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Abstract: As a powerful technique for holding relations in things, combinatorics has expe-
rienced rapidly development in the past century, particularly, enumeration of configurations,
combinatorial design and graph theory. However, the main objective for mathematics is
to bring about a quantitative analysis for other sciences, which implies a natural question
on combinatorics. Thus, how combinatorics can contributes to other mathematical sciences,
not just in discrete mathematics, but metric mathematics and physics? After a long time
speculation, I brought the CC conjecture for advancing mathematics by combinatorics, i.e.,
any mathematical science can be reconstructed from or made by combinatorialization in my
postdoctoral report for Chinese Academy of Sciences in 2005, and reported it at a few aca-
demic conferences in China. After then, my surveying paper Combinatorial Speculation and
Combinatorial Conjecture for Mathematics published in the first issue of International Jour-
nal of Mathematical Combinatorics, 2007. Clearly, CC conjecture is in fact a combinatorial
notion and holds by a philosophical law, i.e., all things are inherently related, not isolated
but it can greatly promote the developing of mathematical sciences. The main purpose
of this report is to survey the roles of CC conjecture in developing mathematical sciences
with notions, such as those of its contribution to algebra, topology, Euclidean geometry and
differential geometry, non-solvable differential equations or classical mathematical systems
with contradictions to mathematics, quantum fields after it appeared 10 years ago. All of

these show the importance of combinatorics to mathematical sciences in the past and future.
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81. Introduction

There are many techniques in combinatorics, particularly, the enumeration and counting with

graph, a visible, also an abstract model on relations of things in the world. Among them,
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the most interested is the graph. A graph G is a 3-tuple (V, E,I) with finite sets V| F and a
mapping I : E — V x V, and simple if it is without loops and multiple edges, denoted by
(V; E) for convenience. All elements v in V, e in E are said respectively vertices and edges.

A graph with given properties are particularly interested. For example, a path P, in a graph
G is an alternating sequence of vertices and edges w1, e1, us, €2, -+ , €n,Un,, €; = (Ui, Uj41) With
distinct vertices for an integer n > 1, and if w3 = w,41, it is called a circuit or cycle C,,. For
example, vivovzvy and viv9v3v4v1 are respective path and circuit in Fig.l. A graph G is
connected if for u,v € V(QG), there are paths with end vertices u and v in G.

A complete graph K,, = (V., E.;1.) is a simple graph with V. = {v1,v9, -+ ,v,}, E. =
{eij,1 < i,j < n,i # j} and I.(e;5) = (v;,v;), or simply by a pair (V,E) with V =
{v1,v2, -+ ,vp} and E = {vv;,1 <i,5 <mn,i # j}.

A simple graph G = (V, E) is r-partite for an integer r > 1 if it is possible to partition V into

r subsets Vi, Va, - - - , V. such that for Ve(u, v) € E, there are integers i # j,1 < i,7 < r such that
u € V; and v € Vj. If there is an edge e;; € E for Yv; € Vi, Vv; € Vj, where 1 < 4,5 < 7,0 # 7,
then, G is called a complete r-partite graph, denoted by G = K(|V1],|Va|, -+ ,|V;]). Thus a

complete graph is nothing else but a complete 1-partite graph. For example, the bipartite graph
K (4,4) and the complete graph Kg are shown in Fig.1.

K (4,4) K

Fig.1

Notice that a few edges in Fig.1 have intersections besides end vertices. Contrast to this
case, a planar graph can be realized on a Euclidean plane R? by letting points p(v) € R? for
vertices v € V with p(v;) # p(v;) if v; # v;, and letting curve C(v;,v;) C R? connecting points
p(v;) and p(v;) for edges (vi,v;) € E(G), such as those shown in Fig.2.

€1 €2
U1 €5 V2
€6
€9 €10 €7
V4 €8 U3
€4 €3
Fig.2

Generally, let & be a topological space. A graph G is said to be embeddable into & ([32])
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if there is a 1 — 1 continuous mapping f : G — & with f(p) # f(q) if p # ¢ for Vp,q € G, i.e.,
edges only intersect at vertices in &. Such embedded graphs are called topological graphs.

There is a well-known result on embedding of graphs without loops and multiple edges in
R™ for n > 3 ([32]), i.e., there always exists such an embedding of G that all edges are straight
segments in R™, which enables us turn to characterize embeddings of graphs on R? and its
generalization, 2-manifolds or surfaces ([3]).

However, all these embeddings of G are established on an assumption that each vertex
of G is mapped exactly into one point of & in combinatorics for simplicity. If we put off this
assumption, what will happens? Are these resultants important for understanding the world?
The answer is certainly YES because this will enables us to pullback more characters of things,
characterize more precisely and then hold the truly faces of things in the world.

All of us know an objective law in philosophy, namely, the integral always consists of its
parts and all of them are inherently related, not isolated. This idea implies that every thing in
the world is nothing else but a union of sub-things underlying a graph embedded in space of
the world.

{c}
&) &

@ {e} /24

Fig.3

Formally, we introduce some conceptions following.

Definition 1.1([30)-[31], [12]) Let (X1;R1), (Z2;R2), -+, (Zm;Rm) be m mathematical
systems, different two by two. A Smarandache multisystem Y is a union U i with rules
i=1

R=UR;on i, denoted by (i,ﬁ)
i=1

Definition 1.2([11]-[13]) For any integer m > 1, let (i,ﬁ) be a Smarandache multisystem
consisting of m mathematical systems (31;R1), (Z2;R2), -+, (Bm; Rm). An inherited topolog-
ical structure G* [i,ﬁ} of (i, ﬁ) s a topological vertex-edge labeled graph defined following:

\%4 (GL |:i77€:|) = {Elu 227 e 7Em}7

E (GL [iﬁD = (20,55 N5S; £ 0, 1<i#j <m} with labeling

L: Ei — L(El) = Ei and L : (Ei, E]) — L(El, E]) = ElﬂE]

for integers 1 < i # j < m, also denoted by G* {i,?ﬂ for (i,ﬁ)
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For example, let ¥ = {a,b,c}, X2 = {c,d, e}, X3 = {a,c,e}, ¥y = {d,e, f} and R; = 0
for integers 1 < i < 4, i.e., all these system are sets. Then the multispace (i,ﬁ) with
_ 4 ~ ~ -

Y= U3% = {a,becde, f} and Z = 0 underlying a topological graph G* [E;R} shown

i=1
in Fig.3. Combinatorially, the Smarandache multisystems can be classified by their inherited

topological structures, i.e., isomorphic labeled graphs following.

Definition 1.3 ([13]) Let

Gl = (6 = 6735.1)) and Gy = (0 =, CJRS’)) .
i=1 =1 =1

i=1

be two Smarandache multisystems underlying topological graphs Gy and G, respectively. They

m n
are isomorphic if there is a bijection w : Gi*' — Gl with w : U 251) — 252) and
i=1 =1

3 3

w: U RZ(.l) — .Ul RZ(.2) such that

=1 =

w

5 (aR§1>b) = wlx, (a)o]s, (R§.”) )

forva,be M, 1< i < m, where wly, denotes the constraint of @ on (3;,R;).

i
Consequently, the previous discussion implies that

Every thing in the world is nothing else but a topological graph G* in space of the world,

and two things are similar if they are isomorphic.

