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Abstract: We provide an optimal strategy to solve the n X n X n points problem inside the 

box, considering only 90° turns, and at the same time a pattern able to drastically lower down 

the known upper bound. We use a very simple spiral frame, especially if compared to the 

previous plane by plane approach, that significantly reduces the number of straight lines 

connected at their end-points necessary to join all the n
3
 dots. In the end, we combine the 

square spiral frame with the rectangular spiral pattern in the most profitable way, in order to 

minimize the difference hu(n) − hl(n) between the upper and the lower bound, proving that it is 

≤ 0.5 ∙ n ∙ (n + 3), for any n > 1. 
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1.  Introduction 

As stated by the classic nine dots problem appeared in Samuel Loyd’s Cyclopedia of Puzzles 

(Figure 1) [2], we have to “(…) draw a continuous line through the center of all the eggs so as 

to mark them off in the fewest number of strokes” [1]-[3]. However, this time we are 

considering 𝑛3 points located in a three-dimensional space. 

Thus, we will show how it is possible to join 𝑛 X 𝑛 X 𝑛 points arranged in n equidistant 

grids, formed by 𝑛 rows and 𝑛 columns each, using at most 
𝑛2+3∙𝑛

2
 straight lines connected at 

their end-points, for any 𝑛 ∈ ℕ. 
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Figure 1. The original problem from Loyd’s Cyclopedia of Puzzles, New York, 1914, p. 301. 

2.  The 𝒏 𝐗 𝒏 𝐗 𝒏 problem bounds 

The original nine dots puzzle can be naturally extended to an arbitrarily large number of 

distinct (zero-dimensional) points for each row / column [6]. This new problem asks to 

connect 𝑛 X 𝑛 points, arranged in a grid formed by 𝑛 rows and 𝑛 columns, using the fewest 

straight lines connected at their end-points. Ripà and Remirez [4] showed that it is possible to 

do this for every 𝑛 ∈ ℕ − {0, 1, 2}, using only 2 ∙ 𝑛 − 2 straight lines. For any 𝑛 ≥  5, we can 

combine a given 8 line solution for the 5 X 5 problem [11] and the square spiral frame [12].  

In [5], Ripà further extended the 𝑛 X 𝑛 result to a three-dimensional space [7] providing 

non-trivial bounds for this problem. 

For 𝑛 > 3, Ripà proved the lower bound [8] 

 ℎ𝑙(𝑛) = 𝑛2 + ⌈
3∙𝑛2−4∙𝑛+2

2∙(𝑛−1)
⌉   (1) 

and the upper bound 
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ℎ𝑢(𝑛) =

{
 
 
 

 
 
 

 

2

3
∙ 𝑖𝑚𝑎𝑥

3 + 5 ∙ 𝑖𝑚𝑎𝑥
2 − 2 ∙ (𝑛 −

14

3
) ∙ 𝑖𝑚𝑎𝑥 + 2 ∙ 𝑛

2 − 2 ∙ 𝑛 + 3

𝒊𝒇     𝑛 − 𝑖𝑚𝑎𝑥
2 − 5 ∙ 𝑖𝑚𝑎𝑥 ≤ 5

2

3
∙ 𝑖𝑚𝑎𝑥

3 + 6 ∙ 𝑖𝑚𝑎𝑥
2 − (2 ∙ 𝑛 −

43

3
) ∙ 𝑖𝑚𝑎𝑥 + 2 ∙ 𝑛

2 − 3 ∙ 𝑛 + 8

𝒊𝒇     𝑛 − 𝑖𝑚𝑎𝑥
2 − 5 ∙ 𝑖𝑚𝑎𝑥 > 5

    (2) 

Where 𝑖𝑚𝑎𝑥 is the maximum value i ∈ ℕ0 such that 𝑛 ≥ 𝑖2 + 5 ∙ 𝑖 + 4 ⤇ 𝒊𝒎𝒂𝒙 = ⌊
𝟏

𝟐
∙ (√𝟒 ∙ 𝒏 + 𝟗 − 𝟓)⌋. 

