
1 

 

Defining Temperatures of Granular Powders Analogously 
with Thermodynamics to Understand the Jamming 

Phenomena 

 

 

Tian Hao 

 

Nutrilite Health Institute 

5600 Beach Boulevard, Buena Park, CA 90621, USA 

 

 

 

Abstract 

 

 

For the purpose of applying laws or principles originated from thermal systems to granular 

athermal systems, we may need to properly define the critical “temperature” concept in granular 

powders. The conventional environmental temperature in thermal systems is too weak to drive 

movements of particles in granular powders and cannot function as a thermal energy indicator. 

For maintaining the same functionality as in thermal systems, the temperature in granular 

powders is defined analogously and uniformly in this article. The newly defined granular 

temperature is utilized to describe and explain one of the most important phenomena observed in 

granular powders, the jamming transition, by introducing jamming temperature and jamming 

volume fraction concepts. The predictions from the equations of the jamming volume fractions 

for several cases like granular powders under shear or vibration are in line with experimental 

observations and empirical solutions in powder handlings. The goal of this article is to lay a 

foundation for establishing similar concepts in granular powders, allowing granular powders to 

be described with common laws or principles we are familiar with in thermal systems. Our 

intention is to build a bridge between thermal systems and granular powders to account for many 

similarities already found between these two systems.   
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1. Introduction 

 

As we already know, thermal energy can drive an atom or a molecule’s movement in gases, 

liquids and solids. In colloidal suspensions where small particles are dispersed in a liquid 

medium, thermal energy can also drive particles movement too; such a phenomenon is called the 

Brownian motion if the particle size is smaller than 1 micron. For granular powder systems 

where there is no a dispersing medium except air staying in the interstitial spaces between 

particles, thermal energy usually is too weak to move the particles, making any contributions to 

particle movements negligible. This is one of the big differences between conventional thermal 

systems and granular powder systems. However, there are many articles demonstrating both 

experimentally and theoretically that granular materials behave like molecular thermal systems 
1
 

2
 

3 4 5 6 7
. In the article titled “Theory of Powders”, Edwards 

2
 formulated a theory of granular 

powders  anologically with the statistical mechanics and transport theories of regular thermal 

systems, and  introduced the “compactivity” concept of a similar functionality of the temperature 

in thermodynamics. This approach was futher extended to powder mixtures where the statistical 

mechanics was applied to map out phase separations 
1
, phase diagrams 

8 9
, jamming transition 

and mixing separation 
8 9

.  In Edwards’ analogous statistical mechanical approach, the roles of 

energy traditionally played in thermal systems were replaced by the free volume per particle in 

granular powders, which was found to be capable of predicting phase diagrams of jammed 

granular matter 
9
 and agreed with the experimental results 

10
. For example, the force fluctuations 

in packed beads were experimentally found to obey a simple exponential law 
11

 and can be 

elegantly predicted with similar Edwards’ approaches 
12 13

. The extended stress ensemble 

mirroring the equilibrium statistical mechanics was well applied to the deformable grains 
14 15

 for 

addressing particle packings and jamming transitions, with experimental confirmation 
16

. Not 

only the stress but also the force-tile area were argued to play an important role in addressing the 

stress distribution 
17 18

, though an angularly anisotropic orientation correlation was 

experimentally found to be critical, too 
19

. Clearly, both the experimental and theoretical 

evidences suggest that granular powders can be analogously treated with the principles or laws 

extracted from thermal systems, though the traditional temperature concept should be modified 

accordingly for granular powders.  

 

    In thermodynamics, the temperature may be expressed as: 

 

  
  

  
                                                 (1) 

 

where E is the internal energy, and S is the entropy. In the Edwards’ theory, the energy was 

replaced by the volume actually taken by the powder, V, thus Edwards’ granular temperature was 

defined as: 
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Since     indicates that the volume of power is not going to change with the entropy, the most 

compacted case, while     represents the least, Edwards called this parameter as the 

compactivity of powders. Nonetheless, Edwards’ granular temperature is not easy to be 

estimated due to the difficulty of obtaining the entropy dependence information; In addition, the 

temperature defined with Eq. (2) will acquire a different unit than the traditional temperature, not 

very intuitive to analogously utilize the thermodynamic laws. By constructing analogous entropy 

and internal virial functions in granular powders that are equivalent to the entropy and the energy 

in thermal systems, the granular temperature was defined very similarly to that in thermal 

systems as 
14

: 

 

  
 

 
 

  

  
                                           (3) 

 

again S is the entropy,   represents the internal virial equivalent to energy, and   denotes the 

pre-factor in front of   in Boltzmann distribution. This kind of temperature definition is 

frequently used in nonequilibrium thermodynamic processes 
20 21

. Although the temperature 

definitions shown in both Eq. (2) and (3) is in line with the traditional thermodynamic 

temperature definition shown in Eq. (1), maintaining the original meaning of temperature is still 

difficult, as the kinetic energy term is missing in granular powders, in contrast with that in 

thermal systems where the kinetic energy is always clearly associated with temperature. 

Experimental and numerical results have verified that this kind of temperature definition for the 

granular systems of slowly moving particles works 
9,22,23,24

.  

 

For the granular systems of fast moving particles, the granular temperatures are usually 

defined in consistent with that in ideal gases using the kinetic energy connection, 
 

 
     

 

 
   , 

where    is the Boltzmann constant, m is the mass of the particles, and v is the velocity of 

particles 
25,26,27,28

. This kind of granular temperature definition can be easily traced back to the 

conventional temperature concept in thermal systems, thus the Boltzmann equation can be 

applied to such fast moving particle systems. Nonetheless, the distribution function is found to be 

reproducible, but often not Gaussian 
29

. Undoubtedly, no matter which approaches are taken, the 

definition of granular temperature is always focused.  Properly addressing the granular 

temperature would definitely create a bridge easily connecting the traditional thermodynamic 

principles to nonequilibrium even athermal systems like granular powders. 

 

In this article, the granular temperature is defined with the second approach mentioned above, 

i.e., borrowing the exact ideas from traditional thermodynamics and utilizing the kinetic energy 

connection shown earlier. There are two reasons that this approach is preferred: First, defining 

granular temperature only in this manner may allow us to apply the fundamental Boltzmann 

distribution equation to granular powders; Second, this approach may create a simplistic route 

without introducing mystery parameters like entropy and internal energy, most time hard to be 

determined in granular systems. For avoiding any confusions and easily distinguishing granular 

powders from traditional thermodynamics systems, we may term the “temperature” in granular 

powders as the granular temperature in this article, which will be expressed as Tgp rather than Tg, 

as the latter is frequently referred to the glass transition temperature in polymeric and ceramic 

materials fields. My previous articles
 30,31

 have demonstrated that the popular powder flowability 

criteria scaled with Carr index or Hausner ratio and the rich powder flow behaviors including 
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jamming phenomena can be well understood with the aid of the properly defined granular 

temperatures via kinetic energy approaches for simple sheared granular powder systems. The 

same temperature definition approach will be further expanded to other popular granular powder 

systems like powders under a vibration shaker or free flowing on a slope. The ultimate goal is to 

find the jamming temperatures at which the granular systems start to jam in a uniform manner 

and thus the jamming phenomena can be well understood; the physical treatments of jamming 

phenomena in granular powders are thus unified with the uniformed granular temperature 

definitions across all popular granular powder flowing cases.  