After speculation over a long time, I presented the CC conjecture on mathematical sciences
in the final chapter of my post-doctoral report for Chinese Academy of Sciencesin 2005 ([9],[10]),
and then reported at The 2*¢ Conference on Combinatorics and Graph Theory of China in 2006,
which is in fact an inverse of the understand of things in the world.

CC Conjecture([9-10],[14]) Any mathematical science can be reconstructed from or made by
combinatorialization.

Certainly, this conjecture is true in philosophy. It is in fact a combinatorial notion for

developing mathematical sciences following.

Notion 1.1 Finds the combinatorial structure, particularly, selects finite combinatorial rulers

to reconstruct or make a generalization for a classical mathematical science.

This notion appeared even in classical mathematics. For examples, Hilbert axiom system
for Euclidean geometry, complexes in algebraic topology, particularly, 2-cell embeddings of
graphs on surface are essentially the combinatorialization for Euclidean geometry, topological
spaces and surfaces, respectively.

Notion 1.2 Combine different mathematical sciences and establish new enveloping theory on
topological graphs, with classical theory being a special one, and this combinatorial process will

never end until it has been done for all mathematical sciences.
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A few fields can be also found in classical mathematics on this notion, for instance the
topological groups, which is in fact a multi-space of topological space with groups, and similarly,
the Lie groups, a multi-space of manifold with that of diffeomorphisms.

Even in the developing process of physics, the trace of Notions 1.1 and 1.2 can be also
found. For examples, the many-world interpretation [2] on quantum mechanics by Everett in
1957 is essentially a multispace formulation of quantum state (See [35] for details), and the
unifying the four known forces, i.e., gravity, electro-magnetism, the strong and weak nuclear
force into one super force by many researchers, i.e., establish the unified field theory is nothing
else but also a following of the combinatorial notions by letting Lagrangian . being that a
combination of its subfields, for instance the standard model on electroweak interactions, etc..

Even so, the CC conjecture includes more deeply thoughts for developing mathematics by
combinatorics i.e., mathematical combinatorics which extends the field of all existent mathemat-
ical sciences. After it was presented, more methods were suggested for developing mathematics
in last decade. The main purpose of this report is to survey its contribution to algebra, topol-
ogy and geometry, mathematical analysis, particularly, non-solvable algebraic and differential
equations, theoretical physics with its producing notions in developing mathematical sciences.

All terminologies and notations used in this paper are standard. For those not mentioned
here, we follow reference [5] and [32] for topology, [3] for topological graphs, [1] for algebraic
systems, [4], [34] for differential equations and [12], [30]-[31] for Smarandache systems.

82. Algebraic Combinatorics

Algebraic systems, such as those of groups, rings, fields and modules are combinatorial them-

selves. However, the CC conjecture also produces notions for their development following.

Notion 2.1 For an algebraic system (o/;O), determine its underlying topological structure
Gl[o, O] on subsystems, and then classify by graph isomorphism.

Notion 2.2 For an integerm > 1, let (X1;R1), (X2;R2), -+, (Zm; Rm) all be algebraic systems
in Definition 1.2 and (%N, (9) underlying G* [{!7, O} with 4 = U % and O = Ri, i.e., an
i=1 i=1

algebraic multisystem. Characterize (gﬁ (9) and establish algebraic theory, i.e., combinatorial

algebra on (S?N, (’)).
For example, let

(“1;01) = (a,blac1 b="bo a,a’? =b" = 1)
(Gp;00) = (b,clbogc=coy b,® =0b"=1)
(F5;03) = (c,d|cogd =dogc,d> = =1)

be groups with respective operations oy, oy and o3. Then the set (?!7, {01,09,03}) is an algebraic

3
multisyatem with 4 = | %;.
i=1
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2.1 KZr-Systems

A Kl-system is such a multi-system consisting of exactly 2 algebraic systems underlying a
topological graph KX, including bigroups, birings, bifields and bimodules, etc.. For example, an
algebraic field (R; +, -) is a K£-system. Clearly, (R; +, -) consists of groups (R; +) and (R\{0}; )
underlying K such as those shown in Fig.4, where L : V (K¥) — {(R;+), (R \ {0};-)} and
L: B (K}) — {R\{0}}.

R\ {0
(R;+) Mo * (R\{0},)

Fig.4

A generalization of field is replace R\ {0} by any subset H < R in Fig.4. Then a bigroup
comes into being, which was introduced by Maggu [8] for industrial systems in 1994, and then
Vasantha Kandasmy [33] further generalizes it to bialgebraic structures.

Definition 2.3 A bigroup (biring, bifield, bimodule, -- - ) is a 2-system (¥;o0,-) such that
(1) 4 = gl Ugg;
(2) (%1;0) and (%5;-) both are groups (rings, fields, modules,- - ).
For example, let Z be a permutation multigroup action on Q with

P =P, |J 2. and Q=1{1,2,3,4,5,6,7,8} J{1.2,5,6,9,10,11,12},

where 2 = ((1,2,3,4),(5,6,7,8)) and %5 = ((1,5,9,10),(2,6,11,12)). Clearly, Pis a per-

mutation bigroup.

Let (%1;01,-1) and ((%; 09, -2)) be bigroups. A mapping pair (¢, ¢) with ¢ : 4 — % and

t:{o1,1} — {o2,-2} is a homomorphism if
¢(a e b) = ¢(a).(e)p(b)

for Va,b € 4 and e € {o1,-1} provided a e b existing in (%;;01,1). Define the image Im(¢, ¢)
and kernel Ker(¢,:) respectively by

Im(¢,¢) = {olg) |ge },
Ker(qS, L) = { g e gll ¢(g) =1,,Ve € {027 '2}}7

where 1, denotes the unit of (%,;e) with 4, a maximal closed subset of ¢ on operation e.
For subsets H C C~7', O C O, define (I_NI;O) to be a submultisystem of (é;(’)) if (fNI;O)
is multisystem itself, denoted by (EI;O) < ((N?;(’)), and a subbigroup (JZ;0,-) of (¢;0,-) is
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normal, denoted by 5 <1¥ if for Vg € 4,
geH =N ey,

where g @ 5 = {g e h|h € S provided g e h existing} and 57 e g = {h e glh € S provided h e
g existing} for Ve € {o,-}. The next result is a generalization of isomorphism theorem of group
in [33].

Theorem 2.4([11]) Let (¢,¢) : (41;{01,1}) — (%e;{02,-2}) be a homomorphism. Then

G1/Ker(¢, i) ~ Im(o, ).

Particularly, if (45; {02, -2}) is a group (&;0), we know the corollary following.
Corollary 2.5 Let (¢,1) : (¢4;{o,-}) — (&;0) be an epimorphism. Then
G1/Ker(¢,1) ~ (o7 0).
Similarly, a bigroup (¥; 0, ) is distributive if
a-(boc)=a-boa-c
hold for all a,b,c € 4. Then, we know the following result.

Theorem 2.6([11]) Let (¥;0,-) be a distributive bigroup of order> 2 with 4 = /i U s such
that (&#;0) and (&h;-) are groups. Then there must be @y # at5. consequently, if (4;0) it a

non-trivial group, there are no operations - # o on 9 such that (¢;0,-) is a distributive bigroup.

