γ
=
⋂
i∈J

(Ai)
γ

5)

(⋃
i∈J

Ai

)
α

=
⋃
i∈J

(Ai)α(⋃
i∈J

Ai

)
β =

⋃
i∈J

(Ai)β(⋃
i∈J

Ai

)γ
=
⋃
i∈J

(Ai)
γ

6)

(⋃
i∈J

Ai

)(α,β,γ)

⊇
⋃
i∈J

(Ai)
(α,β,γ)

7)

(⋂
i∈J

Ai

)(α,β,γ)

⊇
⋂
i∈J

(Ai)
(α,β,γ)

8) For α1 ≥ α2 β1 ≥ β2 γ1 ≤ γ2

Aα1 ⊆ Aα2 ; Aβ1 ⊆ Aβ2 Aγ1 ⊆ Aγ2

A(α1,β1,γ1) ⊆ A(α2,β2,γ2)

Proof

1) and 3) follow directly from definition 3.9

2) Since A = {〈x, FA(x), 1− IA(x), TA(x)〉/x ∈ U}
(A
′
)α = {x ∈ U/FA(x) ≥ α}

By definition,

Aα+ = {x ∈ U/FA(x) < α}
Aα+ = {x ∈ U/FA(x) ≥ α}
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⇒ ( A)α = (Aα+)

Similarly we can prove,

( A)β = (A1−β+)

( A)γ = (Aγ+)

4)
⋂
i∈J

Ai =

{
〈x,

∧
i∈J

TAi(x),
∧
i∈J

IAi(x),
∨
i∈J

FAi(x)〉/x ∈ U
}

We have

(⋂
i∈J

Ai

)
α

=

{
x ∈ U/

∧
i∈J

TAi(x) ≥ α
}

={x ∈ U/TAi(x) ≥ α} =
⋂
i∈J

(Ai)α

Similarly,(⋂
i∈J

Ai

)
β =

{
x ∈ U/

∧
i∈J

IAi(x) ≥ β
}

= {x ∈ U/IAi(x) ≥ β∀i ∈ J} =
⋂
i∈J

(Ai)β and(⋂
i∈J

Ai

)γ
=

{
x ∈ U/

∨
i∈J

FAi(x) ≤ γ
}

= {x ∈ U/FAi(x) ≤ γ∀i ∈ J} =
⋂
i∈J

(Ai)β

We can conclude(⋂
i∈J

Ai

)α,β,γ
=

(⋂
i∈J

Ai

)
α

∩
(⋂
i∈J

Ai

)
β∩
(⋂
i∈J

Ai

)γ
=
⋂
i∈J

((Ai)α ∩ (Ai)β ∩ (Ai)
γ) =

⋂
i∈J

(Ai)
(α,β,γ)

5) We know⋃
i∈J

(Ai) =

{
〈x,

∨
i∈J

TAi(x),
∨
i∈J

IAi(x),
∧
i∈J

FAi(x)〉/x ∈ U
}

(⋃
i∈J

Ai

)
α

=

{
x ∈ U/

∨
i∈J

TAi(x) ≥ α
}

=

{
x ∈ U/

∨
i∈J

TAi(x) ≥ α, ∃i ∈ J
}

=
⋃
i∈J

(Ai)α(⋃
i∈J

Ai

)
β =

{
x ∈ U/

∨
i∈J

IAi(x) ≥ β
}

= {x ∈ U/IAi(x) ≥ β, ∀i ∈ J} =
⋃
i∈J

(Ai)β(⋃
i∈J

Ai

)γ
=

{
x ∈ U/

∧
i∈J

FAi(x) ≤ γ
}

= {x ∈ U/FAi(x) ≤ γ, ∀i ∈ J} =
⋃
i∈J

(Ai)
γ

6) For any x ∈ Aα, according to definition(*) we have for TA(x) ≥ α1 ≥ α2, we obtain

Aα1 ⊆ Aα2 .

Similarly for β1 ≥ β2 and γ1 ≤ γ2 we obtain Aβ1 ⊆ Aβ2 and Aγ1 ⊆ Aγ2 .
Hence we have,

A(α1,β1,γ1) ⊆ A(α2,β2,γ2).