  

The article is arranged as follows: We first examine if the four thermodynamic laws can still 

hold for granular powders; We then consider several common cases of granular matter and 

define granular temperatures using the kinetic energy approach across all cases with an uniform 

and consistent manner; The important jamming phenomena are discussed right after the granular 

temperatures are defined; The temperatures at jamming points are extensively addressed and 

defined consistently by assuming that the jamming is caused by particles incapable of moving 

within the half distance of the inter-particle spacing available in granular powder systems. The 

particle volume fraction thus starts to play a role in jamming phenomena and the jamming 

volume fraction equations are therefore obtained by assuming that the ratio of the granular 

temperature to the jamming temperature equals to one. The reason behind this assumption is very 

simple: if the granular temperature is analogously assumed to be the environmental temperature 

and the jamming temperature is assumed as the “solidifying” temperature in thermal systems, 

granular systems start to jam when the environmental “granular temperature is equal to the 

jamming temperature. The predictions from the jamming volume fraction equations are 

qualitatively compared with the experimental observations or results available in literature; The 

future attempts based on the newly defined granular temperatures will be discussed and the final 

summary and conclusions will be presented at the end.     

 

2. Theory 

 

2.1 Four laws of thermodynamics 

 

In thermodynamics, there are four laws generally applied to any thermal system 
32 33

. The 

zeroth law of thermodynamics states that if a thermal system A is in thermal equilibrium with a 

thermal system B and the thermal system B is in thermal equilibrium with a thermal system C, 

then thermal system A will be in thermal equilibrium with the thermal system C. The underlying 

implication is that if we want to know two thermal systems are at the same temperature, it is 

unnecessary to bring those two systems together in contact to wait for equilibration; it can be told 

by a third temperature medium-a thermometer-that can measure the temperature. Back to 

granular systems, we should be able to tell if two granular systems are in equilibrium state via a 

granular temperature parameter defined in such a way that the granular temperature has the same 

functionality as the temperature in thermal systems. The first law of thermodynamics is about the 

conservation of energy: the change of internal energy of a closed system is equal to the change of 

the heat that the system adsorbed or given off plus the work that is done on the system or by the 

system. In other words, the energy cannot be created without the expense of other forms of 

energy or destroyed without the creation of other forms of energy. This should be true for 

granular systems, too, though many granular systems have a dissipative nature due to the 
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interparticle frictional forces and inelastic collisions 
7
. The second law of thermodynamics is 

about entropy that scales the degree of disorder or a randomness of a system. The entropy should 

increase over time in an isolated thermal system, approaching to a maximum value. In granular 

systems under a vibration or a shear field, the entropy should increase with time, too, as more 

particles would participate the movements due to interparticle interactions and continuous 

application of an external excitation. The third law of thermodynamics states that the absolute 

zero temperature is unattainable, as thermal motions never can stop. Unlike an ideal gas system, 

the particles in a granular powder cannot move freely without any external mechanical 

perturbation, if they are not aerated or cannot flow by themselves due to gravity. As we know in 

ideal gas systems, the gas molecules can fly around due to the thermal energy, as the weights of 

molecules are negligible. However, in granular systems the driving force expelling particles to 

move is the external mechanical force or the gravitational force from particles themselves. The 

driving force is zero if there is no such an external mechanical force or the particles sit 

quiescently, due to the cancellation of the gravitational force of particles resulted from the 

supporting particles that hold the particles unmovable. This by no means indicates that there is 

no pressure on the wall of the container and the granular temperature is zero.  

 

Consider a granular powder sitting inside a cylinder shown in Figure 1. As indicated by 

Janssen’s equation 
34 35

, the pressure on vertical direction,   , may be expressed as: 

 

   
   

   
        

    

 
                             (4) 

 

where   is the true density of the particle material, g is the gravity constant, D is the diameter of 

the cylinder,   is the frictional coefficient between the particles and the wall of the cylinder, z is 

the depth where the pressure is considered, and K is the ratio of the horizontal pressure to the 

vertical pressure with the relationship: 

 

  
  

  
                                                                         (5) 

 

The pressure on the bottom of the cylinder should be: 

 

    
   

   
        

    

 
                                         (6) 

 

where h is the height of the powder bed. Note that the horizontal pressure at the top is equal to 

zero and at the bottom can be simply estimated with Eq. (5) and (6). Since the horizontal 

pressure is dependent on the powder depth, the average pressure may be approximately 

expressed as 

 

    
   

  
        

    

 
                                        (7) 

 

by simply adding the horizontal pressures at the top and at the bottom and then divided by two. 

The average pressure on the cylinder surfaces may be written: 

 



6 

 

    
       

 
 

        

    
        

    

 
                    (8) 

 

Note that this is just a simplified approach for giving readers an idea what is the newly defined 

granular temperature looks like, without knowing the depth or position of the particles in the bins. 

As the pressure is dependent on the depth, the granular temperature is not uniform and should 

have a gradient. I simply give an approximated average temperature for concept demonstration 

purpose. There are extensive publications on utilizing kinetic gas theory to treat granular 

powders and the theoretical treatments are aligned with experimental results 
4
 
7
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, implying that we may be able to define granular temperature analogously with kinetic gas 

theory. According to the kinetic theory of gases 
47

, the pressure of a gas may be expressed as: 

 

  
      

 

 
                                                        (9) 

 

where n is the number density of molecules,      , with N is the number of the molecules, V 

is the volume, m is the mass of a molecule, vrms is the root-mean-square velocity. In addition, the 

kinetic energy of a molecule may be expressed as: 

 

Tkmv Brms
2

3

2

1 2                                         (10)                             

 

where kB is the Boltzmann constant. Combing Eq. (9) and (10), one may obtain the relationship 

between the pressure and the temperature as: 

 

                                                            (11) 

 

Eq. (11) is the ideal gas law. If one considers the pressure expressed in Eq. (8) in granular 

systems is caused by the imaginary particle movement, then the granular temperature may be 

defined similarly as: 

 

     
        

       
        

    

 
                (12) 

 

Since granular temperature is defined analogously with the kinetic energy connection  
 

 
     

 

 
     

 , the Boltzmann constant, kB, remains the same physical meanings as in thermodynamics, 

i.e., a parameter scales the thermal energy in thermal systems with regular temperature and the 

analogous “thermal” (or kinetic) energy in granular systems with the granular temperature. Also, 

n should be a very large number,      is expected to be very small, close to zero, which seems to 

be reasonable, as at such conditions there is almost no particle movement in the system. Under 

this temperature definition, one may claim that the absolute zero granular temperature is 

unattainable, even when a whole granular system is in a stationary state, which is very similar to 

the third law of thermodynamics. In summary, the four laws of thermodynamics may be 

analogically applied to granular systems with apparently different but essentially the same 

definition of temperatures. A comparison between thermal systems and granular powders is 

given in Table 1. Note that the granular temperature is defined in the same manner as the regular 
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temperature in thermodynamics, the parameter “Q” in granular powders maintains the same 

physical meaning as in thermal systems. Again, this is the “beauty” of defining granular 

temperatures using the same approach as defining the regular temperature. Many parameters 

maintain the same meanings and the familiar thermodynamic principles can thus be applied to 

granular powders, which is the main reason that I prefer to use the kinetic energy connection 

approach to define the granular temperatures.  

 

 

Table 1, Four laws of thermodynamics in thermal systems and granular powders  

 

 Thermal systems Granular powders 

 

The zeroth law 
If            , then 

      

Same 

   
     

  

 

 

The first law 

Conservation of energy, 

         , where Q 

is heat and W is work.  

                  Same 

          

 

The second law 

Entropy tends to increase, 

     

Same 

     

 

The third law 

Absolute zero temperature 

is unattainable,     

                   Same 

      

 

 

 
 

Figure 1 A granular powder sits inside a cylinder without any movement. 