2.2 GY-Systems

Definition 2.2 is easily generalized also to multigroups, i.e., consisting of m groups underlying a
topological graph G*, and similarly, define conceptions of homomorphism, submultigroup and
normal submultigroup, --- of a multigroup without any difficult.

For example, a normal submultigroup of (52 ; 5) is such submutigroup (j/fv, O) that holds
go# =Hoyg
for Vg € 5!7, Vo € O, and generalize Theorem 2.3 to the following.
Theorem 2.7([16]) Let (¢,¢) : (%1;01) — (%;03) be a homomorphism. Then
% [Ker(¢, 1) ~ Im(, ).

Particularly, for the transitive of multlgroup action on a set Q let 2 be a permutation

multigroup action on O with 2 = U 9’1,9 = U Q; and for each integer i,1 < i < m, the

=1 1=1
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permutation group &?; acts on §2;, which is globally k-transitive for an integer k > 1 if for

any two k-tuples z1,x2, -+, € Q; and y1,y2, -+ ,yr € €, where 1 < 4,5 < m, there are
permutations 7, me, -+ - , m, such that
x7171772 T Y1, x21772 TTn = ya, - Iklﬂ'Q Tn = Y

and abbreviate the globally 1-transitive to that globally transitive of a permutation multigroup.

The following result characterizes transitive multigroup.

Theorem 2.8([17]) Let P be a permutation multigroup action on € with

c@:

—:

P and Q= OQi;
i=1

=1

where, each permutation group P transitively acts on €; for each integers 1 < i1 < m. Then

P is globally transitive on Q if and only if the graph G* | [ } is connected.

Similarly, let R= |J R; be a completed multisystem with a double operation set O (E) =
i=1
01 U0z, where O ={ +;,1 <i<m}, Oz = {+;,1 <i <m}. If for any integers i,1 < i < m,

(R;i;+i,-) is a ring, then R is called a multiring, denoted by (ﬁ, Oy — (92) and (+4,+) a
double operation for any integer ¢, which is integral if for Va, b € R and an integer ¢, 1 < i < m,
a;b=>ba,l, # 04 and a-; b = 0, implies that a = 04, or b = 0,. Such a multiring
(]TZ; 01 — (’)2) is called a skew multifield or a multifield if each (R;+;,-;) is a skew field or a

field for integers 1 < i < m. The next result is a generalization of finitely integral ring.

Theorem 2.9([16]) A finitely integral multiring is a multifield.

For multimodule, let O = { +; | 1 <i<m}, O; = {4]1 <i<m} and Oy = {+;]1 <i <
m} be operation sets, (.#;0) a commutative multigroup with units 04, and (#; 01 — O2)
a multiring with a unit 1. for V- € O;. A pair (#;0) is said to be a multimodule over
(Z; 01 — Oq) if for any integer i, 1 < i < m, a binary operation x; : Z X # — A is defined
by a x; x for a € Z, v € .4 such that the conditions following

aX;(x+iy)=ax;x+;aX;y;
(a+ib) X; = a x; x+; b x; x;
ib)

x;x=aX;(bx;x);

)
2)
3) (a-

)lxx—x

(1
(
(
(4
hold for Va,b € #, Vx,y € 4, denoted by Mod(#(O) : Z(O1 — Oz)). Then we know the
following result for finitely multimodules.

Theorem 2.10([16]) Let Mod(#(O) : Z(O1 — O3)) = <§|%’> be a finitely generated

multimodule with S = {ui,ug, - ,un}t. Then

Mod (. (0) : Z(O1 — O3)) = Mod(Z™ : Z(O) — O)),
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where Mod(Z™) : Z(0y — O3)) is a multimodule on #™ = {(x1, 79, ,2,) | 2; € Z,1 <
i < n} with

(z1 22, @) +i (Y1 Y2, 2 yn) = (@1+iy1, Loy, -+ TnFiln),

a x; (T1,T2, -+ ,2n) = (a'ixlaa'ix%"' ,a'iﬂﬁn)
for Ya € Z, integers 1 < i < m. Particularly, o finitely module over a commutative ring

(Z;+,-) generated by n elements is isomorphic to the module Z™ over (%#;+,-).

83. Geometrical Combinatorics

Classical geometry, such as those of Euclidean or non-Euclidean geometry, or projective geome-
try are not combinatorial. Whence, the CC conjecture produces combinatorial notions for their

development further, for instance the topological space shown in Fig.5 following.

@ P P2

@)
32\1%) Py (YD,
P

P2, P Py P
% %@
P,) (2,
P3N P
Fig.5

Notion 3.1 For a geometrical space &, determine its underlying topological structure G*[.of , O]

on subspaces, for instance, n-manifolds and classify them by graph isomorphisms.

Notion 3.2 For an integer m > 1, let 21, P, -+, P all be geometrical spaces in Definition
—~ —~ —~ m

1.2 and & underlying G* [9] with & = |J &, i.e., a geometrical multispace. Characterize
i=1

P and establish geometrical theory, i.e., combinatorial geometry on 2.
3.1 Euclidean Spaces

Let & = (1,0,---,0), & = (0,1,0---,0), ---, & = (0,---,0,1) be the normal basis of a
Euclidean space R™ in a general position, i.e., for two Euclidean spaces R+ R™ R™ AR™ #£
Rmin{nne} In this case, let Xy, be the set of orthogonal orientations in R™*», u € A. Then
R™ NR™ = X,, N X,,, which enables us to construct topological spaces by the combination.

For an index set A, a combinatorial Euclidean space Egr(n,; v € A) underlying a connected

graph G is a topological spaces consisting of Euclidean spaces R"*, v € A such that

V(GL) ={R™ |veA};
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E(GY) = { (R™,R™) | R™ NR™ # 0, u,v € A } and labeling
L:R™ — R™ and L: (R™ R") — R™ R™
for (R™ ,R™) e FE (GL), v, €A.

Clearly, for any graph G, we are easily construct a combinatorial Euclidean space under-

lying GG, which induces a problem following.

Problem 3.3 Determine the dimension of a combinatorial Euclidean space consisting of m
FEuclidean spaces R™ /R™ ... R"™m,

Generally, the combinatorial Euclidean spaces &gt (n1,na,- -+ ,ny,) are not unique and to
determine dimégr (ny, no, - - - , Ny ) converts to calculate the cardinality of | X,,, U X,,, U---U X, |,
where X,,, is the set of orthogonal orientations in R™ for integers 1 < ¢ < m, which can be

determined by the inclusion-exclusion principle, particularly, the maximum dimension following.

Theorem 3.4([21]) dimé&gr(na, - ,nm) <1 —m+ > n; and with the equality holds if and
i=1
only if dim (R™ NR™) =1 for V(R™,R%) € E (GL),1<i,j <m.

To determine the minimum diméger(ny,- - ,ny,) is still open. However, we know this
number for G = K,;, and n; = r for integers 1 <1i < m, i.e., &k, (r) by following results.