Corollary 3.11:

Assume that R is a Fuzzy Neutrosophic relation in U,

Rα = {(x, y) ∈ U × U/TR(x, y) ≥ α}
Rα(x) = {y ∈ U/TR(x, y) ≥ α}
Rα+ = {(x, y) ∈ U × U/TR(x, y) > α}
Rα+(x) = {y ∈ U/TR(x, y) > α}
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Rβ = {(x, y) ∈ U × U/IR(x, y) ≥ β}
Rβ(x) = {y ∈ U/IR(x, y) ≥ β}
Rβ+ = {(x, y) ∈ U × U/IR(x, y) > β}
Rβ+(x) = {y ∈ U/IR(x, y) > β}

Rγ = {(x, y) ∈ U × U/FR(x, y) ≤ γ}
Rγ(x) = {y ∈ U/FR(x, y) ≤ γ}
Rγ+ = {(x, y) ∈ U × U/FR(x, y) < γ}
Rγ+(x) = {y ∈ U/FR(x, y) < α}
R(α,β,γ) = {(x, y) ∈ U × U/TR(x, y) ≥ α, IR(x, y) ≥ β, FR(x, y) ≤ γ}
R(α,β,γ)(x) = {y ∈ U/TR(x, y) ≥ α, IR(x, y) ≥ β, FR(x, y) ≤ γ}
Then for all Rα, Rα+, Rβ,Rβ+, Rγ , Rγ+, R(αβγ) are crisp relation in U and

1) If R is reflexive then the above level cuts are reflexive.

2) If R is symmetric then the above level cuts are symmetric.

3) If R is transitive then the above level cuts are transitive.

Proof

Since R is a crisp reflexive ∀ x ∈ U, α, β, γ ∈ [0, 1]

Take, TR(x, x) = 1 IR(x, x) = 1 FR(x, x) = 0 ∀ x ∈ U
Now, we have Rα is a crisp binary relation in U and x ∈ U , (x, x) ∈ Rα. ∴ Rα is reflexive.

If R is symmetric then ∀ x, y ∈ U , we have (x, y) ∈ Rα ⇒ (y, x) ∈ Rα. ∴ Rα is symmetry.

Similarly we can prove Rβ and Rγ are symmetric.

If R is transitive then ∀x, y, z ∈ U and α, β, γ ∈ [0, 1]

TR(x, z) ≥ TR(x, y) ∧ TR(y, z)

IR(x, z) ≥ IR(x, y) ∧ IR(y, z)

FR(x, z) ≤ FR(x, y) ∨ FR(y, z)

for any (x, y) ∈ Rα (y, z) ∈ Rα
(x, y) ∈ Rβ (y

′
, z
′
) ∈ Rγ

(x
′′
, y
′′
) ∈ Rγ (y

′′
, z
′′
) ∈ Rγ

(ie) TR(x, y) ≥ α, TR(y, z) ≥ α ⇒ TR(x, z) ≥ α
IR(x

′
, y
′
) ≥ β, IR(y

′
, z
′
) ≥ β ⇒ IR(x

′
, z
′
) ≥ β

FR(x
′′
, y
′′
) ≤ γ, FR(y

′′
, z
′′
) ≤ γ ⇒ FR(x

′′
, z
′′
) ≤ γ

Therefore Rα, Rβ,R
γ are transitive.

Hence R(α,β,γ) is transitive.

Similarly we can prove other level cuts sets are transitive.
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Theorem 3.12:

Let (U,R) be a fuzzy neutrosophic approximation space and A ∈ FN(U), then the upper

FN approximation operator can be represented as follows ∀ x ∈ U .

1) TR̄(A)(x) =
∨

α∈[0,1]

[
α ∧ R̄α(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα)(x)

]
=∨

α∈[0,1]

[
α ∧ R̄α+(Aα+)(x)

]
2) IR̄(A)(x) =

∨
α∈[0,1]

[
α ∧ R̄α(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα)(x)

]
=∨

α∈[0,1]

[
α ∧ R̄α+(Aα+)(x)

]
3)FR̄(A)(x) =

∧
α∈[0,1]

[
α ∨ R̄α(Aα)(x)

]
=

∧
α∈[0,1]

[
α ∨ R̄α(Aα+)(x)

]
=

∧
α∈[0,1]

[
α ∨ R̄α+(Aα)(x)

]
=∧

α∈[0,1]

[
α ∨ R̄α+(Aα+)(x)

]
and more over for any α ∈ [0, 1]

4)
[
R̄(A)

]
α+
⊆ R̄α+(Aα+) ⊆ R̄α(Aα) ⊆

[
R̄(A)

