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Abstract

Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within
the framework of General Relativity. There are at the present moment two known solutions: The
Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However
the major drawback concerning warp drives is the huge amount of negative energy density able to
sustain the warp bubble.In order to perform an interstellar space travel to a ”nearby” star at 20 light-
years away in a reasonable amount of time a ship must attain a speed of about 200 times faster than
light.However the negative energy density at such a speed is directly proportional to the factor 1048 which
is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!.
With the correct form of the shape function the Natario warp drive can overcome this obstacle at
least in theory.Other drawbacks that affects the warp drive geometry are the collisions with hazardous
interstellar matter(asteroids,comets,interstellar dust etc)that will unavoidably occurs when a ship travels
at superluminal speeds and the problem of the Horizons(causally disconnected portions of spacetime).The
geometrical features of the Natario warp drive are the required ones to overcome these obstacles also at
least in theory.Recently Gianluca Perniciano a physicist from Italy appeared with a very interesting idea
for the Alcubierre warp drive spacetime:he introduced in the Alcubierre equations a coefficient which is
1 inside and outside the warp bubble but possesses large values in the Alcubierre warped region thereby
reducing effectively the negative energy density requirements making the warp drive more ”affordable”
even at 200 times light speed.In this work we reproduce the Perniciano analysis for the Natario warp
drive spacetime in both the original and parallel ADM formalisms.
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1 Introduction:

The Warp Drive as a solution of the Einstein field equations of General Relativity that allows superluminal
travel appeared first in 1994 due to the work of Alcubierre.([1]) The warp drive as conceived by Alcu-
bierre worked with an expansion of the spacetime behind an object and contraction of the spacetime in
front.The departure point is being moved away from the object and the destination point is being moved
closer to the object.The object do not moves at all1.It remains at the rest inside the so called warp bubble
but an external observer would see the object passing by him at superluminal speeds(pg 8 in [1])(pg 1 in [2]).

Later on in 2001 another warp drive appeared due to the work of Natario.([2]).This do not expands
or contracts spacetime but deals with the spacetime as a ”strain” tensor of Fluid Mechanics(pg 5 in [2]).
Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but
carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or
contract. An observer in the margin of the river would see the aquarium passing by him at a large speed
but inside the aquarium the fish is at the rest with respect to his local neighborhoods.

However there are 3 major drawbacks that compromises the warp drive physical integrity as a viable
tool for superluminal interstellar travel.

The first drawback is the quest of large negative energy requirements enough to sustain the warp bubble.
In order to travel to a ”nearby” star at 20 light-years at superluminal speeds in a reasonable amount of
time a ship must attain a speed of about 200 times faster than light.However the negative energy density
at such a speed is directly proportional to the factor 1048 which is 1.000.000.000.000.000.000.000.000 times
bigger in magnitude than the mass of the planet Earth!!!(see [7],[8] and [9]).

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is
not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar
space dust and photons.(see [5],[7] and [8]).

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut can-
not send signals with the speed of the light to control the front of the bubble because an Horizon(causally
disconnected portion of spacetime)is established between the astronaut and the warp bubble.(see [5],[7]
and [8]).

We can demonstrate that the Natario warp drive can ”easily” overcome these obstacles as a valid can-
didate for superluminal interstellar travel(see [7],[8] and [9]).

In this work we cover only the Natario warp drive and we avoid comparisons between the differences
of the models proposed by Alcubierre and Natario since these differences were already deeply covered by
the existing available literature.(see [5],[6] and [7])However we use the Alcubierre shape function to define
its Natario counterpart.

1do not violates Relativity
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Alcubierre([12]) used the so-called 3+1 Arnowitt-Dresner-Misner(ADM) formalism using the approach
of Misner-Thorne-Wheeler(MTW )([11]) to develop his warp drive theory.As a matter of fact the first equa-
tion in his warp drive paper is derived precisely from the original 3 + 1 ADM formalism(see eq 2.2.4 pgs
[67(b)],[82(a)] in [12], see also eq 1 pg 3 in [1])23 and we have strong reasons to believe that Natario which
followed the Alcubierre steps also used the original 3 + 1 ADM formalism to develop the Natario warp
drive spacetime.

Some years ago from 2012 to 2014 a set of works ([5],[6],[7],[8] and [10] ) started to appear in the sci-
entific literature covering the Natario warp drive spacetime using the following equation:

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (1)

The equation above appeared for the first time in the works pg 4 eq 1 in [5],pg 12 eq 50 in [6],pg 14
eq 38 in [7],pg 20 eq 80 in [8],pg 9 eq 12 in [10] and was intended to be the original Natario warp drive
equation.However this equation do not obeys the original 3+1 ADM formalism.The correct Natario warp
drive equation that obeys the 3 + 1 ADM formalism is given below:

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (2)

Indeed the equation presented in the works ([5],[6],[7],[8] and [10] ) is a valid equation for the Natario
warp drive spacetime but under the context of a new and parallel contravariant 3 + 1 ADM formalism.

The 3+1 original ADM formalism with signature (−,+,+,+) is given by the equation (21.40) pg [507(b)]
[534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (3)

The new 3 + 1 parallel contravariant ADM formalism with signature (−,+,+,+) is given by the
equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (4)

Since we have a new Natario warp drive equation under a new 3 + 1 parallel contravariant ADM
formalism already presented in the works ([5],[6],[7],[8] and [10]) we examined the possibility of the exis-
tence of another new Natario warp drive equation but under another new 3 + 1 parallel covariant ADM
formalism.Such an equation also exists and can be written as shown below:

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (5)

Also the new 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) is given by the
equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (6)

2see also Appendix E
3see the Remarks section on our system to quote pages in bibliographic references
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In this work we study the validity of the new equations presented for the Natario warp drive spacetime
using the new parallel 3 + 1 ADM contravariant and covariant formalisms and we arrive at the conclusion
that the new equations are valid solutions for the warp drive spacetime according to the Natario criteria.We
also compare all the Natario warp drive equations in the original and parallel 3+1 ADM formalisms wether
contravariant or covariant and we arrive at two interesting conclusions:

• 1)-in the 3+1 spacetime the parallel ADM formalisms wether contravariant or covariant differs radi-
cally from the original ADM formalism because while in the original formalism all the mathematical
entities of General Relativity (eg:Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein
tensors,extrinsic curvature tensors) are cartographed and chartered these mathematical entities are
completely unknown in the parallel formalisms and must be obtained by hand calculations in a all-
the-way-round process starting from the covariant components of the 3 + 1 spacetime metric and
finishing with the Einstein tensor in a long and tedious sequence of calculations in tensor algebra
liable of errors or can be obtained by computer programs like Maple or Mathematica.

• 2)-A dimensional reduction from 3 + 1 spacetime to a 1 + 1 spacetime demonstrates that in a 1 + 1
spacetime both the original and the parallel ADM formalisms wether contravariant or covariant are
equivalent and since the works ([5],[6],[7],[8] and [10] ) uses the dimensional reduction from a 3 + 1
to a 1 + 1 spacetime their conclusions are still valid.

For the study of the original ADM formalism we use the approaches of MTW ([11]) and Alcubierre([12])
and we adopt the Alcubierre convention for notation of equations and scripts.

Recently Gianluca Perniciano a physicist from Italy appeared with a very interesting idea: Perniciano
at pg 9 in [17] pgs 3 and 4 in [18] introduces for the Alcubierre warp drive a new coefficient a(rs) with the
following values:

• 1)-inside the warp bubble when f(rs) = 1 then a(rs) = 1

• 2)-outside the warp bubble when f(rs) = 0 then a(rs) = 1

• 3)-in the Alcubierre warped region(1 > f(rs) > 0) the Perniciano coefficient a(rs) >> 1 possessing
extremely large values

According with Perniciano the Alcubierre shape function must be divided by the Perniciano coefficient
as shown below;

g(rs) =
f(rs)
a(rs)

(7)

When f(rs) = 1 then a(rs) = 1 and hence g(rs) = 1 and when f(rs) = 0 then a(rs) = 1 and hence
g(rs) = 0 so g(rs) remains a valid Alcubierre shape function similar to the original one except in the
Alcubierre warped region where g(rs) behaves different when compared to f(rs).

The derivative of the Alcubierre shape function g(rs) is then given by:

g′(rs) =
f ′(rs)a(rs)− a′(rs)f(rs)

a(rs)2
(8)

And its derivative square is:
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(g′(rs))2 =
[f ′(rs)2][a(rs)2] + [a′(rs)2][f(rs)2]− 2f ′(rs)f(rs)a′(rs)a(rs)

a(rs)4
(9)

The main point of view of the Perniciano analysis is the following one:a large Perniciano coefficient
a(rs) >> 1 in the Alcubierre warped region means a very large a(rs)2 >>>> 1 in the lower part of the
fraction of the derivative and an even larger a(rs)4 >>>>>> 1 in the lower part of the derivative square
fraction. So the derivative square g′(rs)2 is much but much lower when compared to the original f ′(rs)2

effectively reducing the negative energy density requirements to sustain an Alcubierre warp drive.