Theorem 3.5([21]) For any integer r > 2, let &k, (r) be a combinatorial Euclidean space of

R" .-+ |R", and there exists an integer s, 0 < s <r — 1 such that
—_——
m
r+s—1 r+s
<m
r r
Then

Particularly,
3, it m=1,
4, if 2<m <4,
dim;,;n, 8k, (3) =
3, if 5<m <10,

2+ [ym], if m> 1L

3.2 Manifolds

An n-manifold is a second countable Hausdorff space of locally Euclidean n-space without
boundary, which is in fact a combinatorial Euclidean space &gr(n). Thus, we can further
replace these Euclidean spaces by manifolds and to get topological spaces underlying a graph,

such as those shown in Fig.6.
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Fig.6

Definition 3.6([22]) Let M be a topological space consisting of finite manifolds M, u € A.
An inherent graph G {M] of M is such a graph with

1% (Gm [Aﬂ) = {M,, peA};
E (Gm [MD = {(M,, M), , 1< i< kipy + 1M, N\ M, £0, p,ve A},

where K, + 1 is the number of arcwise connected components in M, N M, for pu,v € A.
Notice that G™™ [M} is a multiple graph. If replace all multiple edges (M, M,),, 1 <i <

Kuv +1 by (M, M,), such a graph is denoted by G[M], also an underlying graph of M.

Clearly, if m = 1, then M (n;, ¢ € A) is nothing else but exactly an nj-manifold by
definition. Even so, Notion 3.1 enables us characterizing manifolds by graphs. The following
result shows that every manifold is in fact homeomorphic to combinatorial Euclidean space.

Theorem 3.7([22]) Any locally compact n-manifold M with an alta & = { (Ux;px)| A € A} is
a combinatorial manifold M homeomorphic to a combinatorial Euclidean space &gr(n, A € A)
with countable graphs G"[M] = G.

Topologically, a Euclidean space R™ is homeomorphic to an opened ball B"(R) = {(z1, 22,

-, xp)|zi+a3+ - 422 < R}. Thus, we can view a combinatorial Euclidean space &g (n, A € A)

as a graph with vertices and edges replaced by ball B®(R) in space, such as those shown in
Fig.6, a 3-dimensional graph.

Definition 3.8 An n-dimensional graph M"[G] 1s a combinatorial ball space B of B", pe A

underlying a combinatorial structure G such that
(1) V(G) is discrete consisting of B™, i.e., Yv € V(Q) is an open ball Bl};

(2) M"[G]\ V(M"[G)) is a disjoint union of open subsets e1, ez, ,em, each of which is
homeomorphic to an open ball B™;
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(3) the boundary & — e; of e; consists of one or two B™ and each pair (€;,e;) is homeo-
morphic to the pair (B, B");
(4) a subset A C M”[G] is open if and only if ANe€; is open for 1 <i < m.

Particularly, a topological graph T|G] of a graph G embedded in a topological space & is

1-dimensional graph.

According to Theorem 3.7, an n-manifold is homeomorphic to a combinatorial Euclidean

space, i.e., n-dimensional graph. This enables us knowing a result following on manifolds.

Theorem 3.9([22]) Let «/[M] = { (Ux;pa) | A € A} be a atlas of a locally compact n-manifold
M. Then the labeled graph G|LA\ of M is a topological invariant on |A|, i.e., if H‘ﬁll and G‘LA2| are
two labeled n-dimensional graphs of M, then there exists a self-homeomorphism h : M — M

such that h : Hﬁ;' — G|LA2‘ naturally induces an isomorphism of graph.

Theorem 3.9 enables us listing manifolds by two parameters, the dimensions and inherited
graph. For example, let |A| = 2 and then 7,;,[M]| = {(U1;¢1), (Uz;p2)}, i.e., M is double

covered underlying a graphs Dé r1a+1,0 Shown in Fig.7,

€1

Fig.7

For example, let U; = R?, 1 = 2, Uy = (R?\ {(0,0)} U{oc}, 2 = 1/z and k12 = 0. Then

the 2-manifold is nothing else but the Riemannian sphere.

The GL-structure on combinatorial manifold M can be also applied for characterizing a few

topological invariants, such as those fundamental groups, for instance the conclusion following.

Theorem 3.10([23]) For ¥(M, M3) € E (GL [MD, if My N My is simply connected, then

n(M)=l @ mon|Qm(c[M]).

MeV(G[M])

Particularly, for a compact n-manifold M with charts {(Ux, pa)| o : Ux — R, X € A},
if Uy, N U, is simply connected for Yu,v € A, then

7T1(M) = 1 (GZW[M]) .
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3.3 Algebraic Geometry

The topological group, particularly, Lie group is a typical example of K4-systems that of algebra
with geometry. Generally, let

AX = (by,ba, - ,bp)T (LEq)
be a linear equation system with
ail a2 - Qin T
A— a21 agz2 -t Q2n and X — €2
Gml Gm2 - Gmnp Ty

for integers m, n > 1, and all equations in (LEq) are non-trivial, i.e., there are no numbers A

such that (a1, a2, -, Gin, bi) = A(aj1, a2, -+, ajn,b;j) for any integers 1 < i,j < m.
g 20 —y = —2
20 —y =2
A
B
x
0]
C T+2y=2
D
T+ 2y=-2
Fig.8

It should be noted that the geometry of a linear equation in n variables is a plane in R".
Whence, a linear system (LFq) is non-solvable or not dependent on their intersection is empty
or not. For example, the linear system shown in Fig.8 is non-solvable because their intersection
is empty.

Definition 3.11 For any integers 1 < i,j < m, i # j, the linear equations

ai1T1 + a2 + - - Qi Ty = by,
;171 + Gj2T2 + ATy = b;
are called parallel if there no solution x1, 2, - ,z, hold both with the 2 equations.

Define a graph GE[LEq] on linear system (LEq) following:

V (G¥[LEq]) = { the solution space S; of ith equation |1 <i < m},
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E (GM[Eq)) ={ (5:,5;) | SiNS; #0, 1 <4,j < m} and with labels
LZSi—>Si andL;(Si,Sj)HSiﬂSj

for VS; € V (GF[LEq]), (Si,S;) € E(GY[LEq]). For example, the system of equations shown
in Fig.8 is

rx+2y = 2
r+2y = -2
2t—-y = =2
2r —y = 2

and CF is its underlying graph G*[LEq| shown in Fig.9.

Sl B 54
A D
53 C 52
Fig.9

Let L; be the ith linear equation. By definition we divide these equations L;, 1 <7 <m

into parallel families
(517(527"' 7(55

by the property that all equations in a family %; are parallel and there are no other equations
parallel to lines in %; for integers 1 < ¢ < s. Denoted by |4;| = n;, 1 < i < s. Then, we can
characterize GL[LEq] following.

Theorem 3.12([24]) Let (LEq) be a linear equation system for integers m,n > 1. Then

L o 7oL

G"[LEq] ~ K} p, ... .

with ny +n+ 2+ -+ +ns = m, where €, is the parallel family with n; = |€;| for integers
1<i<sin (LEq) and (LEq) is non-solvable if s > 2.

Notice that this result is not sufficient, i.e., even if GI[LEq] ~ K, n, ... n., We can not
claim that (LFEq) is solvable or not. How ever, if n = 2, we can get a necessary and sufficient
condition on non-solvable linear equations.