]
α

5)
[
R̄(A)

]
α+ ⊆ R̄α+(Aα+) ⊆ R̄α(Aα) ⊆

[
R̄(A)

]
α

6)
[
R̄(A)

]α+ ⊆ ¯Rα+(Aα+) ⊆ R̄α(Aα) ⊆
[
R̄(A)

]α
7)
[
R̄(A)

]
α+
⊆ R̄α+(Aα+) ⊆ R̄α(Aα) ⊆

[
R̄(A)

]
α

8)
[
R̄(A)

]
α+ ⊆ R̄α+(Aα+) ⊆ R̄α(Aα) ⊆

[
R̄(A)

]
α

9)
[
R̄(A)

]α+ ⊆ ¯Rα+(Aα+) ⊆ R̄α(Aα) ⊆
[
R̄(A)

]α
Proof

1) For x ∈ U, we have∨
α∈[0,1]

[
α ∧ R̄α(Aα)(x)

]
= Sup

{
α ∈ [0, 1]/x ∈ R̄α(Aα)

}
= Sup {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
= Sup {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= Sup {α ∈ [0, 1]/∃y ∈ U [TR(x, y) ≥ α, TA(y) ≥ α]}
=
∨
y∈U

[TR(x, y) ∧ TA(y)] = TR̄(A)(x)

2)
∨

α∈[0,1]

[
α ∧ R̄α(Aα)(x)

]
= Sup

{
α ∈ [0, 1]/x ∈ R̄α(Aα)

}
= Sup {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
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= Sup {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= Sup {α ∈ [0, 1]/∃y ∈ U [IR(x, y) ≥ α, IA(y) ≥ α]}
=
∨
y∈U

[IR(x, y) ∧ IA(y)] = IR̄(A)(x)

3)
∨

α∈[0,1]

[
α ∧ R̄α(Aα)(x)

]
= inf {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}

= inf {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
= inf {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= inf {α ∈ [0, 1]/∃y ∈ U [FR(x, y) ≤ α, FA(y) ≤ α]}
=
∧
y∈U

[FR(x, y) ∨ FA(y)] = FR̄(A)(x)

Like wise we can conclude

TR̄(A)(x) =
∨

α∈[0,1]

[
α ∧ R̄α(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα+)(x)

]
IR̄(A)(x) =

∨
α∈[0,1]

[
α ∧ R̄α(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧ R̄α+(Aα+)(x)

]
FR̄(A)(x) =

∧
α∈[0,1]

[
α ∨ R̄α(Aα+)(x)

]
=

∧
α∈[0,1]

[
α ∨ R̄α+(Aα)(x)

]
=

∧
α∈[0,1]

[
α ∨ R̄α+(Aα+)(x)

]
4) Since R̄α+(Aα+) ⊆ R̄α+(Aα) ⊆ R̄α(Aα)

We prove only [R̄(A)]α+ ⊆ R̄α+(Aα+) and R̄α(Aα) ⊆ [R(A)]α

For any x ∈ [R̄(A)]α+

TR̄(A) > α

⇒
∨
y∈U

[TR(x, y) ∧ TA(y)] > α ∃y′ ∈ U 3 TR(x, y
′
) ∧ TR(y”) > α

⇒ y
′ ∈ Rα+(x) and y

′ ∈ Aα+

⇒ Rα+(x) ∩Aα+ 6= ϕ

From the definition of upper crisp approximation operator we have x ∈ R̄α+(Aα+)

Hence [R̄(A)]α+ ⊆ R̄α+(Aα+)

Next, to prove R̄α(Aα) ⊆ [R(A)]α

For any x ∈ R̄α(Aα), Rα(Aα)(x) = 1

If ∃ β, then

TR̄(A)(x) =
∨

β∈[0,1]

[
β ∧ R̄β(Aβ)(x)

]
≥ α ∧ R̄α(Aα)(x) = α

We obtained x ∈ [R̄(A)]α

R̄α(Aα) ⊆ [R̄(A)]α

5) Similar to (4) It is easy to prove

¯Rα+(Aα+) ⊆ ¯Rα+(Aα) ⊆ R̄α(Aα)

