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Abstract – In this paper, we explore the use of DSMT for 
seismic and acoustic sensor fusion.  The seismic/acoustic 
data is noisy which leads to classification errors and 
conflicts in declarations.  DSmT affords the redistribution 
of masses when there is a conflict. The goal of this paper 
is to present an application and comparison on DSMT 
with other classifier methods to include the support vector 
machine(SVM) and Dempster-Shafer methods.  The work 
is based on two key references (1) Marco Duarte with the 
initial SVM classifier application of the seismic and 
acoustic sensor data and (2) Arnaud Martin in Vol. 3 with 
the Proportional Conflict Redistribution Rule 5/6 
(PCR5/PCR6) developments.   By using the developments 
of Duarte and Martin, we were able to explore the various 
aspects of DSMT in an unattended ground sensor 
scenario.  Using the receiver operator curve (ROC), we 
compare the methods for individual classification as well 
as a measure of overall classification using the area under 
the curve(AUC). Conclusions of the work show that the 
DSMT affords a lower false alarm rate because the 
conflict information is redistributed over the set masses 
and is comparable to other classifier results when using a 
maximum decision forced choice. 

Keywords: Information Fusion, DSMT, PCR5, PCR6, 
Area Under the Curve(AUC), SVM. 

1 Introduction 
The goal of this paper is to present an application 
and comparison on DSMT with other classifier methods.  
The work is based on two key references (1) Marco 
Duarte with the initial classifier application of the 
seismic and acoustic sensor data [1] and (2) Arnaud 
Martin in Vol. 3 for the implementation of the DSMT 
methods. [2] By using the developments of Duarte 
and Martin, we were able to explore the various 
aspects of DSMT in an unattended ground sensor 
scenario.  In the exploration of information fusion 
metrics for classification, there is a need to develop 
metrics of effectiveness that support the user’s utility 
needs [3] and can vary over the sensor types, 
environmental conditions, targets of interest, situational 
context, and users [4].  
 DSmT is an extension to the Dempster-Shafer method 
of evidential reasoning which has been detailed 
in numerous papers and texts: Advances and 
applications of DSmT for information fusion (Collected 
works), Vols. 1-3 [ 5]. 

In 2002, Dezert [6] introduced the methods for 
the reasoning and in 2003, presented the hyper 
power-set notation for DSmT [7]. Recent applications 
include the DSmT Proportional Conflict Redistribution 
rule 5 (PCR5) applied to target tracking [8]. 
 The key contributions of DSmT are the redistributions of 
masses such that no refinement of the frame Θ is possible 
unless a series of constraints are known.  For example, 
Shafer’s model [9] is the DSm hybrid model in DSmT.   
Since Shafer’s model, authors have continued to refine the 
method to more precisely address the combination of 
conflicting beliefs [10, 11, 12] and generalization of the 
combination rules [13, 14]. An adaptive combination rule 
[15] and rules for quantitative and qualitative 
combinations [16] have been proposed. Recent examples 
for sensor applications include electronic support 
measures, [17, 18] and physiological monitoring sensors 
[19]. One application of DSmT that has not been fully 
explored is in seismic, magnetic, and acoustic 
classification fusion of moving targets. Kadambe 
conducted an information theory approach [20] and used 
DSmT as integrity constraints [21], but did not take 
advantage of the conflict redistribution. 

Detecting moving vehicles in an urban area [22] is 
an example where DSmT conflicting mass 
redistribution could be helpful [8]. Detecting traffic can 
be completed by fixed ground cameras or on dynamic 
unattended ground vehicles (UGVs). If the sensors 
are on UGVS, path planning is needed to route the 
UGVs to observe the traffic [23, 24] and 
cooperation among UGVs is necessary[25]. The 
DARPA Grand Challenge featured sensors on mobile 
UGVs observing the environment [26]. Mobile sensing 
can be used to orient [27] or conduct simultaneous 
location and mapping (SLAM) [28].  