Let H be a planar graph with each edge a straight segment on R2. Its c-line graph Lo (H)
is defined by

V(Lc(H)) = {straight lines L = ejeq---€;,8 > 1 in H};
E(Lc(H)) = {(L1,L2)| if e} and e} are adjacent in H for Ly = ejey---e], Ly =

2.2 .2
efes---e5, l,s > 1}
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Theorem 3.13([24]) A linear equation system (LEq2) is non-solvable if and only if G*[LEq2] ~
Lco(H)), where H is a planar graph of order |H| > 2 on R? with each edge a straight segment

Similarly, let
Pl(f)vp2(f)7"' vpm(f) (Es;lj_l)

be m homogeneous polynomials in n + 1 variables with coefficients in C and each equation
P;(T) = 0 determine a hypersurface M;, 1 <i < m in R"™!  particularly, a curve C; if n = 2.
We introduce the parallel property following.

Definition 3.14 Let P(Z), Q(T) be two complex homogeneous polynomials of degree d in n+ 1
variables and I(P,Q) the set of intersection points of P(T) with Q(T). They are said to be
parallel, denoted by P || Q if d > 1 and there are constants a,b,--- ,c (not all zero) such that
forVz € I(P,Q), axy +bxs + - + cxpy1 = 0, i.e., all intersections of P(T) with Q(T) appear
at a hyperplane on P"C, or d = 1 with all intersections at the infinite x, 1 = 0. Otherwise,
P(Z) are not parallel to Q(T), denoted by P |f Q.

Define a topological graph G [EST!] in C"T! by

V(GF[ESIH]) ={P1(@), P2(T), -, Pu(T)};
E(G" [ESEH]) = {(P(@), P;@)| P W Py, 1 < 4,5 <m}
with a labeling
L: Py(z) — Fi(T), (Pi(@), Pi(x)) — 1(P;, Py),
where 1 < 4 # j < m, and the topological graph of G [ES}}{H] without labels is denoted by

G [ES,’%“] The following result generalizes Theorem 3.12 to homogeneous polynomials.

Theorem 3.15([26]) Let n > 2 be an integer. For a system (ES™1) of homogeneous polyno-

mials with a parallel mazximal classification 61,65, - , €,
GES)T < K(%1, 6, ,%1)

and with equality holds if and only if P, || P; and Ps || P; implies that Ps || P;, where
K(€,%62, -+ ,%) denotes a complete l-partite graphs

Conwversely, for any subgraph G < K (€1, %3, , %)), there are systems (ES™Y) of homo-
geneous polynomials with a parallel mazimal classification €1, %2, - , % such that

G ~ G[ES™M.
Particularly, if n = 2, i.e., an (ES3,) system, we get the condition following.

Theorem 3.16([26]) Let G* be a topological graph labeled with I(e) for Ve € E (G*). Then
there is a system (ES;O’n) of homogeneous polynomials such that G* [ES;O’n] ~ G if and only if
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there are homogeneous polynomials Py, (x,y,2),1 <i < p(v) for Vv eV (GL) such that

p(u)

y=1 HPUZ,HPW

for e = (u,v) € E(GF), where p(v) denotes the valency of vertex v in G*.

These G -system of homogeneous polynomials enables us to get combinatorial manifolds,

for instance, the following result appeared in [26].

Theorem 3.17 Let (ES™Y) be a G -system consisting of homogeneous polynomials Py (T), P2 (T),
-+, P(T) in n 4+ 1 variables with respectively hypersurfaces 51,82, ,Sm. Then there is a
combinatorial manifold M in C™1 such that m: M — S is 1 — 1 with GF [M] ~ GF [g},

where, S = U Si.

i=1

Particularly, if n = 2, we can further determine the genus of surface g (§) by closed

formula as follows.

Theorem 3.18([26]) Let C1,Ca,- - ,Cy, be complex curves determined by homogeneous poly-

nomials Py (z,y,2), Pa(z,y,2), -+, Pn(x,y, z) without common component, and let
deg(P;)deg(P;) eff deg(P;)deg(Pj)
RP“P], = H (Ck z — b” ) 5 wi,j = Z Z 1
k=1 5 750

be the resultant of Pi(x,y, z), Pj(z,y,z) for 1 <i# j <m. Then there is an orientable surface
S in R3 of genus

g(g) _ (<>) i (deg(P, —1)2(deg(Pi)—2)_ S s

p*€Sing(Cy)

+ Z (wij — +Z Z {C(Cklm---ﬂCki)—l}

1<ij<m i>3 ckl NN Cr, 40
with a homeomorphism ¢ : S—C= U Ci. Furthermore, if C1,Ca,--- ,C,y, are non-singular,
i=1
then
3\ _ ~ ~ (deg(P;) — 1)(deg(P;) — 2)
J(3) - o(o(e)) - i
+ Z (wij — +Z Z [C(Cklﬂ--~ﬂ0ki)—1},
1<iZj<m i>3 ckl NN Cr, #0
where ) op
506 = 5 (1 (P52 ) —velo) + 5]
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is a positive integer with a ramification index vy (p') for p* € Sing(C;),1 < i < m.

Theorem 3.17 enables us to find interesting results in projective geometry, for instance the

following result.

Corollary 3.19 Let C1,Cy, - -+, Cy, be complex non-singular curves determined by homogeneous
polynomials Py(x,y, z), Pa(x,y, 2),- -+, Pn(x,y, z) without common component and C;(C; =
N Ci with | C;| = Kk > 0 for integers 1 < i # j < m. Then the genus of normalization S of
i=1 i=1
curves C1,Co, -+ ,Cyy 18
. ~ n deg(P;) — 1)(deg(FP;) — 2
9(8) = 9(8) = (5~ 1)(m — 1) -y BTV = UeslF) =22
i=1

Particularly, if C1,Ca, -+ ,Cy, are distinct lines in P2C with respective normalizations of

spheres S1,S52,+++ ,Sm. Then there is a normalization of surface S of C1,Co, -+ ,Cy, with

genus (3 (G <1~L>) Furthermore, if G <1~L>) is a tree, then S is homeomorphic to a sphere.

3.4 Combinatorial Geometry

Furthermore, we can establish combinatorial geometry by Notion 3.2. For example, we have
3 classical geometries, i.e., Fuclidean, hyperbolic geometry and Riemannian geometries for de-

scribing behaviors of objects in spaces with different axioms following;:

Euclid Geometry:

=

1

There is a straight line between any two points.

>
©

A finite straight line can produce a infinite straight line continuously.

Any point and a distance can describe a circle.

o~ o~ o~ o~

- >
=~ W
S N N N N

All right angles are equal to one another.

=
o

If a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, then the two straight lines, if produced indefinitely, meet on that

stde on which are the angles less than the two right angles.
Hyperbolic Geometry:
Axioms (A1) — (A4) and the axiom (L5) following:

(L5) there are infinitely many lines parallel to a given line passing through an exterior

point.
Riemannian Geometry:
Axioms (A1) — (A4) and the axiom (R5) following:
there is no parallel to a given line passing through an exterior point.

Then whether there is a geometry established by combining the 3 geometries, i.e., partially
Euclidean and partially hyperbolic or Riemannian. Today, we have know such theory really

exists, called Smarandache geometry defined following.
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Definition 3.20([12]) An axiom is said to be Smarandachely denied if the axiom behaves in at
least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom
(1969).