ρ = −c4

G

1
32π

(
vs

c
)2
[
g′(rs)

]2 [
y2 + z2

rs2
] (10)

ρ = −c4

G

1
32π

(
vs

c
)2
[
[f ′(rs)2][a(rs)2] + [a′(rs)2][f(rs)2]− 2f ′(rs)f(rs)a′(rs)a(rs)

a(rs)4

]
[
y2 + z2

rs2
] (11)

An extra large a(rs)4 >>>>>> 1 in the lower part of the derivative square fraction can easily oblit-
erate the factor c2

G
v2

s
8π eliminating the huge factor 1048 when a ship travels at 200 times light speed.

In this work wee present the Perniciano analysis for the Natario warp drive.We adopt here the Geometrized
system of units in which c = G = 1 for geometric purposes and the International System of units for ener-
getic purposes.

This work is organized as follows:

• Section 2)-Introduces the Natario warp drive continuous shape function able to low the negative
energy density requirements when a ship travels with a speed of 200 times faster than light.
The negative energy density for such a speed is directly proportional to the factor 1048 which is
1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!.

• Section 3)-presents the new equation for the Natario warp drive spacetime in the parallel contravariant
3+1 ADM formalism in a rigorous mathematical fashion.We recommend the study of the Appendix
B at the end of the work in order to fully understand the mathematical demonstrations. The
dimensional reduction from a 3 + 1 to a 1 + 1 spacetime shows that the parallel contravariant ADM
formalism in the 1 + 1 spacetime is equal to the original ADM formalism in the 1 + 1 spacetime.

• Section 4)-presents the new equation for the Natario warp drive spacetime in the parallel covariant
3+1 ADM formalism in a rigorous mathematical fashion.We recommend the study of the Appendix
C at the end of the work in order to fully understand the mathematical demonstrations. The
dimensional reduction from a 3 + 1 to a 1 + 1 spacetime shows that the parallel covariant ADM
formalism in the 1 + 1 spacetime is equal to the original ADM formalism in the 1 + 1 spacetime.

• Section 5)-presents the original equation for the Natario warp drive spacetime in the original 3 + 1
ADM formalism in a rigorous mathematical fashion.We recommend the study of the Appendix E at
the end of the work in order to fully understand the mathematical demonstrations The dimensional
reduction from a 3 + 1 to a 1 + 1 spacetime shows that the original ADM formalism in the 1 + 1
spacetime is equal to the parallel ADM formalism in the 1 + 1 spacetime wether contravariant or
covariant.
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• Section 6)-compares both the original and both contravariant and covariant parallel formalisms and
since in a 1 + 1 spacetime all these formalisms are equivalent the shape function used to lower the
negative energy density requirements in the original equation is valid also for the new equations so
these new Natario warp drives are also affordable from the point of view of negative energy densities
in a 1 + 1 spacetime.For a better description about how the Natario shape function can lower the
negative energy density requirements in the Natario warp drive see [8] and [9] .Also when we reduce
the original 3 + 1 ADM formalism to a 1 + 1 original ADM formalism the zero expansion behavior
of the Natario warp drive is maintained in the original equation and since the 1 + 1 parallel ADM
formalisms are equivalent to the originasl one then at least in a 1+1 dimensions the new equations for
the Natario warp drive also retains the zero expansion behavior.Another important thing is the fact
that even in the 1 + 1 spacetime all the warp drive equations possesses the negative energy density
in the warp bubble in front of the ship4 and the repulsive behavior of the negative energy density
in the bubble can protect the ship against incoming highly energetic Doppler blueshifted photons or
interstellar hazardous matter (eg:space dust,gas clouds,supernova remmants,asteroids comets etc) a
ship would encounter in a realistic interstellar spaceflight at superluminal speeds.Also this negative
energy density in front of the ship protects the ship against the so-called infinite Doppler Blueshifts in
the Horizon.For more about how the Natario warp drive deals with collisions with interstellar matter
or infinite Doppler blueshifts see [5] , [7] and [8]

• Section 7)-We discuss a shape function that defines the Natario warp drive spacetime being this
function an excellent candidate to lower the energy density requirements in the Natario warp drive
to affordable levels completely obliterating the factor 1048 which is 1.000.000.000.000.000.000.000.000
times bigger in magnitude than the mass of the planet Earth!!!..

• Section 8)-In this section we present the analysis of Gianluca Perniciano applied to the Natario warp
drive spacetime as a second way to low the negative energy density requirements of the Natario warp
drive spacetime.The analytical expression for the Perniciano coefficient is given by:

a(rs) = (
1
2
[1 + tanh[@(rs−R)]2])−P =

1
(1
2 [1 + tanh[@(rs−R)]2])P

(12)

And must obey the following Perniciano requirements:

– 1)-inside the warp bubble when n(rs) = 0 then a(rs) = 1

– 2)-outside the warp bubble when n(rs) = 1
2 then a(rs) = 1

– 3)-in the Natario warped region(0 < n(rs) < 1
2) the Perniciano coefficient a(rs) >> 1 possessing

extremely large values

Dividing the original Natario shape function by the Perniciano coefficient

p(rs) =
n(rs)
a(rs)

(13)

When n(rs) = 0 then a(rs) = 1 and hence p(rs) = 0 and when n(rs) = 1
2 then a(rs) = 1 and hence

p(rs) = 1
2 so p(rs) remains a valid Natario shape function similar to the original one except in the

4the negative energy density do not vanish even in a 1 + 1 spacetime
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Natario warped region where p(rs) behaves different when compared to n(rs)

And note that the 4 power of the Perniciano coefficient appears in the lower part of the fraction
of the negative energy density for the Natario warp drive spacetime completely obliterating the
factor c2

G
v2

s
8π

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3
[n′(rs)2][a(rs)2] + [a′(rs)2][n(rs)2]− 2n′(rs)n(rs)a′(rs)a(rs)

a(rs)4

]
(14)

Although this work was designed to be independent consistent and self-contained concerning ADM
formalisms or reductions of negative energy density requirements it can be regarded as a companion work
to our works in [15] and [16]
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2 The Natario warp drive continuous shape function

Introducing here f(rs) as the Alcubierre shape function that defines the Alcubierre warp drive spacetime
we can construct the Natario shape function n(rs) that defines the Natario warp drive spacetime using its
Alcubierre counterpart.Below is presented the equation of the Alcubierre shape function.5.

f(rs) =
1
2
[1− tanh[@(rs−R)] (15)

rs =
√

(x− xs)2 + y2 + z2 (16)

According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre
warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

In the Alcubierre shape function xs is the center of the warp bubble where the ship resides. R is the
radius of the warp bubble and @ is the Alcubierre parameter related to the thickness.According to Alcu-
bierre these can have arbitrary values.We outline here the fact that according to pg 4 in [1] the parameter
@ can have arbitrary values.rs is the path of the so-called Eulerian observer that starts at the center of
the bubble xs = R = rs = 0 and ends up outside the warp bubble rs > R.

According with Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

The Natario warp drive continuous shape function can be defined by:

n(rs) =
1
2
[1− f(rs)] (17)

n(rs) =
1
2
[1− [

1
2
[1− tanh[@(rs−R)]]]] (18)

This shape function gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2 outside the warp

bubble while being 0 < n(rs) < 1
2 in the Natario warped region.

Note that the Alcubierre shape function is being used to define its Natario shape function counterpart.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

5tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
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Another Natario warp drive valid shape function can be given by:

n(rs) = [
1
2
][1− f(rs)WF ]WF (19)

Its derivative square is :

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (20)

The shape function above also gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2

outside the warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region(see pg 5 in [2]).

Note that like in the previous case the Alcubierre shape function is being used to define its Natario
shape function counterpart. The term WF in the Natario shape function is dimensionless too:it is the
warp factor.It is important to outline that the warp factor WF >> |R| is much greater than the modulus
of the bubble radius.

