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1 Introduction
Field-induced effects in low-dimensional quantum spin systems have been
studied for a long time [1, 2]. Hamiltonian models incorporating external
magnetic fields are gaining popularity among experimentalists as well as
theoreticians (see references [3, 4, 5, 6]). A longitudinal field is often
introduced mainly to facilitate the calculation of order parameter and
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associated susceptibility as can be seen for example in references [7, 8, 9],
and a transverse field to introduce quantum fluctuations [10, 11].

Our main objective in this paper is to give an explicit matrix representa-
tion for the Hamiltonian of a system of N spin-1/2 particles on a cyclic
one dimensional lattice chain, interacting via nearest neighbour exchange,
in the presence of transverse and longitudinal external magnetic fields.

The Hamiltonian, H, is

H = −hx

N∑
i=1

Sx
i − hy

N∑
i=1

Sy
i − hz

N∑
i=1

Sz
i − J

N∑
i=1

Sz
i S

z
i+1 , (1)

where hx and hy are the uniform external transverse magnetic fields, hz is
the uniform longitudinal field, J is the nearest neighbour exchange inter-
action, Si are the usual spin-1/2 operators and the fields hx, hy and hz are
measured in units where the splitting factor and Bohr magneton are equal
to unity. Periodic boundary condition is assumed so that Sz

N+i ≡ Sz
i , and

so on. The parameters hx, hy, hz and J are all assumed to be non-negative.

It is convenient to write H = HF + HI , where

HI = −J

N∑
i=1

Sz
i S

z
i+1

and

HF = −hx

N∑
i=1

Sx
i − hy

N∑
i=1

Sy
i − hz

N∑
i=1

Sz
i .

HF describes a system of N non-interacting spin 1/2 particles in mutually
orthogonal external magnetic fields.

The model (1) has been widely studied for various combinations of the
parameters hx, hy, hz and J , especially for phase transitions (see [3, 5,
12] and the references therein). Our aim is to give an explicit matrix
representation for H, using the eigenstates of HF as basis.
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Throughout this paper we will make use of the following identities which
hold for j, k ∈ {0, 1}:

j ≡ sin2(jπ/2), 1− j ≡ cos2(jπ/2) ,

δjk ≡ 1− j − k + 2jk ≡ cos2 {(j − k)π/2} ,

j + k − 2jk ≡ sin2 {(j − k)π/2} ,

(−1)jδjk ≡ 1− j − k ≡ δjk − 2jk ≡ cos {(j + k)π/2} ,

in particular (−1)j ≡ 1− 2j ≡ cos jπ, (−1)j−1 ≡ 2j − 1 ,

(−1)j + (−1)k ≡ 2(−1)jδjk, (−1)j+k ≡ 2δjk − 1 ≡ cos{(j − k)π},

jδjk ≡ jk .

(2)

2 Quantization of a system of non-interacting
spin 1/2 particles in external magnetic fields

A system of N non-interacting spin 1/2 particles in mutually orthogonal
external magnetic fields hx, hy and hz is described by the Kronecker sum
Hamiltonian

HF = HF1 ⊕HF2 ⊕ · · · ⊕HFN

where, for j, k ∈ {0, 1}, each single particle Hamiltonian HFi
, at the ith

site, has the matrix elements, in unit of ~,

〈λj|HFi
|λk〉 = −hz

2
cos jπ cos2

{
(j − k)

π

2

}

−
[
a

2
cos2

(
jπ

2

)
+

a∗

2
cos2

(
kπ

2

)]
sin2

{
(j − k)

π

2

}

with respect to the eigenstates {|λ0〉 , |λ1〉} of the spin 1/2 operator Sz
i ,
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whose elements, in unit of ~, are

〈λj|Sz
i |λk〉 =

cos jπ

2
cos2

{
(j − k)

π

2

}
= λj cos2

{
(j − k)

π

2

}
.

The remaining two spin 1/2 operators Sx
i and Sy

i have matrix elements
given by

〈λj|Sx
i |λk〉 =

1

2
sin2

{
(j − k)

π

2

}

and

〈λj|Sy
i |λk〉 =

−i cos jπ

2
sin2

{
(j − k)

π

2

}
.