 

 

2.2  Granular temperatures of common powder flows and tapping processes 

 

Now we may turn attention to define the granular temperatures of common powder flows 

and tapping processes. They are schematically illustrated in Figure 2: a) a powder under a simple 

shear; b) a powder rolling on a slope; and c) a box of a powder under a vibration. We will start 

with the case (c), as this case is relatively complicated and was already addressed in my previous 

publication. Let’s consider a very simple granular system—a box of the volume V with many 
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spheres sitting inside as shown in Figure 2 (c).  Since the spheres have weights, they will 

generate a pressure on the bottom of the box and the sides of box, too. As shown earlier in Eq. 

(4), the pressures on the sides should differ from the total weight of all spheres. The whole box is 

fixed on a plate that can move horizontally back and forth with a vibration expressed as 

 tiLL exp0  48
, where L0 is the amplitude of vibration,  is the angular frequency, and t is the  

 

 

                                 
 

Figure 2  Granular systems under (a) a simple shear; (b) rolling by themselves on a slope; (c) 

under a horizontal vibration  tiLL exp0 .  

 

 

time. When an external vibration is not applied to the granular system, all particles are stationary 

and at this moment the granular temperature is very close to zero, as indicated in Eq. (12). The 

entropy of the whole system should be very small, too. When an oscillatory vibration is applied 

as  tiLL exp0 , the energy flow rate to the granular system may be calculated as 
49

: 

 

)()( tvtFE 


                                                (13) 

 

where F(t) and v(t) are the force and velocity at the interface, respectively. One may assume that 

MgtF )( , i.e., the force is equal to the weight of whole spheres inside the box,   
 

 
     , g 

is again the gravity constant,   is the true density of particles. The term v(t) may be assumed as a 

constant, expressed as the amplitude divided by the time within a cycle: 

 

  



 22//1
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tv                                  (14) 
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(a) Simple shear 

(c) Vibration shaker 

 

(b) Rolling on a slope 
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Please note that the vibration shaker discussed in the article is different from the regular 

mechanical vibration with a spring. If it is connected with a spring, the velocity should be time 

dependent, as the movements have to follow the Hook’s law. However, in the vibration shaker 

case, since there is no a spring attached, the velocity is thus assumed to be a constant, which is 

very close to the real situation in vibration shaker experiments. The energy flow rate from the 

vibration shaker to the granular system is thus expressed as: 

 





2

0MgL
E 


                                               (15) 

 

If the number of vibrations is assumed to be   , then the total time spent in vibration may be 

expressed below: 

 

      
 

    
  

    

 
                           (16) 

 

The total energy flowing into the powder system may be expressed as: 

 

  


E     0L                                           (17) 

 

Eq. (17) may indicate that the total energy transferred into the powder system seems to be 

independent of the frequency of vibration, and only dependent on the amplitude of vibration. 

However, please note that Eq. (16) tells  
  

 
 

 

  
, implying that    is dependent on the vibration 

frequency, thus the energy input is also dependent on the vibration frequency.  According to the 

kinetic theory of gases 
47

, the kinetic energy of a molecule may be expressed as Eq. (10). If the 

number of molecules is N, then the total kinetic energy is 

 

TNkNmvE Brms
2

3

2

1 2                             (18) 

 

As indicated earlier, there are a large number of theoretical treatments of granular flows using 

the analogy of molecular fluids via standard statistical mechanics and kinetic theory, which are 

generally in a good agreement with the experimental results 
4 7 36 37 38 39 40 41 42

 
43 44 45 46 50 51 52 53 54

. 

We thus continue to utilize the kinetic theory to analogously define the granular temperatures. 

Assume that the energy flowing to the granular system contributes to the movement of particles 

inside the box. Replacing the temperature in Eq. (18) with the granular temperature, one may 

easily reach  

 

gpBv TNknMgLE
2

3
0                                     (19) 

 

If the particles have the true density of   and radius r, then  

 

 3

3

4
rNM                                                     (20) 
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Substituting Eq. (20) into Eq. (19) and re-arranging may lead to the granular temperature of 

particles under a vibration: 

 

B

v
gp

k

ngLr
T 0

3

9

8 
                                                (21) 

 

The granular temperature defined in Eq. (21) has a unit of Kelvin, same as the regular 

temperature for thermal systems. For one micrometer sized particles of density 1 g/cm
3
 under a 

vibration,        ,            the granular temperature expressed in Eq. (21) is equal to 

1.98 10
10

 K,  a very high temperature in comparison with the temperature in thermal systems, 

However, in thermal systems the molecules or particles usually travel in sub-micrometer scaled 

distances, while in vibrated granular powder systems particles may travel in a full distance of the 

vibration amplitude, a centimeter scaled distance. The traveling distance difference between 

those two movements is approximately in the order of 10
5
~10

7
, which makes the granular 

temperature relatively on par with the conventional thermal temperature.  

 

     Note that the temperature defined above is only appropriate for granular systems with an 

external vibration excitation. If a granular system is under a simple shear as shown in Figure 2(a), 

the granular temperature should be defined differently, as the energy flowing into the granular 

system is different. Suppose that the shear stress is  and the shear rate is 


 , then the force F 

and the velocity v may be expressed as: 

 

,AF                                                           (22) 

 

where A is the area of the sample and h is the thickness of the sample. On the basis of Eq. (13), 

the injected energy flowing rate from a simple shear field may be expressed as: 

 

VAhFvE


                                         (23) 

 

where V is the volume of the granular system, 
bb NrMV  /

3

4
/ 3 ,   and b are  the 

true and bulk density of the granular powder, respectively. Using Eq. (19), the granular 

temperature of a sheared powder after a time period of t  may be expressed as: 

bB

gp
k

tr
T







3

9

8
                                              (24) 

 

Please note if the "granular temperature" is defined as the mean squared grain speed fluctuation, 

rather than the kinetic energy connection used in this article, the obtained granular temperature 

would be scaled with the square of shear rate 
55

, rather than the linear relationship shown in Eq. 

(24). Since the mean squared grain speed fluctuation is hard to estimate in granular systems and 

the total energy input is easy to obtain, I prefer to define the granular temperatures via energy 
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input.  Please keep in mind that the kinetic energy   
 

 
   , clearly shows there is a “square” 

difference between energy and speed, ultimately resulting in different shear rate dependencies of 

the defined granular temperatures; In my definition, the granular temperature should be linearly 

dependent on shear rate. Again, assuming one micrometer sized particles of true density 1 g/cm
3
, 

bulk density 0.3 g/cm
3
, under a shear field,        



      , and shearing for 5 min., 

       , the granular temperature expressed in Eq. (24) is equal to 2.02 10
8
 K,  still a very 

high temperature.  

 

     If granular spheres flow over a slope as shown in Figure 2 (b), the granular temperature 

should be defined differently, too. The force that drives spheres to move downward should be 

sinmg , where m is the mass of a sphere,  is the angle of slope. If the friction coefficient 

between the particles and the slope surface is µ, the frictional force should be        . The net 

force on a particle may be expressed as: 

 

                                        (25) 

 

According to Newton’s second law, maF  , where a  is acceleration, one may find 

 

  cossin  ga                                                      (26) 

 

The initial velocity of a sphere at the top of the slope is zero and at the time t the velocity is 

assumed to be v, thus 

 

a
dt

dv
                                                                        (27) 

 

which is the definition of acceleration.  Using the energy defined in Eq. (17), i.e., the energy is 

the energy rate multiplied by the time, leads to: 

 

                                                (28)                                         

                                               

Eq. (28) gives the energy of one single particle. For a granular powder containing N particles, the 

total energy may be expressed as: 

 

                                               (29) 

 

Using Eq. (19) again, one may obtain granular temperature for spheres on a slope  

 

    
 

   
                                               (30) 

 

For particles of radius r,   
 

 
    , so Eq. (30) may be further written as: 
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                                               (31) 

 

Assuming one micrometer sized particles of true density 1 g/cm
3
,      ,                , 

then the granular temperature defined in Eq. (31) is equal to 4.76 10
11

 K, even much higher 

temperature than the one defined in vibration conditions. Note that this definition is suitable for 

idealized conditions where there is no interparticle collisions and the particle can move freely 

under the gravitational force, which leads to a very high granular temperature. The actual net 

force and acceleration should be much smaller than that indicated in Eq. (25) and (26). If there is 

a 10% reduction in both force and acceleration due to the resistance from other particles, the 

obtained granular temperature would be 100 times smaller, which sets the granular temperature 

on par with that defined in vibration and shear cases. 