Lo L, I
E
p C F C
l
Li— A/ D
A F G B B
(a) (b)

Fig.10

For example, let us consider a Euclidean plane R? and three non-collinear points A, B and
C shown in Fig.10. Define s-points as all usual Euclidean points on R? and s-lines any Euclidean
line that passes through one and only one of points A, B and C. Then such a geometry is a

Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there exist one line
passing through them is now replaced by: one s-line and no s-line. Notice that through any
two distinct s-points D, E collinear with one of A, B and C, there is one s-line passing through
them and through any two distinct s-points F, G lying on AB or non-collinear with one of A, B

and C, there is no s-line passing through them such as those shown in Fig.10(a).

Observation 2. The axiom (E5) that through a point exterior to a given line there is
only one parallel passing through it is now replaced by two statements: one parallel and no
parallel. Let L be an s-line passes through C' and D on L, and AF is parallel to CD in the
Euclidean sense. Then there is one and only one line passing through E which is parallel to L,
but passing a point not on AFE, for instance, point F' there are no lines parallel to L such as
those shown in Fig.10(b).

Generally, we can construct a Smarandache geometry on smoothly combinatorial manifolds
M , i.e., combinatorial geometry because it is homeomorphic to combinatorial Euclidean space
&qr (n1,n2, -+ ,Ny,) by Definition 3.6 and Theorem 3.7. Such a theory is founded on the results
for basis of tangent and cotangent vectors following.

Theorem 3.21([15]) For any point p € M(ni,na,--- ,nym) with a local chart (Up; [pp]), the

dimension of TyM(n1,na, -+ ,Nm) 18

dimTpM(nl, N2, ,Nm) = 5(p) + Z: (ni —3(p))
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. . ) 0
with a basis matriz e =
v s(P) X s (p)
L__0 . 1__ 9 ) B < A . 0
s(p) Ozt s(p) Oz 15(P) 921G (P)F1) Dzini
1 9 . 1 o) 5l . o 0
5(p) 9z21 5(p) 9225 922GE ) By
_1 —8 DY _1 6 8 ... ... 6 6
s(p) Ozs(P)1 s(p) dxsP)s(P) Oxs(PGEP+D POl ) 92" P s (p)

where x* = 27! for 1 <i,j < s(p),1 <1 < 5(p), namely there is a smoothly functional matriz

[Uij]s(p)an(p) such that for any tangent vector U at a point p of M(nl, N2y N ),

_ 0
U= [vij]s(p)an(p)a [%]s(p)xus(p) ,

M=

>~ aijbij, the inner product on matrizes.
i=1;=

where <[aij]k><l, [bts]kxl> =

—

Theorem 3.22([15]) ForVp € (M(ny,n,- -+ ,nm); A) with a local chart (Up; lepl), the dimen-

sion ofT;M(nl,n2,~'~ yMop,) 18

— 5(p)
dimTy M (n1,n2, -+ ,nm) = 3(p) + >_ (ni — 3(p))
i=1

with a basis matriz  [dT]

s(p)Xnap)
da(s_l)l . dxf;’” dptGm+) L gl . 0
s(p s(p
‘Z?—; . dw?p;) dz2G®+1) L gp2ne . 0
da®P)! da®(P)E() s(p)(3(p)+1) s(P)s(py—1 s(p)n
W e W dx e . dx s(p) dx s(p)

where % = 29 for 1 <i,j < s(p),1 <1 < 8(p), namely for any co-tangent vector d at a point

p of M(nl, Mo, ,Nm), there is a smoothly functional matriz [ui;]spyxs@p) such that,
d= <[uij]s(p)><ns(p)a [df]s(p)an(p)> .

Then we can establish tensor theory with connections on smoothly combinatorial manifolds
([15]). For example, we can establish the curvatures on smoothly combinatorial manifolds, and
get the curvature R formula following.

Theorem 3.23([18]) Let M be a finite combinatorial manifold, R : %(M) X %(M) X %(M) X
%(M) — C’OO(M) a curvature on M. Then for Vp € M with a local chart (Up; [ep)),

R = Rioo) (o) (ur) (242" ® da™ © da” @ da™,
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where

i _ 1(329<w><o<> Pgenme  Pgme) 329<m><a<>)
(05) () (nv)(KX) 2 8xn)\8xn9 OxHvY Hros 8xn)\axdc 817#1/817779

e £o o
T Ty ool (enymo)9€0) @) — L (wymeyL (en) (o) 9(go) (90),

and 9(uv)(kX) = g(#a;wv ax%)

This enables us to characterize the combination of classical fields, such as the Einstein’s
gravitational fields and other fields on combinatorial spacetimes and hold their behaviors ( See
[19]-[20] for details).

84. Differential Equation’s Combinatorics

Let
fil@y, @2, ,xpg1) =0
T1,T2, y T =0
(Eqn) fa(z1, 22 +1)
fm('Ilu:EQu"' 7xn+l):O

be a system of equations. It should be noted that the classical theory on equations is not
combinatorics. However, the solutions of an equation usually form a manifold in the view of
geometry. Thus, the CC conjecture bring us combinatorial notions for developing equation
theory similar to that of geometry further.

Notion 4.1 For a system (Eqn) of equations, solvable or non-solvable, determine its un-
derlying topological structure G*[Eq,,] on each solution manifold and classify them by graph

isomorphisms and transformations.

Notion 4.2 For an integer m > 1, let D, Do, -+, Dm be the solution manifolds of an
equation system (Eqy,) in Definition 1.2 and 17 underlying G* [é] with 9 = U %, i.e.,
i=1

a combinatorial solution manifold. Characterize the system (Eqp) and establish an equation

theory, i.e., equation’s combinatorics on (Eqy,).
Geometrically, let
Sf1 = {(xl,IQa e ,$n+1)|fi($1,$2, e ,In+1) = O} C Rn+1

the solution-manifold in R**! for integers 1 < i < m, where f; is a function hold with conditions
of the implicit function theorem for 1 < i < m. Then we are easily finding criterions on the

solubility of system (ES,,), i.e., it is solvable or not dependent on

ﬁSfl7£@ or =1{.

i=1
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Whence, if the intersection is empty, i.e., (FSy,) is non-solvable, there are no meanings in
classical theory on equations, but it is important for hold the global behaviors of a complex
thing. For such an objective, Notions 4.1 and 4.2 are helpful.

Let us begin at a linear differential equations system such as those of

X=AX,  X=A4X, -, X=A4,X (LDES})
or
I(n) _|_ a[lol]x(nfl) _|_ e _|_ a[107]l$ e O
2™ a2 4 el =0
with
k k k
a ol all) z1()
[k] (k] [k]
a a a To(t
Ay = 21 22 2n and X = 2()
abl al ab Za(t)

[k]

where each a;; is a real number for integers 0 < k< m, 1<14,5 <n.

For example, let (LDE?) be the following linear homogeneous differential equation system

1
2
3
4
5
6

T+3T+2x=0
452+ 6x =0
T+7+ 122 =0
Z+92+20x =0
2+ 11z + 30z =0

(1)
(2)
(3)
(4)
(5)
i+ Ti+ 6z =0 (6)

Certainly, it is non-solvable. However, we can easily solve equations (1)-(6) one by one and
get their solution spaces as follows:

1671+ Ce™|C1, Oy € R} = {afd + 94 + 20z = 0}
167 + Coe™ |01, Cp € R} = {2 + 114 + 302 = 0}

»
I
N N N N N
o
|
S
“rh
ml
EN
N T g g
Il
e e N e N e Tt
Q Q

Replacing each ¥; by solution space S; in Definition 1.2, we get a topological graph



22 Linfan MAO

GY[LDE?] shown in Fig.11 on the linear homogeneous differential equation system (LDEZ).
Thus we can solve a system of linear homogeneous differential equations on its underlying graph
G', no matter it is solvable or not in the classical sense.