Parameters hx, hy and hz are the external magnetic fields and a = hx−ihy.

Explicitly,

HFi
= −hxS

x
i − hyS

y
i − hzS

z
i

= −1

2

(
hz hx − ihy

hx + ihy −hz

)
.

2.1 Change of basis via the eigenstates of the single
particle Hamiltonian

Solving the eigenvalue equation HFi
|εj〉 = εj |εj〉, the normalized eigen-

states |εj〉, j ∈ {0, 1}, are found to be

|εj〉 = acj |λ0〉+ bjcj |λ1〉 ,

with corresponding eigenvalues

εj = −h/2 cos jπ , (3)
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where

h =
(
h2

x + h2
y + h2

z

)1/2
,

a = hx − ihy, bj = −h cos jπ − hz

and

cj = − cos jπ

(2h)1/2 (h + hz cos jπ)1/2
=

(h + hz cos jπ)1/2

(2h)1/2bj

.

(4)

Note that
a∗a = −b0b1 = h2

x + h2
y = h2 − h2

z ,

a∗ + a = 2hx, a∗ − a = 2ihy ,

bjbk = (h + hz cos jπ)2 cos2
{

(j − k)
π

2

}
− (

h2 − h2
z

)
sin2

{
(j − k)

π

2

}

cjck =
1

2h

(
cos2 {(j − k) π/2}

h + hz cos jπ
− sin2 {(j − k) π/2}

(h2 − h2
z)

1/2

)
,

and

a∗a
1∑

j=0

c2
j = 1,

1∑
j=0

c2
jbj = 0 .

The diagonalizing matrix P has elements Pjk = ack cos2 (jπ/2) + jbkck,
for j, k ∈ {0, 1}. Thus, HFi

is similar to the diagonal matrix D having
elements Djk = εj cos2 ((j − k)π/2), that is

HFi
= PDP † ,

P =

(
c0a c1a
c0b0 c1b1

)
, D =

(
ε0 0
0 ε1

)
.
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With respect to the new basis, {|ε0〉 , |ε1〉}, and for j, k ∈ {0, 1}, the Pauli
spin matrices have the representation

〈εj|Sx
i |εk〉 = −hx

2h
cos jπ cos2

{
(j − k)

π

2

}

+ [(h cos jπ + hz) a + (h cos kπ + hz) a∗]
sin2 {(j − k) π/2}
4h (h2 − h2

z)
1/2

,

〈εj|Sy
i |εk〉 = −hy

2h
cos jπ cos2

{
(j − k)

π

2

}

+ [(h cos jπ + hz) a− (h cos kπ + hz) a∗]
i sin2 {(j − k) π/2}

4h (h2 − h2
z)

1/2

and

〈εj|Sz
i |εk〉 = −hz

2h
cos jπ cos2

{
(j − k)

π

2

}

− (h2 − h2
z)

1/2

2h
sin2

{
(j − k)

π

2

}
.

2.2 General basis states for the matrix representation
of one dimensional spin 1/2 Hamiltonian systems

Since HF is a Hermitian operator that lives in a 2N dimensional Hilbert
space, H, its eigenstates form a complete orthonormal basis, suitable for
giving matrix representations for operators living in H and with the same
conditions at the boundary. The eigenvalue equation for HF is

HF |Er〉 = Er |Er〉 , r = 0, 1, 2, . . . , 2N − 1 .

For each r the eigenstate |Er〉 is a direct product of the eigenstates of HFi
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while the eigenvalue is the sum of the respective eigenvalues εi, that is

|Er〉 = |εr1〉 ⊗ |εr2〉 ⊗ · · · ⊗ |εrN
〉 =

N∏
i=1

|εri
〉

and

Er = εr1 + εr2 + · · ·+ εrN
=

N∑
i=1

εri
,

where
ri = sin2

{(⌊ r

2N−i

⌋) π

2

}
, i = 1, 2, . . . N ,

where bzc, the floor of z, is the smallest integer not greater than z. Thus
each state |Er〉 is uniquely represented by a binary vector r = (r1, r2, . . . , rN).

Thus, any operator A in H has the matrix representation A with elements
given by

Ars = 〈Er|A |Es〉 .