For the second Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

• Numerical plot for the second shape function with @ = 50000 and warp factor with a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251 0
9, 99980000000E + 001 1 0 1, 915169647489E − 164 0
9, 99990000000E + 001 1 0 1, 383896564748E − 077 0
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008 3, 872591914849E − 103
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077 0
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164 0
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251 0

• Numerical plot for the second shape function with @ = 75000 and warp factor with a value WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99980000000E + 001 1 0 5, 963392481410E − 251 0
9, 99990000000E + 001 1 0 1, 158345097767E − 120 0
1, 00000000000E + 002 0, 5 0, 5 1, 406250000000E + 009 8, 713331808411E − 103
1, 00001000000E + 002 0 0, 5 1, 158344999000E − 120 0
1, 00002000000E + 002 0 0, 5 5, 963391972940E − 251 0

• Numerical plot for the second shape function with @ = 100000 and warp factor with a value WF =
200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99990000000E + 001 1 0 7, 660678807684E − 164 0
1, 00000000000E + 002 0, 5 0, 5 2, 500000000000E + 009 1, 549036765940E − 102
1, 00001000000E + 002 0 0, 5 7, 660677936765E − 164 0
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The plots in the previous page demonstrate the important role of the thickness parameter @ in the warp
bubble geometry wether in both Alcubierre or Natario warp drive spacetimes.For a bubble of 100 meters
radius R = 100 the regions where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1

2(Natario
warped region) becomes thicker or thinner as @ becomes higher.

Then the geometric position where both Alcubierre and Natario warped regions begins with respect to
R the bubble radius is rs = R − ε < R and the geometric position where both Alcubierre and Natario
warped regions ends with respect to R the bubble radius is rs = R + ε > R

As large as @ becomes as smaller ε becomes too.

Note from the plots of the previous page that we really have two warped regions:

• 1)-The geometrized warped region where 1 > f(rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1
2

(Natario warped region).

• 2)-The energized warped region where the derivative squares of both Alcubierre and Natario shape
functions are not zero.

The parameter @ affects both energized warped regions wether in Alcubierre or Natario cases but is
more visible for the Alcubierre shape function because the warp factor WF in the Natario shape functions
squeezes the energized warped region into a very small thickness.

The negative energy density for the Natario warp drive is given by(see pg 5 in [2])

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(21)

Converting from the Geometrized System of Units to the International System we should expect for
the following expression6:

ρ = −c2

G

vs2

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

rs

2
n′′(rs)

)2
sin2 θ

]
. (22)

Rewriting the Natario negative energy density in cartezian coordinates we should expect for7:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2
]

(23)

6see Appendix F
7see Appendix D
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In the equatorial plane(1 + 1 dimensional spacetime with rs = x− xs ,y = 0 and center of the bubble
xs = 0):

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(24)

Note that in the above expressions the warp drive speed vs appears raised to a power of 2. Considering
our Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make
a round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months
not in years) we would get in the expression of the negative energy the factor c2 = (3 × 108)2 = 9 × 1016

being divided by 6, 67× 10−11 giving 1, 35× 1027 and this is multiplied by (6× 1010)2 = 36× 1020 coming
from the term vs = 200 giving 1, 35× 1027 × 36× 1020 = 1, 35× 1027 × 3, 6× 1021 = 4, 86× 1048 !!!

A number with 48 zeros!!!The planet Earth have a mass8 of about 6× 1024kg

This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet
Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200
times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet
Earths!!!

Note that if the negative energy density is proportional to 1048 this would render the warp drive im-
possible but fortunately the square derivative of the Natario shape function possesses values of 10−102

ameliorating the factor 1048 making the warp drive negative energy density more ”affordable”.

8see Wikipedia:The free Encyclopedia
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3 The equation of the Natario warp drive spacetime metric in the
parallel contravariant 3 + 1 ADM formalism

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel contravariant
3 + 1 ADM formalism is defined by the following equation:(see Appendix B for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (25)

The expressions for Xrs and Xθ are given by:(see pg 5 in [2],see also Appendix A for details)

Xrs = −2vsn(rs) cos θ (26)

Xrs = 2vsn(rs) cos θ (27)

Xθ = vs(2n(rs) + (rs)n′(rs)) sin θ (28)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (29)

Looking both the equation of the Natario warp drive and the equation of the Natario vector nX(pg 2
and 5 in [2]):

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (30)

nX = Xrsdrs + Xθrsdθ (31)

We can see that the Natario vector is completely inserted twice in the non-diagonalized components of
the metric of the Nayario warp drive equation which gives:

g01 = g10 = Xrs = 2vsn(rs) cos θ (32)

g02 = g20 = Xθrs = −vs(2n(rs) + (rs)n′(rs))rs sin θ (33)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the Natario vector nX this is the reason why the Natario vector nX
appears twice in the Natario warp drive equation.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 (34)

The term (−vs(2n(rs) + (rs)n′(rs)) sin θ)2 = (vs(2n(rs) + (rs)n′(rs)) sin θ)2

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (vs(2n(rs) + (rs)n′(rs)) sin θ)2 (35)
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g11 = −1 (36)

g22 = −rs2 (37)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario re-
quirements for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = −vs(t)dx or nX = vs(t)dx with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:

Consider again the Natario vector nX(pg 2 and 5 in [2]) defined below as:

nX = Xrsdrs + Xθrsdθ (38)

The components of the Natario vector nX are Xrs and Xθ.These are the shift vectors.Then a Natario
vector is constituted by one or more shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = 0.Then inside the bubble both shift vectors are zero resulting
in a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ = −vs sin θ.Then outside the bubble both shift vectors are not
zero resulting in a not zero Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime
now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (39)

nX = Xrsdrs (40)

Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the
2 remaining non-diagonalized components which are:

13



g01 = g10 = Xrs = 2vsn(rs) (41)

When the Natario shape function n(rs) = 0 inside the bubble then the shift vector Xrs = 2vsn(rs) = 0
.Then inside the bubble the shift vector Xrs = 0 is zero resulting in a zero Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then the shift vector Xrs = 2vsn(rs) = vs

.Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the
bubble speed vs Xrs = vs.

The above statements explain the Natario affirmation of X = 0 inside the bubble and X = vs out-
side the bubble.(pg 4 in [2])

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 (42)

g11 = −1 (43)
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4 The equation of the Natario warp drive spacetime metric in the
parallel covariant 3 + 1 ADM formalism

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel covariant 3 + 1
ADM formalism is defined by the following equation:(see Appendix C for details ).

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (44)

Looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (45)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2],see also Appendix
A for details):

Xrs = −2vsn(rs) cos θ (46)

Xrs = 2vsn(rs) cos θ (47)

Xθ = vs(2n(rs) + (rs)n′(rs)) sin θ (48)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (49)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the covariant shift vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (50)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (51)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (52)

It is possible to construct a covariant form for the Natario vector nX defined as ncX as follows:

ncX = Xrsdrs + Xθrsdθ (53)

With the covariant shift vector components Xrs and Xθ defined as shown above:
Looking both the equation of the Natario warp drive and the equation of the covariant Natario vector

ncX;

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (54)

ncX = Xrsdrs + Xθrsdθ (55)

We can see that the covariant Natario vector is completely inserted twice in the non-diagonalized
components of the metric of the Nayario warp drive equation which gives:
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g01 = g10 = Xrs = 2vsn(rs) cos θ = Xr = Xrs (56)

g02 = g20 = Xθrs = rs3Xθ = −rs3vs(2n(rs) + (rs)n′(rs)) sin θ (57)

Since we have two sets of non-diagonalized components in the Natario warp drive equation and each
set possesses equal components of the covariant Natario vector ncX this is the reason why the Natario
vector ncX appears twice in the Natario warp drive equation.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (−rs2vs(2n(rs) + (rs)n′(rs)) sin θ)2 (58)

The term (−rs2vs(2n(rs) + (rs)n′(rs)) sin θ)2 = (rs2vs(2n(rs) + (rs)n′(rs)) sin θ)2

g00 = 1− (Xrs)2 − (Xθ)2 = 1− (2vsn(rs) cos θ)2 − (rs2vs(2n(rs) + (rs)n′(rs)) sin θ)2 (59)

g11 = −1 (60)

g22 = −rs2 (61)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario re-
quirements for a warp bubble defined by:

any covariant Natario vector ncX generates a warp drive spacetime if ncX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the warp bubble and ncX = −vs(t)dx or ncX = vs(t)dx
with X = vs for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being
the speed of the warp bubble.(pg 4 in [2])

The statement above can be explained in the following way:

Consider again the covariant Natario vector ncX defined below as:

ncX = Xrsdrs + Xθrsdθ (62)

The covariant components of the Natario vector ncX are Xrs and Xθ.These are the covariant shift
vectors.Then a covariant Natario vector is constituted by one or more covariant shift vectors.