Deployed ground sensors can observe the 
vehicles; however they are subject to the quality of 
the sensor measurements as a well as obscurations.  
One interesting question is how to deploy the fixed 
sensors that optimize the performance of a system. 
Efforts in distributed wireless networks (WSNs) have 
resulted in many issues in distributed processing, 
communications, and data fusion [29]. In a dynamic 
scenario, resource coordination [30] is needed for both 
context assessment, but also the ability to be aware of 
impending situational threats [31, 32]. For distributed 
sensing systems, to combine sensors, data, and user 
analysis requires pragmatic approaches to metrics [33, 
34, 35, 36].  For example, Zahedi [37] develops a 
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QOI architecture for comparison of centralized versus 
distributed sensor network deployment planning. 
Information fusion has been interested in the problems 

of databases for target trafficability[38], sensor 
management [39], and processing algorithms [40] 
from which to assess objects in the environment. Various 
techniques have incorporated grouping object 
movements [41], road information [42, 43], and updating 
the object states based on environmental constraints [44]. 
Detecting, classifying, identifying and tracking objects 
[45] has been important for a variety of sensors, including 
2D visual, radar [46], and hyperspectral [47] data; 
however newer methods are of interest for ground 
sensors with 1D signals.  

Seismic data provides passive sensing of ground 
vibrations which can be used for motion tracking. Passive 
magnetic sensing can detect hidden objects that might 
indicate intent.  Finally, acoustic data can be used 
for signature detection from vehicle engines. [48] 
The DARPA SENSIT program investigated 
deploying a distributed set of wireless sensors along a 
road to classify vehicles as shown in Figure 1.  

Figure 1.  SENSIT Data from [M. F. Duarte and Y. H. Hu, 
“Vehicle Classification in Distributed Sensor Networks,” 2004 [49] 

The sensors include acoustic and seismic signals. Given 
the deployed set of sensors, feature vectors were used to 
classify signals based on the data from the seismic and 
acoustic signals. [49] Various approaches include 
combining the data with decision fusion [50], value fusion 
[51], and simultaneous track and identification methods 
[52, 53]. Information theoretical approaches including the 
KL method were applied to the data for sensor 
management [54] as shown in Figure 2. Processing sensor 
data for target classification using acoustic [55, 56] and 
seismic [57] results have been explored in support of 
information theoretical sensor placement [58].   

Much work has been completed using imaging sensors 
and radar sensors for observing and tracking targets. 
Video sensors are limited in power and subject to 
day/night conditions. Likewise, radar line-of site precludes 
them from observing in the same plane.  Together, both 
imaging and radar sensors do not have the advantage of 
UGSs which can power on and off, can work for a long 
time on battery power, and can be deployed to remote 
areas. 

Figure 2. Deployed Sensors. From S. Kadambe and C.     
    Daniell, “Theoretic Based Performance of Distributed Sensor

Networks”, AFRL-IF-RS-TR-2003, 231, October 2003. [54] 

Track management situational awareness tools receive 
input from sensor feeds (examples include electro-optical, 
radar, electronic support measures (ESMs), and sonar) and 
display this information to a user. User inputs include: 
creation of new objects, such as tracks, contacts and 
targets. Methods to reduce data-to-decisions include: 
fusing multiple tracks into a single track, incorporating 
alerting mechanisms, or visualizing track data common 
operational picture (COP). Sensor and track data can grow 
rapidly as the user desires to keep historical data.  
 Our goal is to utilize the DSmT method for the fusion of 
information from seismic and acoustic data in which each 
sensor/classifier is in direct conflict with the other sensor. 
We address (1) intelligent use of the data based on value 
for classification, (2) DSMT sensor data fusion for 
detection, classification, and positional location, and (3) 
metrics to support the sensor and data management as 
supporting a user control.  

2 Location / Detection 
We desire to track and identify the targets based on the 
sensor reports.  In this study, we concentrate on the 
classification of targets which can be used with the 
kinematic/position information for target identification. 

2.1 Sensor Information Management 
The goal is to utilize the UGSs sensors which may be 
acoustic, magnetic, seismic, and PIRoelectric (passive 
infrared for motion detection.  With a variety of sensors, 
information fusion can (a) utilize the most appropriate 
sensor at the correct time, (b) combine information from 
both sensors on a single platform, (c) combine results 
from multiple platforms, and (d) cue other sensors in a 
hand-off fashion to effectively monitor the area. Sensor 
exploitation requires an analysis of feature generation, 
extraction, and selection or (construction, transformation, 
selection, and evaluation). To provide track and ID results, 
we develop method or target classification. 
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2.2 Sensor Classification  
Sensor exploitation includes detection, recognition, 
classification, identification and characterization of some 
object.  Individual classifiers can be deployed at each level 
to robustly determine the object information. Popular 
methods include voting, neural networks, fuzzy logic, 
neuro-dynamic programming, support vector machines, 
Bayesian and Dempster-Shafer methods. One way to 
ensure the accurate assessment is to look at a combination 
of classifiers. Combination of classifiers [59] could include 
different sensors with classifiers, different methods over a 
single or multiple sensors, and various hierarchies of 
coordinating the classifiers such as Bayes nets and 
distributed processing. 