<€7t, 872t> <€72t> <€72t7 673t>
<e*t> <673t>

<_eﬁt’e—t> <e—3t7e—4t>

<€76t 674t>

<e—5t7 e—6t> <e—5t> <e—4t7 e—5t>

Fig.11

Generally, we know a result on G'-solutions of homogeneous equations following.

Theorem 4.3([25]) A linear homogeneous differential equation system (LDES1 ) (or (LDE™))
has a unique G*-solution, and for every H™ labeled with linear spaces <6 (et 1 <i < > on

vertices such that

Biwert 1< i<n) (V(B;(0e', 1< <n) #0

if and only if there is an edge whose end vertices labeled by <Bi(t)eo‘it, 1< < n> and <B] (t)evt,
1 < j < n) respectively, then there is a unique linear homogeneous differential equation system
(LDES},)) (or (LDEY)) with G*-solution HY, where «; is a k;-fold zero of the characteristic
equation, ky + ko + -+ + ks =n and B,(t) is a polynomial in t with degree< k; — 1.

Applying GT-solution, we classify such systems by graph isomorphisms.

Definition 4.4 A vertez-edge labeling 0 : G — Z* is said to be integral if O(uv) < min{6(u),6(v)}
for Yuv € E(G), denoted by G'¢, and two integral labeled graphs G{" and Géf are called iden-
tical if G1 = Gy and 0(z) = 1(p(x)) for any graph isomorphism ¢ and Vx € V(G1) | E(G1),
denoted by G{e = GéT.

For example, G{g = Gg’ but G{" #* G?IJ" for integral graphs shown in Fig.12.

3 2 4 4 2 3 3 1 3
1 2 2 1 1 2 p) 2
4 2 3 3 2 4 4 1 4
Gl GE Gl

Fig.12
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The following result classifies the systems (LDES) ) and (LDE") by graphs.

Theorem 4.5([25]) Let (LDESY), (LDESL) (or (LDE™), (LDE")") be two linear homo-
geneous differential equation systems with integral labeled graphs H, H'. Then (LDES}) £

(LDESL) (or (LDE") £ (LDEI)Y ) if and only if H= H'.

For partial differential equations, let

Fl(l'l,fl]g,"' 7$n7u7u:617"' ,Umn) =0
F2(x17x27"'7$n7u7u:617"'7u1n):0 (PDESm)
Fm(xhx% y Ty Uy Uz auzn) =0
be such a system of first order on a function w(zy,- - ,zp,t) with continuous F; : R™ — R"
such that F;(0) = 0.
Definition 4.6 The symbol of (PDES,,) is determined by
Fl(:rl;va"' y Ly Uy P1y - ap’n.) =0
F2(‘T17:E27"' sy Tp, Uy P11y " 7pn) =0
F’m(xlvav y LTy Uy P1, ;pn) 07
i.€., SUDSHItULES Uy, Uy, ** s Ug, DY P1,D2, ,Pn 0 (PDES,, ), and it is algebraically contra-

dictory if its symbol is non-solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following

(z —y)ug + (& — 2)uy + (y —x)u, =0
zuw+xuy+yuz::v2+y2+22+l
YUy + 2Uy + U, = 22 +y? + 2% + 4

is algebraically contradictory because its symbol

(z=yp1+ (z - 2)pa + (y —2)ps = 0
zp1 +ape +yps = 2% +y? + 22 + 1
yp1 + zpa +aps = 22+ + 22 +4

is contradictory. Generally, we know a result for Cauchy problem on non-solvable systems of

partial differential equations of first order following.
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Theorem 4.7([28]) A Cauchy problem on systems

Fl(II;IQ;"' y L,y Uy P1, P2, " ap’n.) =0
F2(I1;I25"' y L,y Uy P1, P2, " ap’n.) =0

Fm(‘rhx?u' o Ip, Uy, P1,P2, 0 0 7pn) =0

of partial differential equations of first order is non-solvable with initial values

'ri|13n:$?l = I?(Sla 82, 7577.71)
u|1n:$9l = U’O(Slv 52, 7571—1)
pilzn:m% :p?(817827"' 7871—1)7 Z:1727 ,

if and only if the system
Fi(w1,22,+ Tn,u,p1,p2, - ,pn) =0, 1<k <m
is algebraically contradictory, in this case, there must be an integer ko, 1 < kg < m such that
Feo (2,25, -+, 2y, 2, w0, p1, P2, -+, pp) # 0

or it is differentially contradictory itself, i.e., there is an integer jo, 1 < jo <n — 1 such that

According to Theorem 4.7, we know conditions for uniquely G*-solution of Cauchy problem

on system of partial differential equations of first order following.

Theorem 4.8([28]) A Cauchy problem on system (PDES,,) of partial differential equations
0 ()
of first order with initial values xEk ],u([)k],pyC ], 1 <i < n for the kth equation in (PDES,,),
1 <k <m such that .
8ug“] - [k°] 8:E[k )
_ — g -t = 0
aSj sz aSj

=0

is uniquely G -solvable, i.e., GF[PDES] is uniquely determined.

Applying the GF-solution of a Gr-system (DES,,) of differential equations, the global
stability, i.e, sum-stable or prod-stable of (DES,,) can be introduced. For example, the sum-
stability of (DES,,) is defined following.

Definition 4.9 Let (DESS ) be a Cauchy problem on a system of differential equations in R™,
HY < GF [DES,(;;] a spanning subgraph, and ul’! the solution of the vth equation with initial
value ug)], veV (HL) It is sum-stable on the subgraph H* if for any number ¢ > 0 there
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exists, 6, > 0, v € V (HY) such that each G*(t)-solution with

<d,, YweV(H")

u/gf] _ ug’]

exists for all t > 0 and the inequality

Z W' — Z ulll < ¢

veV(HL) veV (HL)

holds, denoted by GE[t] S GY[0] and G[t] Y GL0] if HY = G [DESS]. Furthermore, if
there exists a number 3, >0, veV (HL) such that every GLl[t]—solution with

1[v]

u'g —ug)] < By, VUEV(HL)

satisfies

| ¥ w5 -

veV(H) veV(HL)

then the GE[t]-solution is called asymptotically stable, denoted by GL|[t] A GL10] and GL[t] 2
GE[0] if HE = G* [DESS)).

For example, let the system (SDESS) be

u _ H;(t,x x )
ot = 11q 7 1, y Tn—1,DP1, y Pn—1 1<i<m (SDES,%)
Uizt = ug (21,02, @0 1)

and a point X([)i] = (to, x[l%, e 74?171)0) with H;(to, x[li(]), e 74?171)0) =0 for an integer 1 <1i <

m is equilibrium of the ith equation in (SDESS). A result on the sum-stability of (SDESS)
is obtained in [30] following.