When the Natario shape function n(rs) = 0 inside the bubble then Xrs = 2vsn(rs) cos θ = 0 and
Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ = 0.Then inside the bubble both covariant shift vectors are zero
resulting in a zero covariant Natario vector.
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When the Natario shape function n(rs) = 1
2 outside the bubble then Xrs = 2vsn(rs) cos θ = vs cos θ

and Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ = −rs2vs sin θ.Then outside the bubble both covariant shift
vectors are not zero resulting in a not zero covariant Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

The Natario warp drive equation and the covariant Natario vector ncX in the equatorial plane 1 + 1
spacetime now becomes:

ds2 = [1− (Xrs)2]dt2 + 2[Xrsdrs]dt− drs2 (63)

ncX = Xrsdrs (64)

Note that the covariant Natario vector ncX is still inserted twice in the Natario warp drive equation
due to the 2 remaining non-diagonalized components which are:

g01 = g10 = Xrs = 2vsn(rs) (65)

When the Natario shape function n(rs) = 0 inside the bubble then the covariant shift vector Xrs =
2vsn(rs) = 0 .Then inside the bubble the covariant shift vector Xrs = 0 is zero resulting in a zero covariant
Natario vector.

When the Natario shape function n(rs) = 1
2 outside the bubble then the covariant shift vector Xrs =

2vsn(rs) = vs .Then outside the bubble both covariant shift and Natario vectors are not zero and the
covariant shift vector is equal to the bubble speed vs Xrs = vs.

The above statements explain the Natario affirmation of X = 0 inside the bubble and X = vs out-
side the bubble.(pg 4 in [2])

The diagonalized components of the metric of the Natario warp drive equation are given by:

g00 = 1− (Xrs)2 = 1− (2vsn(rs))2 (66)

g11 = −1 (67)
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5 The equation of the Natario warp drive spacetime metric in the
original 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:(see
Appendix E for details )

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (68)

The equation of the Natario vector nX(pg 2 and 5 in [2]) is given by:

nX = Xrsdrs + Xθrsdθ (69)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2])(see also Appendix
A for details )

Xrs = 2vsn(rs) cos θ (70)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (71)

The covariant shift vector components Xrs and Xθ are given by:

Xrs = Xrs = 2vsn(rs) cos θ (72)

Xθ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (73)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [2]):

We can see that the Natario warp drive equation given above satisfies the Natario requirements for a
warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [2])

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [2]).

In a 1 + 1 spacetime the equatorial plane we get:

ds2 = (1−XrsX
rs)dt2 + 2(Xrsdrs)dt− drs2 (74)
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In a 1+1 spacetime in the equatorial plane the equation in the original ADM formalism can be written
as:

ds2 = (1−XrsX
rs)dt2 + 2(Xrsdrs)dt− drs2 (75)

But since Xrs = Xrs the equation can be written as given below:

• 1)-In contravariant form:

ds2 = (1− [Xrs]2)dt2 + 2(Xrsdrs)dt− drs2 (76)

• 2)-In covariant form:

ds2 = (1− [Xrs]2)dt2 + 2(Xrsdrs)dt− drs2 (77)

The first equation above is the equation in the 1 + 1 spacetime for the parallel contravariant ADM
formalism while the second is the equation in the 1+1 spacetime for the parallel covariant ADM formalism.

All the 3 ADM formalisms wether original parallel contravariant or parallel covariant are mathemati-
cally equivalent between each other in a 1 + 1 spacetime.
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6 Differences and resemblances between the original 3 + 1 ADM for-
malism when compared to both parallel contravariant and parallel
covariant 3 + 1 ADM formalisms for the Natario warp drive space-
time

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel contravariant
3 + 1 ADM formalism is defined by the following equation:(see Appendix B for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (78)

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel covariant
3 + 1 ADM formalism is defined by the following equation:(see Appendix C for details )

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (79)

The equation of the Natario warp drive spacetime in the original 3+1 ADM formalism is given by:(see
Appendix E for details )

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (80)

Note that the first equation of the parallel contravariant 3+1 ADM formalism have the Natario vector
nX inserted twice in the non-diagonalized components.This Natario vector nX is given in contravariant
form (pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (81)

Note that the second equation of the parallel covariant 3 + 1 ADM formalism have the Natario vector
ncX inserted twice in the non-diagonalized components.This Natario vector ncX is given in covariant form:

ncX = Xrsdrs + Xθrsdθ (82)

A pseudo-”covariant” form of the Natario vector cX can be given by:9

cX = Xrsdrs + Xθdθ (83)

Note that the third equation of the original 3+1 ADM formalism have the pseudo-”covariant” Natario
vector cX inserted twice in the non-diagonalized components.

The difference between all these equations in the 3 + 1 spacetime is precisely the fact that one of these
equations have the Natario vector nX in contravariant form (parallel contravariant ADM formalism) while
other equation have the Natario vector ncX in covariant form (parallel covariant ADM formalism) and an-
other equation have the Natario vector cX in pseudo-”covariant” form (original ADM formalism).Also one
of the equations uses exclusively contravariant components (parallel contravariant ADM formalism) while
other equation uses exclusively covariant components (parallel covariant ADM formalism) and another
equation uses both mixed contravariant and covariant components (original ADM formalism).

9all the shift vectors are covariant in this expression
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But in the 1+1 spacetime all these equations are equal due to the equivalence between the contravariant
and covariant shift vector components Xrs = Xrs of both Natario vectors nX and ncX together with cX:

Alcubierre used the original 3 + 1 ADM formalism in his warp drive(see eq 1 pg 3 in [1])10 and we
have reasons to believe that Natario which followed the Alcubierre steps also used the original 3+1 ADM
formalism to derive the original Natario warp drive equation:

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (84)

The negative energy density for the Natario warp drive in the original 3 + 1 ADM formalism is given
by(see pg 5 in [2])

ρ = −c2

G

v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(85)

In the equatorial plane(1 + 1 dimensional spacetime with rs = x− xs ,y = 0 and center of the bubble
xs = 0):11

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(86)

But for the Natario warp drive equation in the parallel contravariant 3 + 1 ADM formalism

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (87)

or for the Natario warp drive equation in the parallel covariant 3 + 1 ADM formalism

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (88)

We can say nothing about the negative energy density at first sight and we need to compute ”all-the-
way-round” the Christoffel symbols Riemann and Ricci tensors and the Ricci scalar in order to obtain
the Einstein tensor and hence the stress-energy-momentum tensor in a long and tedious process of tensor
analysis liable of occurrence of calculation errors.

Or we can use computers with programs like Maple or Mathematica (see pgs [342(b)] or [369(a)] in
[11], pgs [276(b)] or [294(a)] in [13],pgs [454, 457, 560(b)] or [465, 468, 567(a)] in [14]).

Appendix C pgs [551−555(b)] or [559−563(a)] in [14] shows how to calculate everything until the Einstein
tensor from the basic input of the covariant components of the 3+1 spacetime metric using Mathematica.

But since the 1 + 1 equation for the parallel ADM formalism wether in contravariant or covariant form is
equal to the 1+1 equation for the original ADM formalism the negative energy density in 1+1 spacetime
is the same for all these equations.

10see Appendix E
11see Appendix D
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Also in the geometry of the original 3+1 ADM formalism Natario warp drive the spacetime contraction
in one direction(radial) is balanced by the spacetime expansion in the remaining direction(perpendicular).

Remember also that the expansion of the normal volume elements in the original 3 + 1 ADM formal-
ism for the Natario warp drive is given by the following expressions(pg 5 in [2]). :

Krr =
∂Xr

∂r
= −2vsn

′(r) cos θ (89)

Kθθ =
1
r

∂Xθ

∂θ
+

Xr

r
= vsn

′(r) cos θ; (90)

Kϕϕ =
1

r sin θ

∂Xϕ

∂ϕ
+

Xr

r
+

Xθ cot θ

r
= vsn

′(r) cos θ (91)

θ = Krr + Kθθ + Kϕϕ = 0 (92)

If we expand the radial direction the perpendicular direction contracts to keep the expansion of the
normal volume elements equal to zero resulting in a warp drive with zero expansion.

Note also that even in a 1 + 1 dimensional spacetime the original 3 + 1 ADM formalism for the Natario
warp drive when reduced to a 1 + 1 dimensions retains the zero expansion behavior:

Krr =
∂Xr

∂r
= −2vsn

′(r) cos θ (93)

Kθθ =
Xr

r
= vsn

′(r) cos θ; (94)

Kϕϕ =
Xr

r
= vsn

′(r) cos θ (95)

θ = Krr + Kθθ + Kϕϕ = 0 (96)

So we cannot say anything about the geometry of the parallel 3 + 1 ADM formalisms wether in
contravariant or covariant form concerning the expansion of the normal volume elements without the
computation of the extrinsic curvatures but at least in a 1 + 1 spacetime the parallel contravariant or the
parallel covariant 1 + 1 ADM formalism are equivalent to the original 1 + 1 ADM formalism which gives
also a warp drive with zero expansion.
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7 Reducing the Negative Energy Density Requirements in the Natario
Warp Drive in a 1 + 1 Dimensional Spacetime in both the original
and parallel 3 + 1 ADM formalisms

Now we are ready to demonstrate how the negative energy density requirements can be greatly reduced
for the Natario warp drive in a 1 + 1 dimensional spacetime:

We already know the form of the equation of the Natario warp drive in a 1 + 1 dimensional spacetime in
both the original and parallel 3 + 1 ADM formalisms:

ds2 = [1− (Xrs)2]dt2 + 2Xrsdrsdt− drs2 (97)

Xrs = 2vsn(rs) (98)

According to Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

A Natario warp drive valid shape function can be given by:

n(rs) = [
1
2
][1− f(rs)WF ]WF (99)

Its derivative square is :

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (100)

The shape function above gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2 outside

the warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region(see pg 5 in [2]).