Issues in classifier combination methods need to be 
compared as related to decisions, feature sets, and user 
involvement.  Selecting the optimal feature set is based on 
the situation and environmental context of which the 
sensors are deployed.  An important question for sensor 
and data management is measures of effectiveness. For 
instance, what is the quantification of fusion/decision gain 
using a set of classification methods and placement 
methods?  There is a need for a robust combination rule 
that includes the location and detection of the sensors 
subject to the target and environmental constraints. 
Typically, a mobile sensor needs to optimize its route and 
can be subject to interactive effects of pursuers and 
evaders with other targets [60] as well as active 
jamming of the signal [61].   
Detecting targets from seismic and acoustic data in a 

distributed net centric fashion requires pragmatic 
approaches to sensor and data management. [62] To 
robustly track and ID a target requires both the structured 
data from the kinematic movements as well as the 
unstructured data for the feature analysis. [63] 

3 DSMT 
Here we use PCR6 and PCR5 and the DSMP selections 
which are discussed below. We replace Smets’ rule [10] 
by the more effective Proportional Conflict Redistribution 
rule no. 5 (PCR5) or eventually the more simple PCR rule 
no. 6 (PCR6) and replace the pignistic transformation by 
the more effective DSmP transformation to estimate target 
classification probabilities. All details, justifications with 
examples on PCR5 and PCR6 fusion rules and DSmP 
transformation can be found freely from the web in the 
DSmT compiled texts [5], Vols. 2 & 3.. 

3.1 PCR5 and PCR6 fusion rules 
In DSmT (Dezert-Smarandache Theory) framework, the 
Proportional Conflict Redistribution Rule no. 5 (PCR5) is 
used generally to combine the basic belief assignment 
(bba)’s. PCR5 transfers the conflicting mass only to the 
elements involved in the conflict and proportionally to 
their individual masses, so that the specificity of the 

information is entirely preserved in this fusion process. 
Let m1(.) and m2(.) be two independent bba’s, then the 
PCR5 rule is defined as follows (see [5], Vol. 2 for full 
justification and examples): mPCR5(∅) = 0 and ∀X ∈ 2Θ \ 
{∅} 

where all denominators in the equation above are different 
from zero. If a denominator is zero, that fraction is 
discarded. Additional properties of PCR5 can be found in 
[64]. Extension of PCR5 for combining qualitative bba’s 
can be found in [5], Vol. 2 & 3. All propositions/sets are 
in a canonical form. A variant of PCR5, called PCR6 has 
been proposed by Martin and Osswald in [5], Vol. 2, for 
combining s > 2 sources. PCR6 coincides with PCR5 
when one combines two sources. The difference between 
PCR5 and PCR6 lies in the way the proportional conflict 
redistribution is done as soon as three or more sources are 
involved in the fusion. For example, let’s consider three 
sources with bba’s m1(.), m2(.), and m3(.), A ∩ B = ∅ for 
the model of the frame Θ, and m1(A) = 0.6, m2(B) = 0.3, 
and m3(B) = 0.1. With PCR5 the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is 
redistributed back to A and B only with respect to the 
following proportions respectively: xA

PCR5 = 0.01714 and 
xB

PCR5 = 0.00086 because the proportionalization is [8]: 

           
xA

PCR5

m1(A)  =
xB

PCR5

m2(B) m3(B) =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) m3(B) 

that is       
xA

PCR5

0.6   =
xB

PCR5

(0.3)(0.1) =
0.018

0.6 + 0.03 ≈ 0.02857

thus        xA
PCR5 = 0.60 (0.02857) ≈ 0.01714 

           xB
PCR5 = 0.03 (0.02857) ≈ 0.00086 

With the PCR6 fusion rule, the partial conflicting mass 
m1(A) m2(B) m3(B) = (0.6)(0.3)(0.1) = 0.018 is 
redistributed back to A and B only with respect to the 
following proportions respectively: xA