Using (3) we get

Er = h

N∑
i=1

ri − Nh

2
= hmr − Nh

2
. (5)

Note that mr =
∑N

i=1 ri counts the number of |ε1〉 states in the direct prod-
uct state |Er〉. The degeneracy of the state |Er〉 is therefore g(Er) = NCmr .
Thus only the ground state and the most excited state are non-degenerate.
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3 Quantization of the one dimensional spin 1/2

Ising model in external magnetic fields

Explicit matrix representation

Since HF is diagonal in the basis {|Er〉}, the only task is to find the matrix
elements of HI and then add them to those of HF . We have

HIrs = 〈Er|HI |Es〉 = −J

N∑
i=1

〈Er|Sz
i S

z
i+1 |Es〉

= −J

N∑
i=1

dirsS
z
irisi

Sz
i+1ri+1si+1

,

(6)

where Sz
krksk

= 〈εrk
|Sz

k |εsk
〉 and where we have introduced an N−dimensional

vector d whose components are 2N ×2N symmetric binary matrices di de-
fined by

dirs =
N∏

j=1
j 6=i
j 6=i+1

δrisi
. (7)

Thus dirs = 1 if either the two vectors r and s are one and the same
vector, that is r = s, or they differ only at the consecutive ith and (i+1)th

entries, otherwise dirs = 0.

Note that
δrisi

δri+1si+1
dirs = δrisi

cirs = δrs , (8)

where we have introduced another N−dimensional vector c whose com-
ponents are 2N × 2N symmetric binary matrices ci with elements given
by

cirs =
N∏

j=1
j 6=i

δrisi
. (9)

Thus cirs = 1 if either the two vectors r and s are one and the same vector,
r = s, or they differ only at the ith component, otherwise cirs = 0.
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Motivated by the definitions in (7), (8) and (9) we introduce two more
N−dimensional vectors, α and β, whose components are 2N × 2N sym-
metric binary matrices, in terms of which the ci and di matrices may also
be expressed. The αi and βi matrices are defined through their elements
by

αirs = δrisi
= cos2 {(ri − si) π/2} ,

βirs = δrisi
δri+1si+1

= αirsαi+1rs = cos2 {(ri − si) π/2} cos2 {(ri+1 − si+1) π/2} .

It is straightforward to verify the following properties for the αi and βi

matrices:

αiαj = αjαi = 2N−1δijαi + 2N−2(1− δij)J2N ,

βiβj = βjβi = 2N−2δijβi + (1− δij)
{
2N−3αjδj,i+1 + (1− δj,i+1) 2N−4J2N

}

and

αiβj = βjαi = 2N−2δijαi + (1− δij)
{
2N−2αiδi,j+1 + (1− δi,j+1) 2N−3J2N

}
,

(10)

where

J2N =




1 1
... 1

1 1
... 1

...
...

...
...

1 1
... 1




is the 2N × 2N all-ones matrix. The αi and βi matrices are singular and
have trace equal to 2N . The eigenvalues of αi are 2N−1 repeated twice
and 0 repeated 2N − 2 times while those of βi are 2N−2 repeated four
times and 0 repeated 2N − 4 times. Finally using multinomial expansion
theorem and (10), it is readily established that the matrices α =

∑N
i=1 αi
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and β =
∑N

i=1 βi satisfy

α2 = 2N−1α + 2N−2N(N − 1)J2N ,

β2 = 2N−2(α + β) + 2N−4N(N − 3)J2N

and

αβ = 2N−1α + 2N−3N(N − 2)J2N .

It is now obvious that

cirs = δrs + (1− αirs) δαrs,N−1

= δrs + (1− αirs) δβrs,N−2

= δrs + δβrs,N−2 cos2 (αirsπ/2) ,

(11)

dirs = δrs + (1− αirs)αi+1rsδβrs,N−2

+ (1− αi+1rs)αirsδβrs,N−2

+ (1− αirs)(1− αi+1rs)δβrs,N−3

= δrs + δβrs,N−3 + (δβrs,N−2 − δβrs,N−3)(αirs + αi+1rs)

+ (δβrs,N−3 − 2δβrs,N−2)αirsαi+1rs .