Note that the Alcubierre shape function f(rs) is being used to define its Natario shape function coun-
terpart. The term WF in the Natario shape function is dimensionless too:it is the warp factor that
will squeeze the region where the derivatives of the Natario shape function are different than 0.The warp
factor is always a fixed integer number directly proportional to the modulus of the bubble radius.WF > |R|.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).
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We must analyze the differences between this new Natario shape function with warp factors compared
to the original Natario shape function presented in Section 2 and mainly the differences between their
derivative squares essential to low the negative energy density requirements in the 1+1 Natario warp drive
spacetime.In order to do so we need to use the Alcubierre shape function.

• 1)-Alcubierre shape function and its derivative square:12.

f(rs) =
1
2
[1− tanh[@(rs−R)] (101)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (102)

• 2)-original Natario shape function and its derivative square:

n(rs) =
1
2
[1− f(rs)] (103)

n′(rs)2 =
1
16

[
@2

cosh4[@(rs−R)]
] (104)

• 3)-Natario shape function with warp factors and its derivative square:

n(rs) = [
1
2
][1− f(rs)WF ]WF (105)

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (106)

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][

1
4
[

@2

cosh4[@(rs−R)]
]] (107)

n′(rs)2 = [
1
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
] (108)

• 4)-negative energy density in the 1 + 1 Natario warp drive spacetime:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(109)

We already know that the region where the negative energy density is concentrated is the warped region
in both Alcubierre (1 > f(rs) > 0) and Natario (0 < n(rs) < 1

2) cases.

And we also know that for a speed of 200 times light speed the negative energy density is directly propor-
tional to 1048 resulting from the term c2

G
v2

s
8π .

So in order to get a physically feasible Natario warp drive the derivative of the Natario shape function
must obliterate the factor 1048.

12tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
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Examining first the negative energy density from the original Natario shape function:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(110)

n′(rs)2 =
1
16

[
@2

cosh4[@(rs−R)]
] (111)

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3
16

[
@2

cosh4[@(rs−R)]
]
]

(112)

We already know from section 2 that @ is the Alcubierre parameter related to the thickness of the
bubble and a large @ > |R| means a bubble of very small thickness.On the other hand a small value of
@ < |R| means a bubble of large thickness.But @ cannot be zero and cannot be @ << |R| so independently
of the value of @ the factor c2

G
v2

s
8π still remains with the factor 1048 from 200 times light speed which is

being multiplied by @‘2 making the negative energy density requirements even worst!!

Examining now the negative energy density from the Natario shape function with warp factors:

n′(rs)2 = [
1
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
] (113)

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
[
3
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
]
]

(114)

Comparing both negative energy densities we can clearly see that the differences between the equations
is the term resulting from the warp factor which is:

WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] (115)

Inside the bubble f(rs) = 1 and [1− f(rs)WF ]2(WF−1) = 0 resulting in a n′(rs)2 = 0.This is the reason
why the Natario shape function with warp factors do not have derivatives inside the bubble.

Outside the bubble f(rs) = 0 and [f(rs)2(WF−1)] = 0 resulting also in a n′(rs)2 = 0.This is the rea-
son why the Natario shape function with warp factors do not have derivatives outside the bubble.

Using the Alcubierre warped region we have:

In the Alcubierre warped region 1 > f(rs) > 0.In this region the derivatives of the Natario shape function
do not vanish because if f(rs) < 1 then f(rs)WF << 1 resulting in an [1 − f(rs)WF ]2(WF−1) << 1 .Also
if f(rs) < 1 then [f(rs)2(WF−1)] << 1 too if we have a warp factor WF > |R|.

Note that if [1− f(rs)WF ]2(WF−1) << 1 and [f(rs)2(WF−1)] << 1 their product
[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] <<<< 1

Note that inside the Alcubierre warped region 1 > f(rs) > 0 when f(rs) approaches 1 n′(rs)2 approaches
0 due to the factor [1− f(rs)WF ]2(WF−1) and when f(rs) approaches 0 n′(rs)2 approaches 0 again due to
the factor [f(rs)2(WF−1)] .
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Back again to the negative energy density using the Natario shape function with warp factors:

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
[
3
16

]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)][
@2

cosh4[@(rs−R)]
]
]

(116)

Independently of the thickness parameter @ or the bubble radius R for a warp factor WF = 500 we
have the following situations considering the Alcubierre warped region 1 > f(rs) > 0 :

• 1)-in the beginning of the Alcubierre warped region when f(rs) = 0, 9 then [f(rs)2(WF−1)] =
[(0, 9)2(500−1)] = (0, 9)2(499) = (0, 9)998 = 2, 157865742868E − 046

• 2)-in the middle of the Alcubierre warped region when f(rs) = 0, 5 then [f(rs)2(WF−1)] = [(0, 5)2(500−1)] =
(0, 5)2(499) = (0, 5)998 = 3, 733054474013E − 301

• 3)-in the end of the Alcubierre warped region when f(rs) = 0, 1 then [f(rs)2(WF−1)] = [(0, 1)2(500−1)] =
(0, 1)2(499) = (0, 1)998 = 0, 000000000000E + 000

Note that the Natario shape function with warp factors completely obliterated the term c2

G
v2

s
8π with the

factor 1048 from 200 times light speed making the negative energy density requirements physically feasible!!

And remember that 1048 is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of
the planet Earth!!!

26



8 The analysis of Gianluca Perniciano applied to the geometry of the
Natario warp drive spacetime in both the original and parallel 1 + 1
ADM formalisms:Reduction of the negative energy density levels able
to sustain a superluminal warp bubble using a new Natario shape
function defined using the Perniciano coefficient

Considering the shape functions that defines both the Alcubierre and Natario warp drive spacetimes as
shown below:

• 1)-Alcubierre shape function and its derivative square:13.

f(rs) =
1
2
[1− tanh[@(rs−R)] (117)

f ′(rs)2 =
1
4
[

@2

cosh4[@(rs−R)]
] (118)

• 2)-original Natario shape function and its derivative square:

n(rs) =
1
2
[1− f(rs)] (119)

n′(rs)2 =
1
16

[
@2

cosh4[@(rs−R)]
] (120)

According with Alcubierre any function f(rs) that gives 1 inside the bubble and 0 outside the bubble
while being 1 > f(rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre
warp drive.(see eqs 6 and 7 pg 4 in [1] or top of pg 4 in [2]).

According with Natario(pg 5 in [2]) any function that gives 0 inside the bubble and 1
2 outside the bubble

while being 0 < n(rs) < 1
2 in the Natario warped region is a valid shape function for the Natario warp drive.

Note that the Alcubierre shape function is being used to define its Natario shape function counterpart.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

Note that the square of the derivative of the Natario original shape function in 4 times smaller than
its Alcubierre counterpart.

Note also that these functions are analytical 14.

13tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|
14continuous and differentiable in all points of their respective domains
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Considering the shape functions that defines the Natario warp drive spacetimes with warp factors as
shown below:

• 3)-Natario shape function with warp factors and its derivative square:

n(rs) = [
1
2
][1− f(rs)WF ]WF (121)

n′(rs)2 = [
1
4
]WF 4[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)]f ′(rs)2 (122)

The shape function above also gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1
2

outside the warp bubble while being 0 < n(rs) < 1
2 in the Natario warped region(see pg 5 in [2]).

Note that the Alcubierre shape function f(rs) is also being used to define this Natario shape function
counterpart. The term WF in this Natario shape function presented above is dimensionless too:it is the
warp factor that will squeeze the region where the derivatives of the Natario shape function are different
than 0.The warp factor is always a fixed integer number directly proportional to the modulus of the bubble
radius.WF > |R|.

For the Natario shape function introduced above it is easy to figure out when f(rs) = 1(interior of
the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f(rs) = 0(exterior of the
Alcubierre bubble)then n(rs) = 1

2(exterior of the Natario bubble).