PCR6 = 0.0108 and 
xB

PCR6 = 0.0072 because the PCR6 proportionalization is 
done as follows: 

xA
PCR6

m1(A)  = 
xB;2

PCR6

m2(B)   = 
xB;3

PCR6

m3(B)  =
m1(A) m2(B) m3(B)

 m1(A) + m2(B) + m3(B) 

that is        

xA
PCR6

0.6   = 
xB;2

PCR6

0.3  =  
xB;3

PCR6

0.1   =
0.018

0.6 + 0.3 + 0.1 ≈ 0.018
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thus 

xA
PCR6    = (0.6) (0.018) = 0.0108 

xB,2
PCR6 = (0.3) (0.018) = 0.0054 

xB,3
PCR6 = (0.1) (0.018) = 0.0018 

and therefore with PCR6, one gets finally the following 
redistributions to A and B: 

xA
PCR6    = (0.6) (0.018) = 0.0108 

xB
PCR6    = xB,2

PCR6  +  xB,3
PCR6 = 0.0054 + 0.0018 = 0.0072 

From the implementation point of view, PCR6 is simpler 
to implement than PCR5. For convenience, Matlab 
codes of PCR5 and PCR6 fusion rules can be found in [5]. 

3.2 The DSmP Transformation 
The DSmP probabilistic transformation is an alternative to 
the classical pignistic transformation which allows us to 
increase the probabilistic information content (PIC), i.e. to 
minimize the Shannon entropy, of the approximated 
subjective probability measure drawn from any bba. 
Justification and comparisons of DSmP(.) with respect to 
BetP(.) and to other transformations can be found 
in details in [65, 5 Vol. 3, Chap. 3].  

BetP: The pignistic transformation probability, denoted 
BetP, offers a compromise between maximum of 
credibility Bel and maximum of plausibility Pl for 
decision support. The BetP transformation is defined by 
BetP(∅) = 0 and ∀X ∈ GΘ \ {∅}by 

where GΘ corresponds to the hyper-power set including all 
the integrity constraints of the model (if any). GΘ = 2Θ  if 
one adopts Shafer’s model for Θ and GΘ = DΘ 
(Dedekind’s lattice) if one adopts the free DSm model for 

Θ [ 5].  CM(Y) denotes the DSm cardinal of the set Y, 
which is the number of parts of Y in the Venn diagram of 
the model M of the frame Θ under consideration [5, Book 
1, Chap. 7]. The BetP reduces to the Transferable Belief 
Model (TBM) when GΘ reduces to classical power set 2Θ 

when one adopts Shafer’s model. 

DSmP transformation is defined by DSmP∈(∅) = 0 and 
∀X ∈ GΘ \ {∅} by 

where C(X ∩ Y) and C(Y) denote the cardinals of the sets 
X ∩ Y and Y respectively; ε ≥ 0 is a small number which 
allows to reach a highest PIC value of the approximation 
of m(.) into a subjective probability measure. Usually ε = 
0, but in some particular degenerate cases, when the 
DSmPε=0(.) values cannot be derived, the DSmPε>0 values 
can however always be derived by choosing ε as a very 
small positive number, say ε = 1/1000 for example in 
order to be as close as we want to the highest value of the 
PIC. The smaller ε, the better/bigger PIC value one gets. 
When ε = 1 and when the masses of all elements Z having 
C(Z) = 1 are zero, DSmPε=1(.) = BetP(.).  

4 Example/Simulation 
We use the SENSIT data which was described above and 
was provides an unstructured data analysis.  To perform 
the data management we use data mining [66] techniques 
such as a support vector machine (SVM) [67, 68] to 
process the unstructured data. Through analysis, we can 
determine the optimum use of the data given 
environmental conditions (i.e. obscurations) and sensor’s 
capabilities to detect a moving target.   

Figure 3 shows the methodology of comparison.  A 
key comparison is made between combining all the 
acoustic and seismic data together for testing and 
training via the SVM versus using the outputs from 
the acoustic and seismic data separately from 
which conflicts in classification are detected and 
sent to DS and DSmT processing. 

Figure 3. Experimentation Flow. 

4.1 Data Processing 
We compare two cases of (1) processing the data 
separately and (2) jointly processing the acoustic 
and seismic results Figure 4 shows the case of the 
acoustic results. 
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Figure 4. Acoustic Results. 

Figure 5 demonstrates the results for the seismic results. 
Note that for the data set, the seismic results have a lower 
probability of false alarms for target 3 and target 2; 
however, target 2 exhibits more confusion.  
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Figure 5. Seismic Results. 