Now, we will combine the square spiral pattern with the rectangular spiral one in order to 

drastically lower down the (2) following the good average approach: we have to put our 

effort on keeping high the average number of dots joined with two or more consecutive lines 

rather than focusing ourselves on a single one. 

The method we are introducing lets us improve the (2) for any 𝑛 and the best known upper 

bound for 𝑛 > 5. On specifics, if 𝑛 = 5 we match the best outcome of the [5]. 

This time it is not so important from which plane we start, anyway we know from the 

pigeon problem how to maximize the total number of dots connected skipping form a given 

plane to another. In fact, the pigeon problem asks: “Which is the maximal value of the sum of 

the lengths of 𝑛 − 1 line segments (connected at their end-points) required to pass through 𝑛 

trail dots, with unit distance between adjacent points, visiting all of them without overlap two 

or more segments?”, and its solution is given by the sequence A047838 of the OEIS [9]. 

Thus, let we start applying the square spiral frame to a central 𝑛 X 𝑛 grid, then we move to 

an external one, then we go through 
𝑛

2
 dots (if 𝑛 is even) or 

(𝑛−1)

2
+ 1 (if 𝑛 is an odd number) 

and so on. We draw 2 ∙ 𝑛 − 5 lines for each frame and then we move to another grid, leaving 

6 central dots for the ending, when we will use the rectangular spiral pattern. In this way we 

will be able to solve the puzzle without exiting from the box, the minimal cube that contains 

all the dots, not even once. 

 

For every 𝑛 ≥ 5, the square spiral frame is as follows (Fiqure 2): 

 

Figure 2. The square spiral frame using 2 ∙ 𝑛 − 5 lines (7 X 7 grid). 
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At the end of this process, we have used 2 ∙ 𝑛2 − 4 ∙ 𝑛 − 1 lines and we need one more line 

in order to reach the starting position for the rectangular spiral pattern (Figure 3) [5]. 

 

Figure 3. The rectangular spiral pattern for 𝑛 = 5 (in red and light blue). This is the 

shortest path (length = 𝑛3 − 1 units), no crossing lines, no points visited twice, ℎ𝑢(5) = 41. 

It is pretty easy to find out that the particular rectangular spiral arrangement we have 

chosen takes a total of 11 additional lines, for a new upper bound of 2 ∙ 𝑛2 − 4 ∙ 𝑛 + 11. 

ℎ𝑢(𝑛) = 2 ∙ 𝑛
2 − 4 ∙ 𝑛 + 11      (3) 

Hence, by combining the (1) with the (3), for any 𝑛 ∈ ℕ − {0, 1}, we can say that 

𝑛2 + ⌈
3∙𝑛2−4∙𝑛+2

2∙(𝑛−1)
⌉  ≤ ℎ(𝑛) ≤ 2 ∙ 𝑛2 − 4 ∙ 𝑛 + 11    (4) 

3.  The optimal upper bound 

Looking carefully at the method described in Section 2, it is possible to discover how, as 𝑛 

grows, it would not be a good strategy to sacrifice the rectangular spiral waiting the last 11 

moves of the game. There should be an optimal value to switch from the square spiral frame 

to the final stage, in order to get the best inside the box solution of the 𝑛 X 𝑛 X 𝑛 dots puzzle. 

How many moves it is convenient to perform following the rectangular spiral path depends 

from 𝑛, keeping in mind that the best approach is to put the entire focus on maximizing the 

average number of dots connected with a large set of consecutive lines, according to the good 

average strategy that let us easily improve the previous upper bound for any 𝑛 > 6. 
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Given that we are looking for the optimal 𝑞 ∈ ℕ, the number of connected lines that belong 

to the square spiral frame, such that the (5) assumes the minimum value over the integers, we 

get two different cases depending on whether 𝑞 is even or odd. 