Theorem 4.10([28]) Let Xéi] be an equilibrium point of the ith equation in (SDESS ) for each
integer 1 < ¢ <m. If

m

ZHi(X)>O and ia;f <0
i=1

i=1

for X £ 3 X([)i], then the system (SDESS, ) is sum-stable, i.c., GL[t] X Gr [0].
i=1

Furthermore, if

for X # i Xéi], then GE[t] 2 G*o).

=1
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85. Field’s Combinatorics

The modern physics characterizes particles by fields, such as those of scalar field, Maxwell field,
Weyl field, Dirac field, Yang-Mills field, Einstein gravitational field, - - -, etc., which are in fact
spacetime in geometry, isolated but non-combinatorics. Whence, the CC conjecture can bring
us a combinatorial notion for developing field theory further, which enables us understanding
the world and discussed extensively in the first edition of [13] in 2009, and references [18]-[20].

Notion 5.1 Characterize the geometrical structure, particularly, the underlying topological
structure GE[9)] of spacetime 9 on all fields appeared in theoretical physics.

Notice that the essence of Notion 5.1 is to characterize the geometrical spaces of particles.
Whence, it is in fact equivalent to Notion 3.1.

Notion 5.2 For an integer m > 1, let D1, Do, -+, Dy be spacetimes in Definition 1.2
~ ~ ~ m

and 2 underlying G* [9} with 9 = \J %, i.e., a combinatorial spacetime. Select suitable
i=1

Lagrangian or Hamiltonian density & to determine field equations of @, hold with the principle

of covariance and characterize its global behaviors.

There are indeed such fields, for instance the gravitational waves in Fig.13.

Fig.13

A combinatorial field Z is a combination of fields underlying a topological graph G
with actions between fields. For this objective, a natural way is to characterize each field
Ciy, 1 < i < n of them by itself reference frame {Z}. Whence, the principles following are
indispensable.

Action Principle of Fields. There are always exist an action A between two fields C1 and
Cy of a combinatorial field if dim(Cy N Cy) > 1, which can be found at any point on a spatial
direction in their intersection.

Thus, a combinatorial field depends on graph G* {@}, such as those shown in Fig.14.
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CS 83(54 Cy
Fig.14

For understanding the world by combinatorial fields, the anthropic principle, i.e., the born
of human beings is not accidental but inevitable in the world will applicable, which implies the

generalized principle of covariance following.

Generalized Principle of Covariance([20]) A physics law in a combinatorial field is invari-

ant under all transformations on its coordinates, and all projections on its a subfield.

Then, we can construct the Lagrangian density .# and find the field equations of combi-
natorial field 2, which are divided into two cases ([13], first edition).

Case 1. Linear

In this case, the expression of the Lagrange density .7, L[] is

ZLor[a) = > aity, + > bij Tij
= (@.7)<B(c+[3))

where a;, b;; are coupling constants determined only by experiments.
Case 2. Non-Linear
In this case, the Lagrange density ZGL[@] is a non-linear function on £y, and 9;; for
1 <1i,j <n. Let the minimum and maximum indexes j for (M;, M;) € E (GL [.@D are ' and
1", respectively. Denote by
T= (21,22, ) = (Lo, Loy Lo, Tinis s Tigu, e Togty ).

If Z, L[] is k 4 1 differentiable, £ > 0, by Taylor’s formula we know that

n

0L, 015 n 0L
Terlg] Ll | .
oz, ] Tt g D [ 9z:0; ity
x;=0 i,j=1 Ii,IjZO
1 l 0" L)

6:51-1 6:51-2 t 8:%

Ly Lig =+ Ly,

11,92, ik =1 ‘|zij_071<j<k

+R(:I:17:E27 e )7
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where
R(:El y L2, ) -0
iZi—o |z ’
and choose the first k terms
n [0LArs n T02%L..i5
@ (9] 1 5(3]
Zor[5)O0) + oz, ] Tt g 2 [ Bz:0z, Tis
i=1 x;=0 3,j=1 zi,7;=0

xil xiz e xik

R 0" Zn(g)
8$i1 8$i2 e 8:1:1-k

11,82, 5t =1 1@-].—0,13]‘31@
to be the asymptotic value of Lagrange density £, L[]’ particularly, the linear parts

n

0ZG115] ] . > [a.,stL 5] ] 5
0Ly, M 0T 9
7 lzg—0 (M, M) B(GH[]) 7 17,=0

Notice that such a Lagrange density maybe intersects. We need to consider those of

Lagrange densities without intersections. For example,

4 4
_ 2
gGL[é] - chw - Z$8181+1
i=1 i=1
for the combinatorial field shown in Fig.14.

Then, applying the Euler-Lagrange equations, i.e.,

0Zcufg)  O%r(g] _

3] 0,
g 0.9 ¢z

where ¢ is the wave function of combinatorial field 9 (t), we are easily find the equations of
combinatorial field .

For example, for a combinatorial scalar field ¢, without loss of generality let

n

b5 = cita,

i=1

Z(auz (b@i o (b@i - m$¢2@l) + Z bij¢@i¢@j7
i=1

1
‘XGL[@] D)
(2:,2;)€E(G"|2)])

i.e., linear case

fgL[@] = Zip@i + Z bij T
=1 (@i,@j)GE(Gl‘[é])

with Ly, = %(Buﬂ%a”w% — mf¢2%), Tij = ¢2,99,, i = Py, and constants b;;, m;, ¢; for
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integers 1 < 4,7 < n. Then the equation of combinatorial scalar field is

1 : .
Z ;(aua“i +m3)oar, — Z bij <¢M + ¢C—Ajl) =0.

i=1 ¢ (M;,M;)eE(GL[M]) l

Similarly, we can determine the equations on combinatorial Maxwell field, Weyl field, Dirac
field, Yang-Mills field and Einstein gravitational field in theory. For more such conclusions, the
reader is refers to references [13], [18]-[20] in details.

Notice that the string theory even if arguing endlessly by physicists, it is in fact a combina-
torial field R* x R” under supersymmetries, and the same also happens to the unified field theory
such as those in the gauge field of Weinberg-Salam on Higgs mechanism. Even so, Notions 5.1

and 5.2 produce developing space for physics, merely with examining by experiment.

86. Conclusions

The role of CC conjecture to mathematical sciences has been shown in previous sections by
examples of results. Actually, it is a mathematical machinery of philosophical notion: there
always exist universal connection between things 7 with a disguise GY[.Z] on connections,
which enables us converting a mathematical system with contradictions to a compatible one
([27]), and opens thoroughly new ways for developing mathematical sciences. However, is a
topological graph an element of a mathematical system with measures, not only viewed as a
geometrical figure? The answer is YES!

Recently, the author introduces E')—ﬂow in [29], i.e., an oriented graph 5} embedded in a
topological space . associated with an injective mappings L : (u,v) — L(u,v) € ¥ such that
L(u,v) = —L(v,u) for V(u,v) € X (E’)) holding with conservation laws

Z L(v,u) =0 for VUEV(a),

uENg(v)

where V is a Banach space over a field .% and showed all these 5)—ﬂows 5}7/ form a Banach

e = > izl

(u,u)GX(E‘))

space by defining

for VG T € @A’/, and furthermore, Hilbert space by introducing inner product similarly, where
—
||IL(w,v)|| denotes the norm of F(u¥) in ¥, which enables us to get G-flow solutions, i.e.,

combinatorial solutions on differential equations.
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