(12)

From (11) and (12) we find

crs =
N∑

i=1

cirs = Nδrs + δβrs,N−2

and

drs =
N∑

i=1

dirs = Nδrs + 2δβrs,N−2 + δβrs,N−3 .
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Explicitly

cirs =





cos2 (αirsπ/2) if βrs = N − 2

0 if βrs < N − 2

1 if r = s ,

dirs =





cos2 (αirsπ/2) cos2 (αi+1rsπ/2) if βrs = N − 3

sin2 {(αirs − αi+1rs)π/2} if βrs = N − 2

0 if βrs < N − 2

1 r = s ,

crs =





0 if βrs < N − 2

1 if βrs = N − 2

N if r = s

and

drs =





0 if βrs < N − 3

1 if βrs = N − 3

2 if βrs = N − 2

N if r = s

.

From the definitions of the ci and di matrices the following additional
properties are evident:

1. cn
i = 2n−1ci, dn

i = 4n−1di, for n ∈ Z+.
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2. The eigenvalues of ci are 0 and 2, each repeated 2N−1 times while
those of di are 0, repeated 2N − 2N−2 times, and 4, repeated 2N−2

times.

3. The ci and di matrices are singular and have trace 2N .

Returning to (6) and substituting for the matrix elements Sz
krksk

, we find,
after some algebra,

HIrs = −NJh2
z

4h2
δrs +

Jh2
z

2h2
δrs

N∑
i=1

sin2 {(ri − ri+1)π/2}

− (1− δrs)
hzJ (h2 − h2

z)
1/2

2h2
Prs + (1− δrs)

J (h2 − h2
z)

4h2
Qrs ,

where, (for r 6= s),

Prs =
N∑

i=1

cirs cos
{

(ri−1 + ri+1)
π

2

}

= δβrs,N−2 cos
{

(rk−1 + rk+1)
π

2

}

and

Qrs =
N∑

i=1

(2cirs − dirs) = 2crs − drs = −δβrs,N−3 ,

where

k =
N∑

j=1

j (rj − sj)
2 =

N∑
j=1

j
(
1− δrjsj

)
=

N∑
j=1

j sin2
{

(rj − sj)
π

2

}
.

Explicitly,

Prs =





1 if βrs = N − 2 and rk−1 = 0 = rk+1

0 if βrs < N − 2 or rk−1 + rk+1 = 1

−1 if rk−1 = 1 = rk+1
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and

Qrs =




−1 if βrs = N − 3

0 if βrs < N − 3
.

Putting the results together we finally have the matrix elements for the
Ising interaction Hamiltonian, HI , to be explicitly given by

HIrs = −NJ

4

h2
z

h2
δrs +

Jh2
z

2h2
δrs

N∑
i=1

sin2
{

(ri − ri+1)
π

2

}

− (1− δrs)
Jhz (h2 − h2

z)
1/2

2h2
δβrs,N−2 cos

{
(rk−1 + rk+1)

π

2

}

− (1− δrs)
J (h2 − h2

z)

4h2
δβrs,N−3 ,

where

k =
N∑

j=1

j sin2
{

(rj − sj)
π

2

}
.

Since Hrs = HFrs +HIrs we therefore have that the matrix elements of the
Ising model in mutually orthogonal external magnetic fields are given by

Hrs = hδrs

N∑
i=1

ri − Nh

2
δrs − NJ

4

h2
z

h2
δrs +

Jh2
z

2h2
δrs

N∑
i=1

sin2
{

(ri − ri+1)
π

2

}

− (1− δrs)
Jhz (h2 − h2

z)
1/2

2h2
δβrs,N−2 cos

{
(rk−1 + rk+1)

π

2

}

− (1− δrs)
J (h2 − h2

z)

4h2
δβrs,N−3 ,

with k as defined above.