  𝑓(𝑞, 𝑛) =  

{
 
 
 

 
 
 

 

𝑞 ∙ 𝑛 + 𝑛 − 1 + 2 ∙ (𝑛 −
𝑞

2
)
2

𝒊𝒇     𝑞 = 2 ∙ 𝑚, ∀𝑚 ∈ ℕ − {0, 1, 2}

𝑞 ∙ 𝑛 + 𝑛 − 1 + 2 ∙ (𝑛 −
𝑞+1

2
) ∙ (𝑛 −

𝑞−1

2
)

𝒊𝒇     𝑞 = 2 ∙ 𝑚 − 1, ∀𝑚 ∈ ℕ − {0, 1, 2}

          (5) 

 𝑞𝑜𝑝𝑡(𝑛) ≔ 𝑚𝑖𝑛  { 𝑎 | ∃ 𝑞 ∈ ℕ − {0, 1, 2, 3, 4} ∶ 𝑎 = 𝑓(𝑞, 𝑛) }  

Since the (5) implies that 𝑞𝑜𝑝𝑡(𝑛) = 𝑛 for any 𝑛 ≥ 5, the optimal solution requires 𝑛 lines 

for each square spiral (Figure 4), 𝑛 connecting lines and 
𝑛2

2
− 1 or 

𝑛2−1

2
− 1 lines (respectively 

if 𝑛 is an even or an odd number) for the rectangular spiral pattern (see Table 1). Therefore, 

for a generic 𝑚 ∈ ℕ− {0, 1, 2}, the number of lines necessary to visit all the 𝑛3 dots is given 

by the (6)-(7): 

ℎ𝑢(𝑛) =

{
 
 
 

 
 
 

 

𝑛2 + 𝑛 + 2 ∙ (𝑛 −
𝑛

2
) ∙ (𝑛 −

𝑛

2
) − 1

𝒊𝒇     𝑛 = 2 ∙ 𝑚

𝑛2 + 𝑛 + 2 ∙ (𝑛 −
𝑛+1

2
) ∙ (𝑛 −

𝑛−1

2
) − 1 

𝒊𝒇     𝑛 = 2 ∙ 𝑚 − 1

  =

{
  
 

  
 

 

3

2
∙ 𝑛2 + 𝑛 − 1

𝒊𝒇     𝑛 = 2 ∙ 𝑚

3

2
∙ 𝑛2 + 𝑛 −

3

2

𝒊𝒇     𝑛 = 2 ∙ 𝑚 − 1

         (6) 

Hence, 

     𝒉(𝒏) ≤ ⌊
𝟑

𝟐
∙ 𝒏𝟐⌋ + 𝒏 − 𝟏         (7) 

   

Figure 4. The optimal square spiral frame, where 𝑞 = 𝑛, for a 7 X 7 grid. 
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Table 1: 𝑛 X 𝑛 X 𝑛 points puzzle upper bounds [7], following the square / rectangular 

spiral pattern by Figure 3 and Figure 4, for any 𝑛 ≥  5. 

n 

Best Upper 

Bound 

Currently 

Discovered 

 
n 

Best Upper 

Bound 

Currently 

Discovered 

 
n 

Best Upper 

Bound 

Currently 

Discovered 

1 / 

 

18 503 

 

35 1871 

2 7 

 

19 559 

 

36 1979 

3 14 

 

20 619 

 

37 2089 

4 25 

 

21 681 

 

38 2203 

5 41 

 

22 747 

 

39 2319 

6 59 

 

23 815 

 

40 2439 

7 79 

 

24 887 

 

41 2561 

8 103 

 

25 961 

 

42 2687 

9 129 

 

26 1039 

 

43 2815 

10 159 

 

27 1119 

 

44 2947 

11 191 

 

28 1203 

 

45 3081 

12 227 

 

29 1289 

 

46 3219 

13 265 

 

30 1379 

 

47 3359 

14 307 

 

31 1471 

 

48 3503 

15 351 

 

32 1567 

 

49 3649 

16 399 

 

33 1665 

 

50 3799 

17 449 

 

34 1767 

 

51 3951 

 

Nota Bene. The upper bounds for n = 3 and n = 4 are outside the box solutions: they are 

based on a combination of two-dimensional patterns as shown in Figure 5. 