 

 

3. Particle jamming and associated temperatures 

 

Jamming is a very common phenomenon in granular powders, where particles suddenly stop 

moving due to the strong connectivity or interaction between particles in a constrained space 
9 56 

57 58 59
. There are two kinds of jamming phenomena: static jamming occurring in dense systems 

due to the spatial congestions and dynamic jamming due to the complications and competencies 

between the shearing and crowdedness in confined spaces. The jamming phenomena are very 

similar to the first order phase transition observed in thermal systems, where a liquid state 

transitions to a solid state due to the temperature drop, and the whole system changes from a free 

flow state to a solidified stationary state 
59,28,60

. However, physically the jamming acts more like 

the second order phase transitions such as glass transitions and percolation transitions. In this 

article, the jamming is defined as the immobility of particles due to the low kinetic energy (low 

granular temperature) and the spatial crowdedness (the very small free volume) in the systems. It 

would be interesting to evaluate the granular temperatures at jamming points based on the 

definitions proposed earlier. Since the granular temperature attains a very similar functionality as 

the conventional temperature, we may analogously assume that the “thermal” energy from the 

granular temperature is the source of particle motions and thus associated with particle jamming, 

too. The jamming will be defined as a phenomenon when particles are unable to travel the 

allowed free distance on the basis of free volume in a granular system. The interparticle spacing 

(IPS) of a granular powder may be expressed as 
61,62

: 

 

           
 

-                                                      (32) 

 

where    is the maximum packing fraction,   is the particle volume fraction, and   is the 

particle radius. At a free flowing un-jammed state, particles are supposed to have the energy 

capable of travelling the full distance shown in Eq. (32). However, at jammed states, particles 

don’t have sufficient energy and are assumed to be capable of “vibrating” within the half of the 

distance expressed above. Note that the IPS equation above is derived on the basis of 

Kuwabara’s cell model 
63

 and the half the IPS distance means that there is a great extent of 

virtual cell overlap between two particles, implying that these two particles touch each other.  

Under such a definition of jamming state, the energy required for N particles to move a half the 

IPS distance may be expressed as: 
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             -                                                (33) 

                                         

where    is the particle volume fraction when particles are jammed. According to Eq. (18), the 

energy shown in Eq. (33) should be equal to the kinetic energy for particles, which has been used 

in this article many times for defining the granular temperatures. Therefore, the granular 

temperature at jamming points may be expressed as: 

 

   
           

 
-   

   
                                                  (34) 

 

where    is the granular temperature at a jamming point. Since   
 

 
     by definition, Eq. 

(34) may be further written as: 

 

   
            

 
-    

   
                                              (35) 

                                        

Since    is only related to the packing structure for mono-dispersed particle systems 
56,64

, one 

may infer that jamming transition temperature is dependent on the true density of the particulate 

materials, the radius of the particles, and the particle volume fractions at jamming points. For 

obtaining an intuitive idea how jamming transition temperatures change with the particle volume 

fractions at jamming points, we schematically plot Eq. (35) against both particle volume fraction 

at jamming points and particle radii in Figure 3, under assumption that  =1 g/cm
3
 for typical true 

density of polymer materials, 
         for cubic or hexagonal close-packed systems. The 

jamming temperature generally decreases with the increase of particle volume fractions at 

jamming points and are strongly dependent on the particle sizes. There are several orders of 

magnitude difference among the jamming temperatures when the particle sizes only increase 10 

times. This is probably due to the fact that the jamming temperatures are directly proportional to 

the 4
th

 powers of the particle radius as indicated in Eq. (35).  When the particle volume fractions 

at jamming points approach the maximum volume fraction, the jamming temperatures quickly 

drop to a very low temperature, regardless if the particle sizes are large or small. Such low 

jamming temperatures thus imply that whole granular systems are fully jammed and solidified. 

We may analogously call them “frozen points” as observed in thermal systems, and every 

particles are locked at certain sites without any movement. This is the beauty of defining 

granular temperature analogously and consistently using the kinetic energy connections, where 

both granular temperature and traditional temperature attain a similar physical meaning and thus 

granular temperature is easily to be comprehended. Another apparent benefit is that we may 

possibly employ the theoretical framework like Eyring’s rate process theory and free volume 

concept originated from thermal systems to treat granular powders, unifying both systems with a 

single approach. In addition, Fig.3 shows small particles tend to jam at very low granular 

temperatures, which is understandable and consistent with practical observations: large granules 

usually flow much better than small particles. When particles become smaller and smaller, 

interparticle forces become more important and particles tend to aggregate or bridge very easily, 
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resulting in very poor flowability.  As one may tell, for particles of radius about 0.1 micron, the 

jamming transition temperature is little below one Kelvin, an extremely low temperature. 

 

 
 

 

Figure 3, Jamming transition temperature vs. the jamming volume fractions and particle radii 

based on Eq. (35), under assumption that  =1 g/cm
3
,
        . 

 

While in comparison with 10 micron sized particles the jamming happens at a very high 

temperature, about 10
7
 K. This mainly results from the fact that the jamming temperature is 

defined if the external energy that drives particles to move can overcome the weight of particles 

over a certain distance in granular systems. This prediction seems to qualitatively agree with the 

experimental observation on the superheating phenomena of monodispersed metal beads of 

diameter 3.15 mm reported in literature 
6
: Under a vigorous vertical shaking, a hexagonal closed 

packed crystal structure was observed and eventually melted away (or called evaporate in the 

literature) after a period of time. As stated earlier, a granular powder under a vibration may have 

a very high granular temperature. Based on Eq. (21), the granular temperature of such a metal 

beads system is in the order of 10
20

 K, and also, it is time dependent. Longer time vibrations will 

create higher granular temperatures, which could be the reason that the crystal structure was 

finally evaporated after a relatively long vibration. For particles of size about 0.1 micron, 

jamming should happen at much lower granular temperatures about one Kelvin based on Fig. 3. 

Such a low granular temperature may correspond to a quiescent state where no apparent motions 

are obviously detected.  In reality, submicron or nanometer sized powders of low densities 

typically tend to have a very poor flowability and easily form arching structures 
65,66

.  The newly 

defined granular temperatures seem to agree well with the empirical observations.  

 

It would be valuable to explore at what conditions jamming could happen by simply 

using the granular temperatures defined earlier at several common cases divided by the jamming 

granular temperature defined in Eq. (35). The ratio equal to one gives the jamming conditions for 

particular granular systems. For a simple shear case shown in Figure 2 (a): 

 



15 

 

   

  
 

    

        
 

-      

                                              (36) 

 

Thus one may easily get: 

 

   
         

            
 

  

                
                             (37) 

 

Eq. (37) defines the conditions that the jamming happens at a simple shear case. It clearly tells 

that the particle volume fractions at the jamming points are dependent on the shear stress, shear 

rate, and surprisingly the radius of the particles. For illustrative purpose,    is plotted against    

and particle size over a wide range and shown in Figure 4, under the assumption that        , 

           , t=60 s,     Pa. Note that there are two regions where    is insensitive to 

shear rates, very high shear rates above 10
1 

s
-1 

(blue area) and very low shear rates below 10
-5

 s
-1 

(red area).  In the shear rate regime between 10
-5

-10
1
 s

-1
,    dramatically increases with the 

decrease of shear rates. In other word, the jamming may happen at lower particle volume 

fractions when the shear rate increases, which is consistent with experimental observations 
57,67

. 