Defining

f =
hz

h
, g =

(h2 − h2
z)

1/2

h
, f 2 + g2 = 1 ,

14



we have

HIrs = −NJf 2

4
δrs +

Jf 2

2
δrs

N∑
i=1

sin2
{

(ri − ri+1)
π

2

}

− (1− δrs)δβrs,N−2
Jfg

2
cos

{
(rk−1 + rk+1)

π

2

}

− (1− δrs)
Jg2

4
δβrs,N−3

(13)

and

Hrs = mrhδrs − Nh

2
δrs − NJf 2

4
δrs

+
Jf 2

2
δrs

N∑
i=1

sin2
{

(ri − ri+1)
π

2

}

− (1− δrs)δβrs,N−2
Jfg

2
cos

{
(rk−1 + rk+1)

π

2

}

− (1− δrs)
Jg2

4
δβrs,N−3 ,

(14)

where

mr =
N∑

j=1

rj, k =
N∑

j=1

j sin2
{

(rj − sj)
π

2

}
.

4 Example application: ground state energy
of weakly interacting spin 1/2 particles in
external magnetic fields

When the exchange integral J is small, the Ising interaction term HI can
be treated as a perturbation of HF . In this section, we employ (13) to find
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corrections, up to the fourth order in J , to the energy of the ground state
of weakly interacting spin 1/2 particles in mutually orthogonal external
magnetic fields. Since the ground state of HF , the unperturbed system,
is non-degenerate, we will apply the non-degenerate Rayleigh-Schrödinger
perturbation theory.

The following particular cases of (13) will often be useful.

HIss = −NJf 2

4
+

Jf 2

2

N∑
i=1

sin2
{

(si − si+1)
π

2

}
. (15)

In particular,

HI00 = −Nf 2

4
J . (16)

For s 6= t

HIst = −fgJ

2
δβst,N−2 cos

{
(sk−1 + sk+1)

π

2

}
− g2J

4
δβst,N−3 , (17)

where

k =
N∑

j=1

j sin2
{

(rj − sj)
π

2

}
.

In particular,

HI0t = −fgJ

2
δβ0t,N−2 − g2J

4
δβ0t,N−3 . (18)

Note also from (5) that

Er − Es = Ers = (mr −ms)h, E0s = −msh . (19)

4.1 First order correction to the energy

The first order correction to the energy of the ground state of HF is the
expectation value of the perturbation HI in the ground state |E0〉 of HF .

Thus, quoting (16), we have

E
(1)
0 = 〈HI〉|E0〉 = 〈E0|HI |E0〉 = HI00 = −Nf 2

4
J . (20)

16



4.2 Second order correction to the energy

The second order correction to the energy of the ground state of HF is
given by

E
(2)
0 =

2N−1∑
s=1

〈E0|HI |Es〉 〈Es|HI |E0〉
E0 − Es

=
2N−1∑
s=1

|HI0s|2
E0s

.

According to (18),

HI0s = −fgJ

2
δβ0s, N−2 − g2J

4
δβ0s, N−3 .

We therefore see that contributions to E
(2)
0 come only from states with

either ms =
∑

si = 1 (corresponding to β0s = N − 2) or ms =
∑

si = 2
(corresponding to β0s = N − 3 in the case when the two |ε1〉 states of the
direct product state |Es〉 are consecutive). A typical state with ms = 1 is
the state

|E2N−1〉 = |ε1〉 |ε0〉 |ε0〉 · · · |ε0〉 · · · |ε0〉 ≡ (1, 0, 0, · · · , 0, · · · , 0)

while a particular state with ms = 2 (and β0s = N − 3) is the state
∣∣∣E

3×2N−2

〉
= |ε1〉 |ε1〉 |ε0〉 · · · |ε0〉 · · · |ε0〉 ≡ (1, 1, 0, · · · , 0, · · · , 0).

Therefore
HI

0,2N−1
= −fgJ

2
and HI

0,3×2N−2
= −g2J

4
,

and since there are N vectors with β0s = N − 2 and N vectors with
β0s = N − 3, and using (19), we obtain

E
(2)
0 = −

N
∣∣∣HI

0,2N−1

∣∣∣
2

h
−

N
∣∣∣HI

0,3×2N−2

∣∣∣
2

2h

= −Nf 2g2

4h
J2 − Ng4

32h
J2 .