Note that inside the Alcubierre warped region 1 > f(rs) > 0 and for a large warp factor WF > |R|
when f(rs) approaches 1 n′(rs)2 approaches 0 due to the factor [1 − f(rs)WF ]2(WF−1) and when f(rs)
approaches 0 n′(rs)2 approaches 0 again due to the factor [f(rs)2(WF−1)].This is due to the fact that
[1− f(rs)WF ]2(WF−1) << 1 and [f(rs)2(WF−1)] << 1 and their product
[1− f(rs)WF ]2(WF−1)[f(rs)2(WF−1)] <<<< 1

• Numerical plot for this Natario shape function with @ = 50000 bubble radius R = 100 meters and
warp factor WF = 200

rs f(rs) n(rs) f ′(rs)2 n′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251 0
9, 99980000000E + 001 1 0 1, 915169647489E − 164 0
9, 99990000000E + 001 1 0 1, 383896564748E − 077 0
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008 3, 872591914849E − 103
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077 0
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164 0
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251 0

In the plot above we can see that in the region inside the bubble f(rs) = 1 but f ′(rs)2 6= 0.Also in
the region outside the bubble f(rs) = 0 but again f ′(rs)2 6= 0.Note that f ′(rs)2 6= 0 but f ′(rs)2 ∼= 0
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Then we can see clearly two distinct warped regions:one is the region where 1 > f(rs) > 0(the Ge-
ometrized warped region corresponding in this case to the Alcubierre warped region)and the other is the
region where f ′(rs)2 6= 0 resulting in a non-vanishing negative energy density(the Energized warped region).

Although in the previous plot the Natario shape function considered was the one with warp factors its
numerical values are exactly the same ones of the Natario shape function without warp factors however
the values of the derivative squares of both functions do not match.

But we know that the derivative squares of the original Natario shape function without warp factors
are exactly the ones of the Alcubierre shape function divided by 4.

Therefore considering the Natario case we face a similar scenario: We have again two distinct warped
regions:one is the region where 0 < n(rs) < 1

2(the Geometrized warped region corresponding in this case
to the Natario warped region)and the other is the region where f ′(rs)2 6= 0 and hence in a n′(rs)2 6= 0
resulting in a non-vanishing negative energy density(the Energized warped region).

For a warp bubble of 100 meters of radius from 0 to 99, 996 meters the square derivatives of the shape
function are zero resulting in a zero energy density(flat spacetime).Also from 100, 004 meters and beyond
the square derivatives of the shape function are also zero(again flat spacetime).

But in the region between 99, 997 to 100, 003 meters the square derivatives are not zero resulting in a
non-zero negative energy density(Geometrized warped region).The square derivative starts with a value of
10−251 at 99, 997 meters an extremely low value reaches its maximum peak of 108 at 100 meters and then
decreases again to 10−251 at 100, 003 meters.

Both the Alcubierre and Natario warped regions are layered over 100 meters.

Considering now the expression of the negative energy density in the equatorial plane of the Natario
warp drive (1 + 1 spacetime):

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(n′(rs))2

]
(123)

We already know that for a speed of 200 times light speed the negative energy density is directly propor-
tional to 1048 resulting from the term c2

G
v2

s
8π .

And in order to get a physically feasible Natario warp drive the square derivative of the Natario shape
function must obliterate the factor 1048.

Then from the equation above we can see that a very low derivative and hence its square can perhaps
obliterate the huge factor of 1048 ameliorating the negative energy density requirements to sustain the
warp drive.

From the previous section we know that the first Natario shape function cannot low the negative en-
ergy density requirements and we need to use the second Natario shape function defined using warp factors
in order to do so.The first Natario shape function can obliterate the factor 1048 at 99, 997 meters but not
at 100 meters.
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But suppose that we want to reduce the negative energy density requirements with a Natario shape
function that do not use warp factors?.The analysis of Perniciano allow ourselves to accomplish our goal.

Perniciano at pg 9 in [17] pgs 3 and 4 in [18] introduces for the Alcubierre warp drive a new coefficient
a(rs) with the following values:

• 1)-inside the warp bubble when f(rs) = 1 then a(rs) = 1

• 2)-outside the warp bubble when f(rs) = 0 then a(rs) = 1

• 3)-in the Alcubierre warped region(1 > f(rs) > 0) the Perniciano coefficient a(rs) >> 1 possessing
extremely large values

According with Perniciano the Alcubierre shape function must be divided by the Perniciano coefficient
as shown below;

g(rs) =
f(rs)
a(rs)

(124)

When f(rs) = 1 then a(rs) = 1 and hence g(rs) = 1 and when f(rs) = 0 then a(rs) = 1 and hence
g(rs) = 0 so g(rs) remains a valid Alcubierre shape function similar to the original one except in the
Alcubierre warped region where g(rs) behaves different when compared to f(rs)

Redefining the Perniciano coefficient a(rs) for the Natario warp drive we should expect for:

• 1)-inside the warp bubble when n(rs) = 0 then a(rs) = 1

• 2)-outside the warp bubble when n(rs) = 1
2 then a(rs) = 1

• 3)-in the Natario warped region(0 < n(rs) < 1
2) the Perniciano coefficient a(rs) >> 1 possessing

extremely large values

Dividing the original Natario shape function by the Perniciano coefficient

p(rs) =
n(rs)
a(rs)

(125)

When n(rs) = 0 then a(rs) = 1 and hence p(rs) = 0 and when n(rs) = 1
2 then a(rs) = 1 and hence

p(rs) = 1
2 so p(rs) remains a valid Natario shape function similar to the original one except in the Natario

warped region where p(rs) behaves different when compared to n(rs)

We will now examine the behavior of the Natario shape function when divided by the Perniciano coefficient:

However the expression of the Perniciano coefficient presented in pg 9 in [17] pgs 3 and 4 in [18] is not
analytical15.An analytical expression for the Perniciano coefficient can be given by:

a(rs) = (
1
2
[1 + tanh[@(rs−R)]2])−P =

1
(1
2 [1 + tanh[@(rs−R)]2])P

(126)

15not continuous and not differentiable in all point of the trajectory
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In the expression of the Perniciano coefficient

a(rs) = (
1
2
[1 + tanh[@(rs−R)]2])−P =

1
(1
2 [1 + tanh[@(rs−R)]2])P

(127)

P ia a dimensionless parameter related to the modulus of the bubble radius |R| or the modulus of the
thickness parameter |@|. Remember that a bubble with small thickness must have |@| > |R| so a P defined
in function of |@| is more effective.

The derivative of the Natario shape function p(rs) is then given by:

p′(rs) =
n′(rs)a(rs)− a′(rs)n(rs)

a(rs)2
(128)

And its derivative square is:

(p′(rs))2 =
[n′(rs)2][a(rs)2] + [a′(rs)2][n(rs)2]− 2n′(rs)n(rs)a′(rs)a(rs)

a(rs)4
(129)

Now the main point of view of the Perniciano analysis becomes clear:a large Perniciano coefficient
a(rs) >> 1 in the Natario warped region means a very large a(rs)2 >>>> 1 in the lower part of the
fraction of the derivative and an even larger a(rs)4 >>>>>> 1 in the lower part of the derivative square
fraction. So the derivative square p′(rs)2 is much but much lower when compared to the original n′(rs)2

effectively reducing the negative energy density requirements to sustain a Natario warp drive.

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3(p′(rs))2

]
(130)

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3
[n′(rs)2][a(rs)2] + [a′(rs)2][n(rs)2]− 2n′(rs)n(rs)a′(rs)a(rs)

a(rs)4

]
(131)

An extra large a(rs)4 >>>>>> 1 in the lower part of the derivative square fraction can easily oblit-
erate the factor c2

G
v2

s
8π eliminating the huge factor 1048 when a ship travels at 200 times light speed.

The derivative a′(rs) of the Perniciano coefficient a(rs) is then given by:

a′(rs) = (−P )(
1
2
[1 + tanh[@(rs−R)]2])−[P+1] @tanh[@(rs−R)]

cosh[@(rs−R)]2
(132)

Note that the term (1
2 [1 + tanh[@(rs−R)]2])−[P+1] obliterates the term P or the thickness parameter

@ and is even larger than the Perniciano coefficient itself resulting in a very low derivative.

The square derivative a′(rs)2 of the Perniciano coefficient a(rs) is given by:

a′(rs)2 = (P )2(
1
2
[1 + tanh[@(rs−R)]2])−2[P+1](

@tanh[@(rs−R)]
cosh[@(rs−R)]2

)2 (133)

Note that the term (1
2 [1 + tanh[@(rs−R)]2])−2[P+1] obliterates all the remaining terms resulting in a

very low derivative square.