When the shear rate is smaller than 10
-5

 s
-1

, the system may only jam at high particle volume 

fractions; when the shear rate is about 10
-5

 s
-1

, the volume fractions at jammed points become 

lower and lower under higher and higher shear rates. The system starts to completely jam when 

the shear rate is about 10
1
 s

-1
. The big drop between 10

-5
-10

-2 
s

-1
 may indicate that a shear 

induced structure change happens in this area. These two regions are very similar to the “fragile 

states” and “shear-jammed states” observed experimentally 
57,67

,   

 

 
 

Figure 4, The particle volume fraction at the jamming points,    , is plotted against the shear 

rate,   , and particle size, r,  from Eq. (37) under the assumption that        ,    
         , t=60 s,     Pa.  
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where the “fragile states” correspond to a strong network structure percolated in one direction 

and the “shear-jammed states” correspond to a strong network percolated in all directions. Back 

to Figure 4, the “fragile states” is somewhat similar to the big fall region between 10
-5

-10
1 

s
-1

, 

while “shear-jammed states” is the region where the shear rate is above 10
1
 s

-1
.  The qualitative 

agreement with the experimental observation may imply that the granular temperature defined in 

a consistent manner with the conventional temperature in thermal systems actually works.  

 

       The particle radius has a clear impact on the jammed volume fraction, too, based on Eq. (37) 

and Figure 4. Smaller particles can only jam at lower shear rates and melt at higher shear rates; 

Large particles won’t jam at lower shear rates, unless the particle volume fractions are close to 

the maximum packing fraction. According to Eq. (37), the jamming volume fraction can be very 

small when the shear rate is very high, but never can be zero. In stationary conditions, the 

jamming can only occur in dense systems. However, Eq. (37) is again for dynamic systems under 

a continuous shear rather than stationary systems.  What Fig.4 tells us is that jamming may occur 

at low particle volume fractions if shear rates are high, which is quite similar to shear thickening 

phenomena observed in colloidal suspension systems. When the particles have a size in micron 

ranges, the jamming can happen in a very wide shear rate range from 10
-6

 to 10
2
 s

-1
 no matter 

what particle sizes are. In other words, high shear rates would possibly induce jamming easily. 

When particle volume fractions are close to the maximum packing fraction, particles may always 

jam no matter that they have a large or small particle size. Since there are two regions insensitive 

to shear rates, shear rates may not be a dominate factor in jamming process.  

 

      Shear stress may play a critical role in jamming process. The particle volume fraction at the 

jamming points,    , is plotted in Figure 5 against shear stress and  particle radius, r, under the 

assumption that        ,             , t= 60 s, and   = 0.5  s
-1

. As one may tell, particle 

volume fractions at jamming points are strongly dependent on both shear stress and particle size. 

At low shear stress and large particle size regions, granular systems may only jam at very high 

particle volume fractions close to the maximum packing fraction; with the increase of shear 

stress, granular systems may jam at lower and lower volume fractions, implying that the shear 

induced thickening phenomena occurs, if shear stress is high enough. Comparing Figure 5 with 

Figure 4, one may easily find that, at very low shear rates about 10
-8

 s
-1

, granular systems are 

only going to jam when particle volume fractions are close to the maximum packing faction, no 

matter what the particle sizes are. This seems to contradict with what is shown in Figure 3, where 

jamming temperatures are strongly related to particle sizes. The discrepancy may result from low 

shear rates about 10
-8

 s
-1

 and especially, low shear stress 1 Pa assumed in the calculation. In 

reality, we may be unable to apply such a weak shear field to granular systems and anticipate to 

drive particle movements.  In contrast, particle volume fractions at jamming points are 

continuously changing with particle sizes in Figure 5 under a wide shear stress range. Although 

large particle sizes correspond to high jamming temperature, a strong shear stress could “cool 

down” granular systems and thus they can jam at relatively high granular temperature based on 

Eq. (35) and (37). For better demonstrating the roles of both shear stress and shear rate in 

jamming process, the particle volume fractions at jamming points are plotted against both shear 

stress and shear rate in Figure 6. At very high shear stress like 10
3
 Pa, shear rate seems unable to 

control when jamming is going to happen and everything is dominated by the shear stress: 

granular systems could jamming at very low particle volume fractions irrelevant with shear rate; 

at very low shear stress like 10
-3

 s
-1

, there are two distinctive regions against shear rates: 
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jamming at either low or high shear rates but independent of shear rate, and a narrow transition 

“fragile” region in the middle. Clearly, one may reach a conclusion that jamming actually is  

 

 

 
 

Figure 5, The particle volume fraction at the jamming points,    , is plotted against shear 

stress   and the particle radius, r, obtained from Eq. (37) under the assumption that        , 

            , t=60 s, and      = 0.5 s
-1

.  
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Figure 6, The particle volume fraction at the jamming points,    , is plotted against shear 

stress   and shear rate, obtained from Eq. (37) under the assumption that        ,    
         , t=60 s, and particle size r =10

-5
 m.  

mainly dominated by the shear stress, rather than shear rate, which is consistent with 

experimental observations
 57,68

. 

 

Similarly, one may find the jamming volume fraction conditions for granular powders 

under a vibration. Replacing    with Eq. (16), using Eq. (21) divided by Eq. (35) and assuming 

that it equals to 1 leads: 

 

 
   

  
 

     

           
 

 -  
                               (38) 

 

Thus the particle volume fraction at jamming points may be expressed as: 

 

   
   

                
                                     (39)                          

 

Eq. (39) indicates that the particle jamming volume fractions are dependent on the amplitude and 

frequency of the vibration, the time, and the particle radius. For clearly illustrating the 

relationship among   , vibration amplitude, particle radius, these parameters are plotted in  

 

 
 

Figure 7, The particle volume fraction at the jamming points,    , is plotted against the particle 

radius, r, and vibration amplitudes from 10
-2

 to 10
-6 

m, obtained from Eq. (39) under the 

assumption that        ,            , t=60 s.  

 

Figure 7 based on Eq. (39) under the assumption that        ,            , t=60 s. 

Particles tend to easily jam at very low particle volume fraction at most regions, the blue area; 
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Particles of larger sizes tend to jam at very low vibration amplitudes if particle volume fractions  

are high enough, close to maximum packing fraction. Comparing Figure 7 with Figure 5, one 

may come to the conclusion that vibration amplitude performs similarly as shear stress in 

shearing case.   Consider a granular system initially unjammed due to low particle volume 

fractions below jamming points: when the vibration amplitude increases, particles tend to jam at 

lower particle volume fractions and the system would finally reach the jamming point; further 

increase of vibration amplitude would keep the system jammed all the time, unless vibration can 

cause particles be dispersed in a larger space and the particle volume fraction is lowered. Once 

the particle volume fraction become below the jamming volume fraction, the jammed particles 

start to melt and would jam again under further increase of vibration amplitudes. This “melt-jam” 

meta-stable region could span a large region as demonstrated in Figure 7. Since the vibration 

frequency stays at the identical position as the vibration amplitude in Eq. (39), a very similar 

dependency of the jamming particle volume fractions on the vibration frequency is expected, i.e., 

high vibration frequencies may melt the jammed particles, too. In industries, vibration conveyors 

with controllable amplitudes and frequencies are frequently employed to transport granular 

powder materials. The results expressed in Eq. (39) and demonstrated in Figures 7 seem to be 

consistent with the empirical practical solutions of transporting powders that have been used for 

a long time. For clearly demonstrating the role of vibration frequency, particle volume fractions 

at jamming points is plotted in Figure 8 against vibration amplitude and frequency under 

assumption that the assumption that        ,          , t=60 s. Vibration amplitudes 

cannot effectively lower jamming volume fraction until they are high enough, more than 10
-3

 m 

in Figure 8. In contrast, vibration frequency seems to have more pronounced impact on the 

jamming volume fractions, bringing it down to a lower volume fraction even at low frequency; 

the effect is even more dramatic when vibration amplitudes are high. However, note that these 

two distinctive regimes are independent of shear rate: in both red and blue areas, the particle 

volume fractions at jamming points don’t change with shear rate, and the change only happens in 

transition regime of shear rate dependence. Vibration frequency functions comparably to shear 

rate, as demonstrated clearly in Figures 4 and 8. Again, jamming seems strongly dependent on 

vibration amplitude and the particle radii, which is similar to what is demonstrated for granular 

powders under shear.   