(21)

The results (20) and (21) were also obtained in [13].
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4.3 Third order correction to the energy

The third order correction to the energy of the ground state of HF is
obtainable from the formula

E
(3)
0 =

2N−1∑
s=1

2N−1∑
t=1

HI0sHIstHIt0

E0sE0t

−HI00

2N−1∑
s=1

|HI0s|2
E2

0s

=
2N−1∑
s=1

|HI0s|2 HIss

E2
0s

+ 2
2N−2∑
s=1

2N−1∑
t=s+1

HI0sHIstHIt0

E0sE0t

−HI00

2N−1∑
s=1

|HI0s|2
E2

0s

= S1 + S2 + S3 ,

where

S1 =
2N−1∑
s=1

|HI0s|2 HIss

E2
0s

, S2 = 2
2N−2∑
s=1

2N−1∑
t=s+1

HI0sHIstHIt0

E0sE0t

,

S3 = −HI00

2N−1∑
s=1

|HI0s|2
E2

0s

.

Note that in the above derivation we made use of the following summation
identity

M∑
s=a

M∑
t=a

fst =
M∑

s=a

fss +
M−1∑
s=a

M∑
t=s+1

(fst + fts) .

Evaluation of S1

• Contribution from states with ms = 1 (⇒ β0s = N − 2 )

HI0s = −fgJ

2
(from (18)), HIss = −Nf 2J

4
+ f 2J (from (15))

The contribution of the N states with ms = 1 to the sum S1 is
therefore

N
f 2g2J2

4

(
−Nf 2J

4
+ f 2J

)/
h2 .

18



• Contribution from states with ms = 2 (provided that β0s = N − 3 )

HI0s = −g2J

4
, HIss = −Nf 2J

4
+ f 2J

The N states with ms = 2, β0s = N − 3 therefore contribute

N
g4J2

16

(
−Nf 2J

4
+ f 2J

)/(
4h2

)

to S1.

Putting these results together we have

S1 =
Nf 2g2J2

4

(
−Nf 2J

4
+ f 2J

)/
h2

+
Ng4J2

16

(
−Nf 2J

4
+ f 2J

)/(
4h2

)
.

(22)

Evaluation of S2

S2 = 2
2N−2∑
s=1

2N−1∑
t=s+1

HI0sHIstHIt0

E0sE0t

.

In each term of the sum, one of four different scenarios is possible, namely,
ms = 1 = mt or ms = 2 = mt or ms = 1,mt = 2 or ms = 2, mt = 1. We
look at each possible situation in turn.

• Contribution to S2 when ms = 1 = mt

In this case, for each s vector, there are two possible t vectors for
which the matrix element HIst does not vanish, as typified below:

s : (0, 1, 0, 0, · · · , 0, 0) s : (0, 1, 0, 0, · · · , 0, 0)
t : (1, 0, 0, 0, · · · , 0, 0) t : (0, 0, 1, 0, · · · , 0, 0)

}
βst = N − 3 .

In such a situation,

HIst = −g2J

4
.

19



We also have

HI0s = −fgJ

2
(s 6= 0, β0s = N − 2)

and

HIt0 = HI0t = −fgJ

2
(t 6= 0, β0t = N − 2) .

Since there are N ms = 1 states, the contribution to the sum S2

when ms = 1 = mt is
(
2N · 2 · −fgJ/2 · −g2J

/
4 · −fgJ/2

)/
(−h · −2h)

= −Nf 2g4J3

8h2

• Contribution to S2 when ms = 2 = mt

As in the previous case, for each s vector, there are only two possi-
ble t vectors for which the matrix element HIst does not vanish, as
typified below:

s : (1, 1, 0, 0, · · · , 0, 0) s : (1, 1, 0, 0, · · · , 0, 0)
t : (1, 0, 1, 0, · · · , 0, 0) t : (0, 1, 0, 0, · · · , 0, 1)

}
βst = N − 3 .

In such a situation,

HIst = −g2J

4
but HIt0 = HI0t = 0 since βt0 = N − 4 .

There is therefore zero contribution to S2 when ms = 2 = mt.

• Contribution to S2 when ms = 2, mt = 1

In this case, typical situations with an s vector and the two t vectors
for which HIrs does not vanish are depicted below

s : (1, 1, 0, 0, · · · , 0, 0) s : (1, 1, 0, 0, · · · , 0, 0)
t : (0, 1, 0, 0, · · · , 0, 0) t : (1, 0, 0, 0, · · · , 0, 0)

}
βst = N − 2 .