Hence we prove
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i)[R̄(A)]α+ ⊆ ¯Rα+(Aα+)

ii)R̄α(Aα) ⊆ [R̄(A)]α

i) For x ∈ [R̄(A)]α+, IR̄(A)(x) > α

⇒
∨
y∈U

[IR(x, y) ∧ IA(y)] > α

∃ y
′ ∈ U 3 IR(x, y

′
) ∧ IA(y

′
) > α

(ie) IR(x, y
′
)α and IA(y

′
)α

⇒ y
′ ∈ Rα+ (x) and y

′ ∈ Aα+

y
′ ∈ R(x) ∩Aα+⇒ Rα+ (x) ∩Aα+ 6= ϕ

By the definition of crisp approximation operator we have

x ∈ Rα+(Aα+)

Therefore [R̄(A)]α+ ⊆ Rα+(Aα+)

Next for any x ∈ Rα(Aα), R̄α(Aα)(x) = 1

If ∃ β then

TR̄(A)(x) =
∨

β∈[0,1]

[
β ∧ R̄β(Aβ)(x)

]
≥ α ∧ R̄α(Aα)(x) = α

We obtain x ∈ [R̄(A)]α Therefore Rα(Aα) ⊆ [R̄(A)]α

6) The proof of (6) is similar to (4) and (5) we need to prove only

[R̄(A)]α+ ⊆ Rα+(Aα+) and Rα(Aα) ⊆ [R̄(A)]α

For any x ∈ [R̄(A)]α+, FR̄(A)(x) < α (ie)
∧
y∈U

[FR(x, y) ∨ FA(y)] < α

∃ y
′ ∈ U 3 FR(x, Y

′
) ∨ FA(y

′
) < α

Hence FR(x, Y
′
) < α, TA(y

′
) < α

(ie) y
′ ∈ Rα+(x) and y

′ ∈ Aα+

Rα+(x) ∩Aα+ 6= φ

Therefore x ∈ Rα+(Aα+)

[R̄(A)]α+ ⊆ Rα+(Aα+)

Next for any x ∈ Rα(Aα) note Rα(Aα)(x) = 1 then we have

FR̄(A)(x) =
∧

β∈[0,1]

[
β ∨Rβ(Aβ)(x)

]
≤ α ∨Rα(Aα)(x) = α

Thus x ∈ [R̄(A)]α. Hence Rα(Aα) ⊆ [R̄(A)]α

The proof of (7), (8), (9) can be obtained similar to (4), (5), (6).

Theorem 3.13:

Let (U,R) be FN approximation space and A ∈ FN(U) then ∀x ∈ U

1)TR(A)(x) =
∧

α∈[0,1]

[α ∨ (1−Rα(Aα+)(x))] =
∧

α∈[0,1]

[α ∨ (1−Rα(Aα)(x))]
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∧
α∈[0,1]

[α ∨ (1−Rα+(Aα+)(x))] =
∧

α∈[0,1]

[α ∨ (1−Rα+(Aα)(x))]

2) IR(A)(x) =
∧

α∈[0,1]

[
α ∨ (1−R(1− α)(Aα+)(x))

]
=

∧
α∈[0,1]

[α ∨ (1−R(1− α)(Aα)(x))]

∧
α∈[0,1]

[
α ∨ (1−R(1− α+)(Aα+)(x))

]
=

∧
α∈[0,1]

[α ∨ (1−R(1− α+)(Aα)(x))]

3) FR(A)(x) =
∨

α∈[0,1]

[
α ∧ (1−Rα(Aα+)(x))

]
=

∨
α∈[0,1]

[α ∧ (1−Rα(Aα)(x))]

∨
α∈[0,1]

[
α ∧ (1−Rα+(Aα+)(x))

]
=

∨
α∈[0,1]

[α ∧ (1−Rα+(Aα)(x))]

and for α ∈ [0, 1]

4)[R(A)]α+ ⊆ R
α(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α

5)[R(A)]α+ ⊆ R1− α(Aα+) ⊆ R1− α+(Aα+) ⊆ R1− α+(Aα) ⊆ [R(A)]α

6)[R(A)]α+ ⊆ Rα(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α

7)[R(A)]α+ ⊆ R
α(Aα+) ⊆ Rα+(Aα) ⊆ Rα+(Aα) ⊆ [R(A)]α

8)[R(A)]α+ ⊆ R1− α+(Aα+) ⊆ Rα(Aα+) ⊆ R(1− α+)(Aα) ⊆ [R(A)]α

9)[R(A)]α+ ⊆ Rα(Aα+) ⊆ Rα(Aα) ⊆ Rα+(Aα) ⊆ [R(A)]α
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