31



The expression for the Perniciano coefficient is given by:

a(rs) = (
1
2
[1 + tanh[@(rs−R)]2])−P =

1
(1
2 [1 + tanh[@(rs−R)]2])P

(134)

Raised to the 4 power we have:

a(rs)4 = (
1
2
[1 + tanh[@(rs−R)]2])−4P =

1
(1
2 [1 + tanh[@(rs−R)]2])4P

(135)

And note that the 4 power of the Perniciano coefficient appears in the lower part of the fraction of the
negative energy density for the Natario warp drive spacetime completely obliterating the factor c2

G
v2

s
8π

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3
[n′(rs)2][a(rs)2] + [a′(rs)2][n(rs)2]− 2n′(rs)n(rs)a′(rs)a(rs)

a(rs)4

]
(136)

We will now demonstrate the effectiveness of the Perniciano coefficient with the following numerical
plots:

• Numerical plot for the Perniciano coefficient a(rs) with @ = 5000 P = 280 and a bubble radius
R = 100 meters

rs f(rs) n(rs) a(rs)
9, 99960000000E + 001 1, 0000000000E + 000 0, 000000000000E + 000 1, 00000000000E + 000
9, 99970000000E + 001 1, 0000000000E + 000 4, 679590048795E − 014 1, 00000000005E + 000
9, 99980000000E + 001 9, 9999999794E − 001 1, 030576846084E − 009 1, 00000115425E + 000
9, 99990000000E + 001 9, 9995460213E − 001 2, 269893435980E − 005 1, 02574872203E + 000
1, 00000000000E + 002 5, 0000000000E − 001 2, 500000000000E − 001 1, 94266889223E + 084
1, 00001000000E + 002 4, 5397868681E − 005 4, 999773010657E − 001 1, 02574872200E + 000
1, 00002000000E + 002 2, 0611536367E − 009 4, 999999989694E − 001 1, 00000115425E + 000
1, 00003000000E + 002 9, 3591800976E − 014 5, 000000000000E − 001 1, 00000000005E + 000
1, 00004000000E + 002 0, 0000000000E + 000 5, 000000000000E − 001 1, 00000000000E + 000

In the plot above the Perniciano coefficient a(rs) is always 1 from zero to 99, 997 meters from the center of
the bubble and at 99, 998 meters starts to grow reaching the maximum peak value of 1084 at 100 meters
decreasing again to 1 at 100, 004 meters and beyond.The analytical expression presented for a(rs) agrees
with the Perniciano requirements for both the Alcubierre and Natario warp drive

• 1)-inside the warp bubble when f(rs) = 1 then a(rs) = 1

• 2)-outside the warp bubble when f(rs) = 0 then a(rs) = 1

• 3)-in the Alcubierre warped region(1 > f(rs) > 0) the Perniciano coefficient a(rs) >> 1 possessing
extremely large values

• 1)-inside the warp bubble when n(rs) = 0 then a(rs) = 1

• 2)-outside the warp bubble when n(rs) = 1
2 then a(rs) = 1

• 3)-in the Natario warped region(0 < n(rs) < 1
2) the Perniciano coefficient a(rs) >> 1 possessing

extremely large values

Note that a(rs)4 in this case would be a gigantic number of 10336 !!! a number with 336 zeros !!!.This
number can obliterate the factor 1048 resulting from a 200 times light speed.
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• Numerical plot for the Perniciano coefficient a(rs) with @ = 50000 P = 280 and a bubble radius
R = 100 meters

rs f(rs) n(rs) a(rs)
9, 99960000000E + 001 1, 0000000000E + 000 0, 000000000000E + 000 1, 00000000000E + 000
9, 99970000000E + 001 1, 0000000000E + 000 0, 000000000000E + 000 1, 00000000000E + 000
9, 99980000000E + 001 1, 0000000000E + 000 0, 000000000000E + 000 1, 00000000000E + 000
9, 99990000000E + 001 1, 0000000000E + 000 0, 000000000000E + 000 1, 00000000000E + 000
1, 00000000000E + 002 5, 0000000000E − 001 2, 500000000000E − 001 1, 94266889223E + 084
1, 00001000000E + 002 0, 0000000000E + 000 5, 000000000000E − 001 1, 00000000000E + 000
1, 00002000000E + 002 0, 0000000000E + 000 5, 000000000000E − 001 1, 00000000000E + 000
1, 00003000000E + 002 0, 0000000000E + 000 5, 000000000000E − 001 1, 00000000000E + 000
1, 00004000000E + 002 0, 0000000000E + 000 5, 000000000000E − 001 1, 00000000000E + 000

• Numerical plot for the Alcubierre shape function and its derivative square with @ = 50000 and a
bubble radius R = 100 meters

rs f(rs) n(rs) f ′(rs)2

9, 99970000000E + 001 1 0 2, 650396620740E − 251
9, 99980000000E + 001 1 0 1, 915169647489E − 164
9, 99990000000E + 001 1 0 1, 383896564748E − 077
1, 00000000000E + 002 0, 5 0, 5 6, 250000000000E + 008
1, 00001000000E + 002 0 0, 5 1, 383896486082E − 077
1, 00002000000E + 002 0 0, 5 1, 915169538624E − 164
1, 00003000000E + 002 0 0, 5 2, 650396470082E − 251

In this case due to the high value of @ both the Alcubierre and Natario warped regions are squeezed
over the radius R = 100 meters.Again the Perniciano coefficient a(rs) is 1 inside and outside the bubble
starting to grow at 99, 999 meters reaching the maximum value of 1084 at 100 meters decreasing again to
1 at 100, 001 meters. Note that when a(rs) is 1 the derivative squares of the Alcubierre shape function
f ′(rs)2 have low values obliterating the factor 1048 but at 100 meters the square derivative reaches the
maximum peak value of 108 but the division by a(rs)4 which possesses the value of 10336 obliterates the fac-
tor 1048 resulting from a 200 times light speed reducing effectively the negative energy density requirements.

Remember that the square derivative of the original Natario shape function is 4 times lower than its
Alcubierre counterpart.
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9 Conclusion:

In this work we demonstrated the existence of two alternative equations for the warp drive spacetime
according to Natario in two parallel 3 + 1 ADM formalisms(contravariant and covariant) beyond the
original 3 + 1 ADM formalism used by both Alcubierre and Natario.

• 1)-equation of the Natario warp drive given in the parallel contravariant 3 + 1 ADM formalism.

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (137)

This equation appeared for the first time some years ago from 2012 to 2014 in the works pg 4 eq 1 in
[5],pg 12 eq 50 in [6],pg 14 eq 38 in [7],pg 20 eq 80 in [8],pg 9 eq 12 in [10]

Note that all the shift vectors Xrs and Xθ which composes the Natario vector nX are given in con-
travariant form and the Natario vector nX is also written in contravariant form (pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (138)

• 2)-equation of the Natario warp drive given in the parallel covariant 3 + 1 ADM formalism.

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (139)

Since the Natario warp drive can be written using an alternative equation in the parallel contravariant
3 + 1 ADM formalism we examined the possibility of the existence of even another alternative equation
for the Natario warp drive but written in the parallel covariant 3 + 1 ADM formalism.Such equation is
depicted above.

Note that all the shift vectors Xrs and Xθ which composes the Natario vector ncX are given in covariant
form and the Natario vector ncX is also written in covariant form

ncX = Xrsdrs + Xθrsdθ (140)

• 3)-equation of the Natario warp drive given in the original 3 + 1 ADM formalism.

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (141)

Alcubierre used the original 3 + 1 ADM formalism in his warp drive(see eq 1 pg 3 in [1]) and we have
reasons to believe that Natario which followed the Alcubierre steps also used the original 3 + 1 ADM
formalism to derive the original Natario warp drive equation depicted above.

Note that this equation have both contravariant and covariant shift vectors in the g00 component and
the pseudo Natario vector with all the shift vectors in covariant form cX can be given by:

cX = Xrsdrs + Xθdθ (142)
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But in the 1+1 spacetime all these equations are mathematically equal due to the equivalence between
the contravariant and covariant shift vector components Xrs = Xrs:

ds2 = (1− [Xrs]2)dt2 + 2(Xrsdrs)dt− drs2 (143)

So at least in a 1 + 1 spacetime the parallel 1 + 1 ADM formalism wether contravariant or covariant
coincides with the original 1 + 1 ADM formalism and since the works [5],[6],[7],[8] and [10] uses the di-
mensional reduction from a 3 + 1 spacetime to a 1 + 1 spacetime the conclusions of these works remains
correct.

In section 2 we presented two Natario shape functions and while one of them makes the Natario warp
drive impossible to be physically achieved due to high negative energy density requirements the other
makes the Natario warp drive perfectly possible to be achieved because this shape function have a form
that allows low and ”affordable” negative energy density requirements.Then the form of the shape func-
tions affects the behavior of the Natario warp drive spacetime specially in the Natario warped region.For
a better description about how the second Natario shape function reduces the negative energy density
requirements in the Natario warp drive see [8] and [9].