From (17) we have

HIst = −fgJ

2
cos(π/2) = 0 ,

signifying a zero contribution to the S2 sum.
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• Contribution to S2 when ms = 1, mt = 0

Here as in the previous case we have HIst = −fgJ/2 cos(π/2) = 0,
so that again there is zero contribution to the S2 sum.
Adding all the contributions we have

S2 = −Nf 2g4J3

8h2
. (23)

Evaluation of S3

S3 = −HI00

2N−1∑
s=1

|HI0s|2
E2

0s

From (16), (18) and (19) we have immediately that

S3 =
Nf 2J

4

(
Nf 2g2J2

4

/
h2 +

Ng4J2

16

/(
4h2

))
. (24)

Finally combining (22), (23) and (24), we obtain the third order correction
to the energy of the ground state of HF as

E
(3)
0 = −7Nf 2g4J3

64h2
+

Nf 4g2J3

4h2
. (25)

4.4 Fourth order correction to the energy

The fourth order correction to the energy of the ground state of HF is
given by the standard Rayleigh-Schrödinger perturbation formula

E
(4)
0 =

2N−1∑
s=1

2N−1∑
t=1

2N−1∑
u=1

HI0sHIstHItuHIu0

E0sE0tE0u

−HI00

2N−1∑
s=1

2N−1∑
t=1

HI0sHIstHIt0

E0sE2
0t

−HI00

2N−1∑
s=1

2N−1∑
t=1

HI0sHIstHIt0

E2
0sE0t

+ H2
I00

2N−1∑
s=1

|HI0s|2
E3

0s

− E
(2)
0

2N−1∑
s=1

|HI0s|2
E2

0s

.

Calculations completely analogous to those in the previous sections, but
much more involved, give E

(4)
0 as

E
(4)
0 = −13Nf 2g6

192h3
J4 +

55Nf 4g4

128h3
J4 − Nf 6g2

4h3
J4 − Ng8

2048h3
J4 . (26)
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4.5 Approximate analytical expression for the ground
state energy per spin for weakly interacting spin 1/2
particles in external magnetic fields

Adding the energy corrections (20), (21), (25) and (26) to the ground state
energy (obtained by setting mr = 0 in (5)) of the non-interacting spin 1/2
particles in external magnetic fields we therefore find, to the fourth order
in the exhange integral, J , that the energy of the ground state, E0IF

, of
the one dimensional Ising model in mutually orthogonal external magnetic
fields, for N spin sites is given by

E0IF
≈ −Nh

2
− Nf 2

4
J − Nf 2g2

4h
J2 − Ng4

32h
J2 − 7Nf 2g4

64h2
J3 +

Nf 4g2

4h2
J3

− 13Nf 2g6

192h3
J4 +

55Nf 4g4

128h3
J4 − Nf 6g2

4h3
J4 − Ng8

2048h3
J4 ,

that is

e0

ε0

≈ 1 +
f 2

4
z +

(
g2

64
+

f 2

8

)
g2z2 +

(
7f 2g2

256
− f 4

16

)
g2z3

+

(
g6

16384
+

13f 2g4

1536
− 55f 4g2

1024
+

f 6

32

)
g2z4 ,

where e0 = E0IF
/N is the ground state energy per spin, ε0 = −h/2 and

z = −J/ε0.

Since f 2 + g2 = 1, we can also write

e0

ε0

≈ 1 +

(
1

4
− g2

4

)
z +

(
1

8
− 7

64
g2

)
g2z2

+

(
− 1

16
+

39

256
g2 − 23

256
g4

)
g2z3

+

(
1

32
− 151

1024
g2 +

161

768
g4 − 4589

49152
g6

)
g2z4 ,
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or, in a more compact form,

e0

ε0

≈ 1 +
f 2

4
z +

4∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k (g2)k+1

}
, (27)

with

c
(m)
0 =

(−1)m

2m+1
, m = 1, 2, . . . ,

c
(2)
1 =

7

64
,

c
(3)
1 =

39

256
, c

(3)
2 =

23

256

c
(4)
1 =

151

1024
, c

(4)
2 =

161

768
, c

(4)
3 =

4589

49152
.