7 

 

 

Figure 5. The outside the box solutions for 𝑛 = 3 and 𝑛 = 4  

(14 and 25 lines respectively). 

4.  Conclusion 

The research of the best solution to this problem could be the subject of another paper, 

following the same approach as above and trying to switch from the two main patterns more 

than once. 

Simultaneously, we can improve the upper limit for the 𝑘-dimensions 𝑛 X 𝑛 X…  X 𝑛 dots 

problem (𝑘 > 3) by simply defining 𝑡: = ⌊
3

2
∙ 𝑛2⌋ + 𝑛 − 1. 

Therefore, the current bounds are (Figure 6): 

⌈
𝑛𝑘+(

𝑘

2
−1)∙𝑛2+(3−2∙𝑘)∙𝑛+2∙𝑘−4

𝑛−1
⌉ + 1 ≤ ℎ(𝑛) ≤ (𝑡 + 1) ∙  𝑛𝑘−3 − 1   

   ⤇ ⌈
𝑛𝑘+

𝑘

2
∙(𝑛−2)2−𝑛2+3∙𝑛−4

𝑛−1
⌉ + 1 ≤ ℎ(𝑛) ≤ (⌊

3

2
∙ 𝑛2⌋ + 𝑛) ∙  𝑛𝑘−3 − 1     (8) 
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Figure 6. An extension of the puzzle in a four-dimensional space  

(𝑘 = 4, 𝑛 = 3; ℎ𝑙 = 41, ℎ𝑢 = 42). 

For 𝑛 > 5, the new value of 𝑡 is pretty much more accurate than the previous one (see [5]). 

With specific regard to the 𝑛  X 𝑛 X 𝑛 dots problem, we have the following difference 

between the current upper bound and the lower one (𝑛 ≥ 5): 

ℎ𝑢(𝑛) − ℎ𝑙(𝑛) = ⌊
3

2
∙ 𝑛2⌋ + 𝑛 − 1 − 𝑛2 − ⌈

3 ∙ 𝑛2 − 4 ∙ 𝑛 + 2

2 ∙ (𝑛 − 1)
⌉ ≤ ⌊

𝒏𝟐 ∙ (𝒏 − 𝟐)

𝟐 ∙ (𝒏 − 𝟏)
⌋ 

Thus, 

ℎ𝑢(𝑛) − ℎ𝑙(𝑛) ≤
𝒏∙(𝒏+𝟑)

𝟐
   (9) 

ℎ𝑢(𝑛) − ℎ𝑙(𝑛) = {Ø, 0, 0, 3}, for 𝑛 = {1, 2, 3, 4}, while, for 𝑛 ≥ 5, the gaps are (at most) 

equal to the 𝑎(𝑛) belonging to the sequence A000096 of the OEIS [10]. 

Finally, using the method decribed in this paper, for any 𝑛 ≥ 5, it is possible to solve the 

puzzle inside the box without crossing two or more lines, with only ⌊
3

2
∙ 𝑛2⌋ + 𝑛 − 1 line 

segments connected at their end-points. In fact, we can apply the square spiral starting from 

an external grid, jumping to the next one after 𝑛 lines and so on, with 𝑛 − 1 connection lines 

of unitary length (let the distance between two adjacent points be a unit) for the square spiral 

frame. At this point we will spend the (𝑛2 + 𝑛)-th line to join the central dots from the 

opposit external grid (on the other side of the box) in order to finish with the classic 

“rectangular” pattern based on (𝑛 −
𝑞

2
)
2

− 1 more connection lines of unitary length. 
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