Next we explore the case of the joint seismic and acoustic 
data management and utilize SVM for classification, 
shown in Figure 6.  Note the false alarm reduction which 
is desired by users.  
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Figure 6. Combined Results 

In general, the joint analysis supports better decision 
making as confidence was PD was improved for a 
constant false alarm rate, accuracy was improved as to the 
target location from joint spatial measurements, and 
timeliness in decision making as fewer measurements 
were needed to confirm the target ID (i.e. decision made 
with two modalities required fewer measurements than 
that of a single modality).  
4.2 Application of DS  

1

7

Below, we show the results of the application of DS 
methods.  Given a training and prediction results in a 
combined probability, we have for target1, target2, and 
target3 a vector of P = [P1P2 P3].  Based on the prediction 
results from the SVM, there are many conflicts of the 
sensor decision based on the maximum probability.  When 
a conflict occurs, it would be better suited to acknowledge 
the conflict and then redistribute the probabilities based on 
a set notation. In this case, the focal elements are Φ = [θ , 
…, θ  ] = [‘1’, ‘1I2’, ‘2’, ‘2I3’, ‘3’, ‘1I3’, ‘1I2I3’]. 
Using the analysis by Martin, we conduct an analysis 
over the set criterion. Figure 7 shows that a 
significant reduction false alarms; however, the overall 
classification as measured by the area under the curve 
(AUC) is less than that of the SVM by itself. Thus, 
there is a trade off when using DS for reducing the PD 
for low FA versus the overall classification analysis.   
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Figure 7. DS allowing for set declarations. 

To explore a comparison of approaches, we utilized the 
bba and forced the evidential reasoned to choose a single 
target. From this analysis, the AUC improves in 
comparison to the SVM approaches which are a 
forced choice analysis. Figure 8 plots the DS (for 
one target designation). 
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Figure 8. DMST Single Target Detection.  

4.3 Application of DSMT  
DMST, as described above, improves on the methods of 
conflict redistribution. In this case, there were slight 
alterations in the bba comparisons; however with the 
heuristic logic, changes resulted in the classification that 
was comparable to the complete SVM fusion analysis. 
 Figure 9 presents the DSMT results for set declaration 
and Figure 10 shows the case of a forced target choice 
from the DSMT. From these plots, we can see that the set-
based approach improves the detection for low false alarm 
rates; however for high false alarm rates, the detection 
probability is increased over all false alarm rates. Using 
the maximum of the target bba provides an analysis 
threshold that renders the DSmT comparable to a SVM 
(which is allowed to train over all the data available). 
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Figure 9. DSMT allowing for set declarations. 
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Figure 10. DMST Single Target Detection.  

In the table below, we look at the entire analysis using the 
area under the ROC (AUC) as a key metric in the analysis. 
Additionally, there are cases in which the maximum AUC 
and minimum AUC are improved but the overall analysis 
(Total AUC) varies. We see from the comparison that the 
DS and DSMT methods can improve single target 
detection; however the SVM alone (run over all the data) 
does perform slightly higher in the information fusion 
case. 

Table 1:  AUC Comparisons of SVM, DS, and DSMT 
Method Min AUC Max AUC Total AUC 
A-SVM 0.786 0.821 2.401
S-SVM 0.696 0.844 2.335
C-SVM 0.791 0.851 2.472
DS 0.671 0.742 2.141
DS1 0.738 0.833 2.371
DSMT 0.728 0.751 2.224
DSMT1 0.760 0.855 2.440
A – Acoustic, S-Seismic, C-Combination 

5 Conclusions 
We have explored DS and DSMT methods for seismic and 
acoustic information fusion.  The goal of the paper was a 
new application of the existing techniques presented by 
Martin and Durate for further demonstration of the various 
modifications to the DS methods.  Using the initial results, 
the use of DSMT can be tailored to the seismic and 
acoustic sensors which demonstrate high conflicts in 
decision outputs as they measure different target 
phenomenologies. We utilized a Bayesian basic belief 
assignment (bba) with only singleton as focal elements 
which from the P vectors of the target probabilities. Future 
work will use non-Bayesian approaches to get the bbas. 
   Information theoretic measures [69] and tracking 
analysis [70] can support the sensor and data 
management as well as determine the Quality of 
Information and Quality of Service needs. Use of 
the Area Under the 
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Curve (AUC) provides decision support for situational 
awareness for command and control from which we 
can extend to higher dimensions [71]. Various other 
sources of soft data (human reports) can be combined 
with the hard (physics-based sensing) [72] to 
update the sensor management, placement, and 
reporting of the situation based on the context and 
the needs of users such as measures of effectiveness 
for mission support.   
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