Note that when f = 0, then

e0

ε0

≈ 1 +
1

64
z2 +

1

16384
z4 ,

in perfect agreement with the exact result for the ground state energy of
the transverse field Ising model [10]:

e0

ε0

=
(4 + z)

2π
E

[
4
√

z

4 + z

]
= 1 +

1

64
z2 +

1

16384
z4 + O

(
z6

)
,

where E is a complete elliptic integral of the second kind.

The form of (27) suggests an exact result for the ground state energy per
spin of the Ising model in external magnetic fields:

e0

ε0

= 1 +
f 2

4
z +

∞∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k (g2)k+1

}
,

where c
(m)
k are positive rational numbers, and in particular, c(m)

0 = (−1)m/2(m+1)

for m ≥ 2.
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4.6 Estimation of various order parameters for the
Ising model in mutually orthogonal external mag-
netic fields

The knowledge of e0 allows the derivation of approximate analytic expres-
sions for physical quantities such as the magnetization in each direction
and the spin-spin correlation function for neighbouring spins.

4.6.1 Magnetization

Invoking the Hellmann-Feynman rule in (1) gives for the x−magnetization

mx =
2

N

〈
N∑

i=1

Sx
i

〉

|E0IF 〉
= −2

∂e0

∂hx

= −2
∂h

∂hx

∂e0

∂hx

= −2
hx

h

∂e0

∂hx

and similar expressions for my and mz, the y− and z−magnetizations.

According to (27),

e0 ≈ −h

2
− h

8
zf 2 − h

2

4∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k

(
g2

)k+1

}
,

so that for h 6= 0 we obtain

∂e0

∂h
≈ −1

2
+

zf 2

4

+
4∑

m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k g2k

(
−(k + 1)f 2 +

(m− 1)

2
g2

)}
.

(28)

Thus for hz < h 6= 0,

mz ≈ f−z

2
f 3+

4∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k g2k

(
2(k + 1)f 3 − (m− 1)g2f

)
}

,

and for hx < h 6= 0 and hy < h 6= 0, respectively,

mx ≈ hx

h
−z

2

hx

h
f 2+

hx

h

4∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k g2k

(
2(k + 1)f 2 − (m− 1)g2

)
}
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and

my ≈ hx

h
−z

2

hy

h
f 2+

hy

h

4∑
m=2

{
zm

m−1∑

k=0

(−1)m−kc
(m)
k g2k

(
2(k + 1)f 2 − (m− 1)g2

)
}

.

Note that in the absence of interaction, (z = 0, h 6= 0), m2
x +m2

y +m2
z = 1.

4.6.2 Nearest neighbour spin-spin correlation

The spin-spin correlation, ci,i+1, is given by

ci,i+1 =
4

N

〈
N∑

i=1

Sz
i S

z
i+1

〉

|E0IF 〉
= −4

∂e0

∂J
= −4

∂z

∂J

∂e0

∂z
= −8

h

∂e0

∂z
,

yielding

ci,i+1 = f 2 + 4
4∑

m=2

{
mzm−1

m−1∑

k=0

(−1)m−kc
(m)
k

(
g2

)k+1

}
.

Note that in the absence of interaction, z = 0, we have ci,i+1 = f 2 while
h = hz gives ci,i+1 = 1.

5 Conclusion
We have given an explicit matrix representation for the Hamiltonian of
the Ising model in mutually orthogonal external magnetic fields, with ba-
sis the eigenstates of a system of non-interacting spin 1/2 particles in
external magnetic fields. We subsequently applied our results to obtain
an analytical expression for the ground state energy per spin, to the fourth
order in the exchange integral, for the Ising model in perpendicular exter-
nal fields. Since the Hamiltonian of the non-interacting spin 1/2 particles
in external magnetic fields is a Hermitian operator that lives in a 2N

dimensional Hilbert space, its eigenstates form a complete orthonormal
basis, suitable for giving matrix representations for any operator living in
the same Hilbert space and with the same conditions at the boundary.
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