 

     It should be interesting to see how the vibration time would impact the jamming particle 

volume fractions, as longer time means more energy flowing into the systems, as indicated in Eq. 

(21). Figure 9 shows the particle volume fractions at the jamming points,    , plotted against the 

vibration time and the vibration amplitudes from 10
-6

 to 10
-2 

m, obtained from Eq. (39) under the 

assumption that        ,            , r= 10
-3

 m. Again, the particles may jam at the very 

beginning of the vibration when particle volume fractions are high enough. If particle volume 

fraction is much lower than the maximum packing fraction at the beginning, the system may 

remain at unjammed state, but quickly enter into “melt-jam” regime with longer vibration time. 

At lower vibration amplitudes, the system remains unjammed for a relative long time, while at 

high vibration amplitudes, jamming may happen in much faster paths at lower particle volume 

fractions. Again, particle sizes could play a role in determining where the jamming points are. 

Figure 10 shows particle volume fractions at the jamming points,    , plotted against the 

vibration time and particle radii from 10
-6

 to 10
-2 

m, obtained from Eq. (39) under the assumption 

that        ,            , L0=10
-4

 m. At such a small vibration of amplitude 10
-4

 m, 

particle sizes are critical: at the beginning of vibration, jamming occurs at low particle volume 
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fractions when particles are small, or at high particle volume fraction when particles are large. 

Even for large particles, jamming still may happen at low particle volume fractions after vibrated  

 

 

 
Figure 8, The particle volume fraction at the jamming points,    , is plotted against the vibration 

amplitude and frequency, obtained from Eq. (39) under the assumption that        ,   
       , t=60 s.  

 

 

 

 
Figure 9, The particle volume fraction at the jamming points,    , is plotted against the vibration 

time and vibration amplitudes from 10
-6

 to 10
-2 

m, obtained from Eq. (39) under the assumption 

that        ,            , r=10
-3

 m.  
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for a long time. If there is no change on particle volume fraction during vibrations, granular 

systems eventually would remain at jammed state; however, in a long time vibration particles 

either pack more tightly of a high particle volume fraction at gentle horizontal vibration 

condition, or tend to take more space of a low particle volume fraction at wild vertical vibration 

condition. The former will lead to jamming and the latter will lead to evaporation at the end. The 

“melt-jam” process would dominate in between, and jammed/melted structures may co-exist in 

the system. Again, those speculations are consistent with experimental observations reported in 

literature 
6
, where the crystalline structure was observed at the very beginning of a vertical 

vibration and quickly melt later with a continuous vibration. This issue will be addressed in 

detail in next section.  

 

 

 
Figure 10, The particle volume fraction at the jamming points,    , is plotted against the 

vibration time and particle radii from 10
-6

 to 10
-2 

m, obtained from Eq. (39) under the 

assumption that        ,            , L0=10
-4

 m.  

 

     Following the same logics and procedures described previously, one may easily obtain the 

particle volume fraction at jamming points for particles rolling on a slope: 

 

   
   

   
   

 
             

                                           (40) 

 

and the particle volume fraction at jamming points for particles sitting inside a cylinder without 

any movement: 

 

   
   

   
       

       
        

    

 
   

                                 (41) 
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where    
     

  
, is the real particle volume fraction excluding all interstitial empty spaces in 

the cylinder,       . Readers are encouraged to explore the relationships among the particle 

volume fractions at jamming points and other related parameters under those two cases.  

 

4. Experimental comparisons 

 

Experimental evidences related to jamming process have been mentioned occasionally in 

previous section for a quick qualitative comparison.  In this section, the predictions inferred from 

newly defined granular temperatures and the particle volume fractions at jamming points will be 

compared more intensively with experimental results available in the literature. The fundamental 

questions important to the jamming process will be addressed for validating the new approach 

employed to treat the jamming process in this article. Three popular phenomena, crystal structure 

evaporation under a vertical vibration, shear weakening during constant volume shearing, and 

shear jamming, are chosen from literature and discussed below.   

 

First, let’s turn our attention to crystal structure evaporation under vibration observed in 

literature 
6
. In this article

6
, 720 steel beads of radius 1.58 10

-3
 m was poured on a Plexiglas 

hexagonal container for obtaining a hexagonal closed packed monolayer; this container was 

placed on a shaker to vertically vibrate for observing the packing structure change; the volume 

fraction of steel beads is 0.87, and the maximum packing fraction of 2D hexagonal monolayer is 

about 0.91, leaving a sufficient free room for steel beads to move. We will use these 

experimental parameters to map out the phase transitions based on Eq. (39).  Figure 11 shows 

volume fractions at jamming points against vibration amplitude and vibration time computed 

 

 
 

Figure 11, The particle volume fraction at the jamming points,    , is plotted against the 

vibration time and vibration amplitudes from 10
-6

 to 10
-2 

m, obtained from Eq. (39) under the 

assumption that        ,               or 60 Hz,  r=1.5810
-3

 m. All these parameters 

are taken from the literature 
6
.  
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with Eq. (39) with the parameters given in the literature 
6
. At the beginning when both vibration 

amplitude and time is small, this system tends to form jammed structures; the particle volume 

fraction is 0.87, very close to the maximum packing fraction, 0.91. A crystallized hexagonal 

structure is thus anticipated, which is observed experimentally; when the vibration amplitude is 

about 10
-3

 m, the system is in “melt-jam” transition region; however, since the system is vibrated 

vertically without a cover, the beads may jump out of the 2D container and completely 

“evaporate”. The evaporation starting time points at vibration amplitude 10
-3

 m, from Figure 10, 

are about several hundred milliseconds, which is again in line with the experimental observation. 

Figure 11 also predicts at very low vibration amplitude below about 210
-6

 m, the hexagonal 

crystal structure will remain intact within the time of one second. A phase diagram against 

vibration amplitude and frequency is presented in Figure 4 of the literature
 6

; for comparison,the 

volume fraction at jamming points is plotted against vibration amplitude and frequency in Figure 

12, which is  amazingly similar to experimental phase diagram. Let’s focus on amplitude region 

between 10
-4

 ~10
-3

 m that is shown in the phase diagram in literature
 6

: at very low vibration 

frequency below about 40 Hz, the system is in “melt-jam” transition state, both “gas” and 

“crystal” phases co-exist in the system; Above 40 Hz, the system tends to jam all the time even 

at very low volume fraction, i.e., the system enters into “superheated” crystal state; with the 

increase of vibration amplitude, the “superheated” crystal may appear at lower frequency range 

below 40 Hz, as suggested in Figure 12, which is not presented in literature 
6
 and needs to be 

confirmed experimentally in the future. In a word, we have to say that our predictions agree very 

well with the experimental observations. Since the newly defined granular temperatures are  

 

 

 
 

Figure 12, The particle volume fraction at the jamming points,    , is plotted against the 

vibration frequency from 0.1 to 100 Hz and vibration amplitudes from 10
-6

 to 10
-2 

m, obtained 

from Eq. (39) under the assumption that        ,  t =     ,  r=1.5810
-3

 m.  All these 

parameters are taken from the literature 
6
.  
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proportional to the shearing time, it is easy to understand why the jammed crystal structure is 

“destroyed” and finally “evaporated” with vibration time, naturally due to higher and higher 

granular temperatures.    

