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Abstract 

 
In this paper it is shown a simple approximation of the function exp(x) for positive values 

of x, deduced from the implicit Euler numerical solution of first order lineal differential 

equations (ODE). The results show that the approximation has an error of less than 10% 

for exp(x) when x < 0.35 and for exp(-x) when x < 0.5, which is acceptable for many 

engineering applications, and helps facilitate the analysis of some systems without the 

use of computers. 
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1. Introduction 

This work was done with two objectives in mind: 1) to find a simple 

approximation for the exponential function which could be used to solve several 

problems without the use of a calculator which has more operations than addition, 

subtraction, multiplication and division; 2) to show the usefulness of numerical 

methods in finding approximations for functions without having to enter into the 

realm of mathematical analysis, which is an area not many people can handle 

easily. 

 

2. Deduction of the approximation 

Consider one of the simplest first order linear ODE: 

𝑑𝑢

𝑑𝑥
= 𝑢     (1) 

With initial value 𝑢(0) = 𝑢0 and for 𝑥 ≥ 0. The analytical solution for (1) is found 

by direct integration: 

𝑢 = 𝑒𝑥𝑢0     (2) 
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 Now, consider the Euler implicit method [1] for the numerical (and thus 

approximate) solution of (1), where we consider the previous step value of u as the 

initial value of the problem and the independent variable step as x, then: 

𝑢 − 𝑢0

𝑥
= 𝑢     (3) 

This gives the approximate solution of (1): 

𝑢 =
1

1 − 𝑥
𝑢0     (4) 

Comparing (2) and (4) we see that: 

𝑒𝑥 ≈
1

1 − 𝑥
     (5) 

Now consider the differential equation that describes heat exchange from a body 

of uniform temperature u to a surrounding medium at temperature 𝑢∞: 

𝑑𝑢

𝑑𝑡
= 𝑘(𝑢∞ − 𝑢)    (6) 

With initial value 𝑢(0) = 𝑢0 and for 𝑡 ≥ 0. The analytical solution of (6) by variable 

separation is: 

𝑢 = (1 − 𝑒−𝑘𝑡)𝑢∞ + 𝑒−𝑘𝑡𝑢0     (7) 

The implicit Euler method for (6) is: 

𝑢 − 𝑢0

𝑡
= 𝑘(𝑢∞ − 𝑢)     (8) 

And thus the approximate solution for (6) is: 

𝑢 =
𝑘𝑡

1 + 𝑘𝑡
𝑢∞ +

1

1 + 𝑘𝑡
𝑢0     (9) 

Comparing each term of (7) and (9) –remembering that (9) is an approximate 

solution- and making 𝑥 = −𝑘𝑡 we arrive again at: 

𝑒𝑥 ≈
1

1 − 𝑥
     (10) 
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3. Validity of the approximation 

The curves of the exponential functions with different arguments and their 

corresponding approximations and the errors of those are shown in Figures 1 to 8. 

 

Figure 1. Curves of 𝑓(𝑥) = 𝑒𝑥 and the approximation. 

 

 

Figure 2. Error of the approximation of 𝑓(𝑥) = 𝑒𝑥. 
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Figure 3. Curves of 𝑓(𝑥) = 𝑒−𝑥 and the approximation. 

 

 

Figure 4. Error of the approximation of 𝑓(𝑥) = 𝑒−𝑥. 
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Figure 5. Curves of 𝑓(𝑥) = 𝑒𝑥2
 and the approximation. 

 

 

Figure 6. Error of the approximation of 𝑓(𝑥) = 𝑒𝑥2
. 
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Figure 7. Curves of 𝑓(𝑥) = 𝑒−𝑥2
 and the approximation. 

 

Figure 8. Error of the approximation of 𝑓(𝑥) = 𝑒−𝑥2
. 

 

The approximation has an error of less than 10% for exp(x) when x < 0.35 and for 

exp(-x) when x < 0.5; for exp(x2) and exp(-x2) the error is less than 10% for  x < 0.6 

and x < 0.7 respectively. 
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4. Conclusions 

The approximation of the exponential function found by comparing solutions of 

first order linear ODE with its numerical approximations holds for small values of 

the independent variable with acceptable error for several engineering and science 

applications. This approximation is actually a truncated form of the continued 

fraction expression for exp(x) found by Wall [2] 

𝑒𝑥 =
1

1 −
𝑥

1 +
𝑥

2 −
𝑥

3 + ⋯

     (11) 

… but arrived at by completely different means. Statistical analysis done by 

software of the error curves shown in Figures 2, 4, 6 and 8 shows that the error 

grows by 𝑂(𝑥2), which concurs with the fact that the approximation for the 

derivative of a first order ODE in the implicit Euler method is actually a Taylor 

series truncated in its second term. 
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