 

Shear-weakening phenomena is observed in beach sand systems in a torsional shear cell
 69

 

under constant volume shear condition. The beach sand has a bulk density 1.73 g/cm
3
 and 

particle sizes ranging from 47 to 2000 micron determined with Beckman-Coulter Particle size 

analyzer. The sample was sheared for about 510 seconds under two conditions: constant volume 

and constant pressure. Shear-weakening phenomena was observed in constant volume shear 

condition. Although the whole system is not jammed, we may still use the volume fraction at 

jamming points to estimate if high shear stress is induced, under an assumption that even just 

partially jammed systems may generate high shear stress. Figure 13 shows the volume fraction at 

jamming points vs. shear rate and particle size under the assumption that        ,         

g/cm
3
, a typical bulk density for beach sand, t =     , shear stress   10

-2
 Pa. These parameters 

are taken from the literature 
 69

.  Take the particle sizes about 10
-4

 m as an example, if the sample 

is sheared from high to low shear rate, the sample may go through from a fully jammed state at 

very low particle volume fractions, a transition region of typical “jam-melt” process, and a later 

fully fluidic state where jamming may only happen at very high particle volume fractions that are 

unachievable in current beach sand systems. The transition regions could be the weakest, as the 

jamming may only occur at higher particle volume fractions and the system basically remains  in 

“melting” state, as the volume is fixed and the particle volume fractions are well below jamming  

 

 

 
 

Figure 13, The particle volume fraction at the jamming points,    , is plotted against the shear 

rate and particle size, obtained from Eq. (37) under the assumption that        ,         

g/cm
3
, the bulk density for beach sand,  t =     ,  shear stress   10

-2
 Pa. All these parameters 

are taken from the literature
 69

.  
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points. This scenario is qualitatively consistent with experimental observations: from high to low 

shear rate the measured shear stress steeply goes through a dip at very high shear rate regions, 

arises up gradually at middle shear rate regions, and levels off at low shear rate regions.  

 

Shear jamming phenomena were experimentally observed in suspensions of dense cornstarch 

particles dispersed into a density-matched solution of water, glycerol and CsCl without any 

change of packing fraction
 68

. Let’s first examine how shear rate will impact jamming 

phenomena. The predicted volume fraction at jamming with Eq. (37) is plotted in Figure 14 

against both shear rate and particle size under a small shear stress, 10 Pa. The maximum packing 

fraction is assumed to be 0.74, the bulk density of cornstarch particles of particle size about 20 

micron is 0.673 g/cm
3
 and shearing time is only 60 ms, based on the experimental data shown in 

the literature 
 68

.  Unless experiment can be performed at a very wide shear rate range from 10
-8

 

to 10
2
 s

-1
, jamming will be considered independent of shear rate, as only two distinctive shear 

regions with a very narrow transition area is predicted in Figure 14; in both distinctive regions, 

particle volume fractions at jamming points are independent of shear rate The “jam-melt” 

transition region is greatly shifted with the increase of particle sizes and therefore mostly 

dominated by particle sizes rather than shear rate; Shear rate could induce jamming at lower 

particle volume fraction, but this effect quickly diminishes with the increase of particle sizes. 

Therefore, it would be reasonable to say that jamming is mainly dominated by particle volume 

fraction and particle size. Figure 15 shows the volume fraction at jamming points vs. shear stress 

and particle size under conditions that        ,          g/cm
3
, t =      , shear rate    10 

s
-1

, which are taken on the basis of the literature
 68

. As one may easily tell, predicted volume 

fractions at jamming points are strongly dependent on both shear stress and particle size. When 

shear stress goes from 10
-2

 to 10
5
 Pa, the volume fraction at jamming points slowly move from 

high to low, implying that shear jamming could occur at lower particle volume fractions; Unlike  

 
 

 

Figure 14, The particle volume fraction at the jamming points,    , is plotted against the shear 

rate and particle size, obtained from Eq. (37) under the assumption that        ,          

g/cm
3
, t =      ,  shear stress   10 Pa. All these parameters are taken from the literature

 68
.  
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what we see in Figure 14 where the volume fraction at jamming points doesn’t change with shear 

rate for several orders of magnitudes at both low and high regions, the shear stress induced 

jamming process is continuous until the system hits the fully jammed state. Comparing Figure 15 

with the phase diagram shown in Figure 3e of the literature
 68

, one may find similarities between 

these two figures: the blue area at high shear stress and low particle size regions corresponds to 

fully jammed regime, the steep fragile “jam-melt” region corresponds to the “discontinuous 

shear thickening” regime, the less steep fragile “jam-melt” region corresponds to the “shear 

jamming” regime, and the narrow flat region at low shear stress and large particle size 

corresponds to Newtonian regime. Note that particle sizes may have a similar impact as shear 

stress, if particle sizes can be varied several orders of magnitudes, from 10
-8

 to 10
-3

 m. This is a 

little surprising, as intuitively jamming should be dependent on packing fraction and independent 

of particle sizes. Particle size dependence could be understood in this picture: in current article 

granular temperature is defined to be strongly related to particle size and the jamming is defined 

on the basis of granular temperature; The onset shear stress for inducing discontinuous shear 

thickening could be considered as energy need to break down the lubrication between particles, 

identical to the reduction of free volume available in the system, where the interparticle spacing 

comes to play a role and this is how the jamming temperature is defined previously. Such a 

prediction is consistent with experimental observation that shear jamming is induced by shear 

stress rather than shear rate, due to the energy or free volume requirements for granular 

temperature.   

 

 

 
 

Figure 15, The particle volume fraction at the jamming points,    , is plotted against the shear 

stress and particle size, obtained from Eq. (37) under the assumption that        ,    
      g/cm

3
, t =      ,  shear rate    10 s

-1
. All these parameters are taken on the basis of the 

literature
 68

.  
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5. Discussion  

 

I would like to emphasize that the current article simply is an extension of my two other 

articles published recently
 30,31

 . The reference 
30

 is a communication and the reference 
31

 is the 

full paper of that communication. As you may tell, the approach of defining granular 

temperatures with the kinetic energy connection 
 

 
     

 

 
     

   was already employed in 

these two articles for granular powders under a simple shear case, and the theoretical predictions 

built on this granular temperature are consistent with the empirical powder flowability criteria 

and even with the experimental data. Such amazing agreements prompt me to apply the same 

approach of defining granular temperature to other common situations like particles rolling on a 

slope and particles under a vibration shaker, which are the main topics of current paper. 

Furthermore, since the granular temperature is re-defined for granular powders, the 

corresponding “thermodynamics” for athermal systems is examined against the standard 

thermodynamics; The very common and rich jamming phenomena observed in granular powders 

is therefore addressed with the new granular temperature definitions for validating the new 

concepts and approaches proposed in this article, and most importantly providing some new 

insights on these complicated phenomena. Those three articles should be read through together 

and they gradually become much deeper and wider in sequence.  Nonetheless, the approach used 

to define the granular temperature is same in principle across all three articles. In addition, I 

would like to emphasize that the approach used in these three articles to analogously define the 

granular temperatures is not originated by me and have been employed in many publications.  I 

have simply borrowed the ideas from those excellent publications and extended further in my 

articles. Anybody questioning this approach should read the original literature first. 

 

Among many approaches of defining granular temperatures briefed in the “Introduction” 

section in this manuscript, I personally think that the kinetic energy connection approach is the 

best, as such an approach may allow us to employ the well established thermodynamic principles 

to treat the complicated granular powder materials. For ideal gas systems, the pressure is 

generated from the kinetic movements of gas molecules. To keep self-consistency, the pressure 

generated from granular powders should be analogously treated as resulted from the kinetic 

energy of particles. Eq. (12) is obtained under such an assumption with the consistent kinetic 

energy connection approach, rather than simply replacing the usual pressure with Janssen’s 

equation. I have to say that Eq. (12) is not obtained with uncertain assumptions; rather it is 

derived with the same kinetic energy connection 
 

 
     

 

 
     

 that is the foundation of 

thermodynamics and has been used in granular powder systems for many years.  

Someone may argue that, according to Eq. (10) a good definition of granular temperature should 

vanish for an immobile packing of particles. However, per Eq. (9) the pressure is induced from 

the kinetic energy and we also know for sure that the pressure in granular powders is not zero. 

For keeping consistent with the granular temperature definitions using the kinetic energy 

approach, I have no choice but to come up Eq. (12), though the obtained granular temperature 

should be very close to zero.  

 

The granular temperatures defined in Eq. (21), (24), and (30) are obtained under dynamic 

rather than stationary conditions. Eq. (21) is for granular powders under a continuous vibration 

shear, Eq. (24) is for granular powders under a continuous simple shear, and Eq. (30) is for the 

granular powders continuously rolling on a slope. The granular temperatures are defined on the 
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continuous energy inputs into the systems, thus the time should be a critical parameter in the 

definition. After the granular temperatures are defined analogously with thermodynamics using 

the kinetic energy connection approach, particles may represent the very fundamental "atoms" of 

the thermal systems and thus thermodynamic principles can be applied to granular non-thermal 

systems. The goal of this article is to validate this approach and to see what predictions can be 

obtained. As indicated earlier, this approach is not originated by me and the success has been 

demonstrated in my recent four publications, ref.
 30,31,62,70

.  Since the granular temperatures are 

defined with the kinetic energy rather than the mean squared grain speed, the statistical 

framework is therefore not addressed in this article.  

  

Although my article focuses on the jamming transition at dynamic conditions, the obtained 

equations are suitable for static jamming, too. Take Eq. (37) as an example, if there is no 

shearing and thus shear rate is zero, then the jamming volume fraction equals to the maximum 

packing fraction, which is very true at stationary conditions. The friction doesn’t enter my 

description is because the jamming is defined as the immobility of particles due to the low 

kinetic energy or low granular temperature and the spatial crowdedness or the very small free 

volume in the systems. Microscopic frictional interactions are therefore not considered in my 

article. 

 

As one may know, granular powders are athermal systems, utilization of thermodynamics 

and statistical mechanical theories extracted from conventional thermal systems to treat granular 

powders are found to be in good agreement with experimental results 
12,28,62,70

. We thus examine 

the applicability of the four laws of thermodynamics on granular powder systems, and define 

granular temperatures for several granular powder systems in an analogous manner. The key 

point is to define the temperatures in granular powders through the kinetic energy connection 

with temperature, as shown in ideal gases. The main goal is to establish an approach that can 

facilitate easy applications of thermodynamic principles to granular powder systems. Such 

attempts have been made before for addressing both wet particle systems like colloidal 

suspensions and dry particle systems like granular powders. For examples, Hao 
61

 has 

successfully used the Eyring’s rate theory 
71

 and the free volume concept for obtaining the 

viscosity equations of colloidal suspensions and polymeric systems with substantial 

modifications; A very similar theoretical approach is successfully employed to derive the two 

popular empirical tap density equations, the logarithmic and stretched exponential equations 
62,70

. 

All these successes evidenced in literature imply that both thermal and athermal systems can be 

well described with common thermodynamic principles. What we need is a bridge that can build 

up a uniform connection between those two systems. This article represents the first attempt in 

this direction and further refinements are expected. Future attempts will be to utilize the Eyring’s 

rate process theory and free volume concept to treat the granular systems for the purpose of 

deriving viscosity equations of granular systems under various conditions. Similar methods and 

approaches shown in our previous publications will be employed again to treat granular powder 

systems in a much natural manner, once the granular temperatures are properly defined.  

 

6. Summary and conclusions 

 

In summary, the thermodynamics originated from thermal systems is utilized to define the 

granular temperatures in granular systems in an analogous manner. The key point is to connect 
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the kinetic energy to the temperature, and thus the temperature can be defined in a uniformed 

manner across the conventional thermal systems like colloidal suspensions to athermal systems 

like granular powders. This is a necessary step, as in granular systems thermal energy is too 

small to drive granular particle movements; new temperature definitions are needed for properly 

applying the thermodynamic principles established in thermal systems to granular systems. 

Several common granular systems are analyzed and the defined granular temperatures are 

summarized in Table 2. The obtained granular temperatures seem to be very high in comparison 

with the temperatures in thermal systems. However, please keep in mind that in conventional 

thermal systems, the molecule movements are very mild in much smaller distance scales; Lower 

temperatures seem to be adequate for thermal systems; On the other hand, the particle 

movements in granular powders are typically very intensive and wild, and higher granular 

temperatures seem to be adequate.  

 

Once the granular temperatures are defined, the jamming temperature is analogously 

defined, too.  The jamming particle volume fractions are thus obtained by assuming that the ratio 

of the granular temperatures to the jamming temperature equals to one. Therefore, the jamming 

points can be predicted and the obtained results agree qualitatively very well with experimental 

observations and empirical solutions in powder handlings.  The particle volume fractions at 

jamming points obtained at several common cases are listed at Table 2.  

 

The work in this article may lay a foundation for building up the “granular dynamics” on 

the basis of the granular temperatures defined analogously with that in thermodynamics. The 

four laws of thermodynamics are applicable to the granular powders with such definitions. Since 

the most important jamming phenomena in granular powders under a shear and a vibration are 

intensively examined, the results presented in this article may provide further insights on how to 

efficiently control the jamming process that has vast and important applications in industries like 

soft robotics and architecture 
56

 .  

 

Acknowledgement: The author appreciate Christine Heisler for reading through the 

manuscript and providing constructive comments.  
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Table 2 Proposed granular temperatures and the particle volume fractions at jamming points 

predicted in several granular systems. 

 

Granular 

systems 

Granular 

temperatures 

Typical 

values (K) 

Conditions Particle volume fractions at 

jamming points 

 

Powders 

in 

stationary 

bins 

     
        

       
 

        
    

 
   

 

 

Very close 

to zero 

The 

particle 

number 

density n is 

a very 

large 

number 

 

 

 

  

 
   

   
       
       

        
    

 
   

  

 

 

Powders 

in 

vibrations 

 

B

v
gp

k

ngLr
T 0

3

9

8 
  

 

1.98 10
10

 

r=1µm, 

ρ=1g/cm
3
, 

         
        

 

   
   

                
 

 

 

 

 

Powders 

under a 

shear 

 

bB

gp
k

tr
T







3

9

8
 

 

 

 

2.02 10
8
 

r=1µm, 

ρ=1 g/cm
3
, 

b =0.3 

g/cm
3
, 

         

 


       

        

 

 

 

   
  

                
 

 

 

 

 

Particles 

rolling on 

a slope 

 

   

 
     

   
       

           

 

 

4.76 10
11

 

r=1µm, 

ρ=1 g/cm
3
, 

     , 
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