In section 3 we presented the detailed mathematical structure of the new equation for the Natario warp
drive spacetime metric in the parallel contravariant 3 + 1 ADM formalism and we verified that this equa-
tion satisfies the Natario requirements for a warp drive spacetime.

In section 4 we presented the detailed mathematical structure of the new equation for the Natario warp
drive spacetime metric in the parallel covariant 3 + 1 ADM formalism and we verified that this equation
also satisfies the Natario requirements for a warp drive spacetime.

In section 5 we presented the detailed mathematical structure of the equation for the Natario warp
drive spacetime metric in the original 3 + 1 ADM formalism using the approaches of MTW ([11]) and
Alcubierre([12]).We also verified that this equation satisfies the Natario requirements for a warp drive
spacetime.

In section 6 we compared the original 3 + 1 ADM formalism with the parallel contravariant and covariant
3 + 1 ADM formalisms for all the Natario warp drive equations and while the equation in the origi-
nal formalism have the spacetime geometry completely known(eq:Christoffel symbols,Riemann and Ricci
tensors,Ricci scalar,Einstein tensor,stress-energy-momentum tensor for negative energy densities,extrinsic
curvatures etc) the same mathematical entities for the new equations in the parallel formalisms remains
unknown and must be calculated in a ”all-the-way-round” hand by hand or can be obtained using computer
programs like Maple or Mathematica.

Still in section 6 we can see that in the 1 + 1 spacetime all these ADM formalisms are identical and
the new Natario warp drive equations have the same negative energy density requirements of the original
one so the shape function used to lower the negative energy density to ”affordable” levels in the original
equation is valid also in the new ones.
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Also in section 6 we demonstrated that the zero expansion behavior of the original Natario warp drive
equation in the original 3 + 1 ADM formalism is maintained when we reduce the dimensions to a original
1 + 1 ADM formalism and since the parallel 1 + 1 ADM formalisms wether contravariant or covariant are
equivalent to the original one then we can say that at least in a 1 + 1 spacetime the new equations have
also a zero expansion behavior.

Another important thing is the fact that all these equations possesses negative energy density in the
warp bubble in front of the ship even in a 1 + 1 spacetime16and the repulsive behavior of the negative
energy density can protect the ship against Doppler blueshifted photons or collisions with hazardous inter-
stellar matter(space dust,debris,asteroids,comets etc) a ship would encounter in a superluminal interstellar
spaceflight in a real fashion.Also the negative energy density in front of the ship can protect the ship against
the infinite Doppler blueshifts in the Horizon.For more about collisions with interstellar matter and infinite
Doppler blueshifts see [5],[7] and [8].

The Natario warp drive spacetime is a very rich environment to study the superluminal features of General
Relativity because now we have three spacetime metrics and not only one and the geometry of the new
equations in the 3 + 1 spacetime is still unknown and needs to be cartographed.

The 3+1 original ADM formalism with signature (−,+,+,+) is given by the equation (21.40) pg [507(b)]
[534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (144)

The 3 + 1 parallel contravariant ADM formalism with signature (−,+,+,+) is given by the equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (145)

The 3 + 1 parallel covariant ADM formalism with signature (−,+,+,+) is given by the equation:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (146)

While the Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein tensors or extrinsic cur-
vature tensors are completely known and chartered for the original 3 + 1 ADM formalism these mathe-
matical entities are completely unknown for the parallel 3 + 1 ADM formalisms and this can open new
avenues of research in General Relativity.

In this work we developed the parallel contravariant and covariant 3 + 1 ADM formalisms exclusively
for the Natario warp drive spacetime but it can also be applied to other spacetime metrics.

16the negative energy density do not vanish in front of the ship even in a 1 + 1 spacetime

36



In section 7 for the problem of the negative energy density needed to travel at 200 times light speed
we lowered the total amount from 1048 which is 1.000.000.000.000.000.000.000.000 the mass of the Earth
to arbitrary low levels using a Natario shape function with warp factors derived from the modulus of the
bubble radius.

In section 8 we present the analysis of Gianluca Perniciano as a second way to low the negative energy
density requirements of the Natario warp drive spacetime.The analytical expression for the Perniciano
coefficient is given by:

a(rs) = (
1
2
[1 + tanh[@(rs−R)]2])−P =

1
(1
2 [1 + tanh[@(rs−R)]2])P

(147)

And must obey the following Perniciano requirements:

• 1)-inside the warp bubble when n(rs) = 0 then a(rs) = 1

• 2)-outside the warp bubble when n(rs) = 1
2 then a(rs) = 1

• 3)-in the Natario warped region(0 < n(rs) < 1
2) the Perniciano coefficient a(rs) >> 1 possessing

extremely large values

Dividing the original Natario shape function by the Perniciano coefficient

p(rs) =
n(rs)
a(rs)

(148)

When n(rs) = 0 then a(rs) = 1 and hence p(rs) = 0 and when n(rs) = 1
2 then a(rs) = 1 and hence

p(rs) = 1
2 so p(rs) remains a valid Natario shape function similar to the original one except in the Natario

warped region where p(rs) behaves different when compared to n(rs)

And note that the 4 power of the Perniciano coefficient appears in the lower part of the fraction of the
negative energy density for the Natario warp drive spacetime completely obliterating the factor c2

G
v2

s
8π

ρ = Tµνu
µuν = −c2

G

v2
s

8π

[
3
[n′(rs)2][a(rs)2] + [a′(rs)2][n(rs)2]− 2n′(rs)n(rs)a′(rs)a(rs)

a(rs)4

]
(149)

While the warp factor can reduce the negative energy density requirements needed to sustain a warp
drive the Perniciano coefficient is more effective however the mathematical expression for the derivative
square becomes more complicated
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But unfortunately although we can discuss mathematically how to reduce the negative energy density
requirements to sustain a warp drive wether using warp factors or Perniciano coefficients we dont know how
to generate the shape function that distorts the spacetime geometry creating the warp drive effect.So un-
fortunately all the discussions about warp drives are still under the domain of the mathematical conjectures.

However we are confident to affirm that the Natario warp drive will survive the passage of the Cen-
tury XXI and will arrive to the Future.The Natario warp drive as a valid candidate for faster than light
interstellar space travel will arrive to the the Century XXIV on-board the future starships up there in
the middle of the stars transforming the scenario depicted in the science fiction novel Star Trek from an
impossible dream into a physical reality and helping the human race to give his first steps in the exploration
of our Galaxy

Live Long And Prosper

As Captain Jean-Luc Picard would say:Make It So!!!
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10 Appendix A:differential forms,Hodge star and the mathematical
demonstration of the Natario vectors nX = −vsdx and nX = vsdx

for a constant speed vs

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (150)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (151)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (152)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (153)

rdθ ∼ r sin θ(dϕ ∧ dr) (154)

r sin θdϕ ∼ r(dr ∧ dθ) (155)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(pg 8 in [4]):

∗dr = r2 sin θ(dθ ∧ dϕ) (156)

∗rdθ = r sin θ(dϕ ∧ dr) (157)

∗r sin θdϕ = r(dr ∧ dθ) (158)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [2]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(159)

Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (160)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (161)
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Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (162)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (163)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (164)

We know that the following expression holds true(see pg 9 in [3]):

dϕ ∧ dr = −dr ∧ dϕ (165)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (166)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [2]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(167)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(168)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (169)

According to pg 10 in [3] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (170)

Because and according to pg 10 in [3]:

d(α + β) = dα + dβ (171)

d(fα) = df ∧ α + f ∧ dα (172)

d(dx) = d(dy) = d(dz) = 0 (173)
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From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (174)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (175)

And then we derived again the Natario result of pg 5 in [2]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (176)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [2] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (177)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (178)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (179)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (180)

Comparing the above expressions with the Natario definitions of pg 4 in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (181)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (182)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (183)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (184)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (185)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (186)

Defining the Natario Vector as in pg 5 in [2] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(187)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(188)
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We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [2]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (189)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (190)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (191)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (192)
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11 Appendix B:The Natario warp drive and the parallel contravariant
3 + 1 ADM Formalism

A 3 + 1 ADM contravariant formalism parallel to the original 3 + 1 ADM formalism according with the
equation (21.40) pg [507(b)] [534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (193)

using the signature (−,+,+,+) can be given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (194)

Note that in the equation above all the essential 3 elements of the original 3 + 1 ADM formalism are
also present17.These elements are:

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the contravariant shift vector.

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (195)

(
√

γiidxi + βidt)2 = γii(dxi)2 + 2
√

γiiβ
idxidt + (βidt)2 (196)

ds2 = −α2dt2 + γii(dxi)2 + 2
√

γiiβ
idxidt + (βidt)2 (197)

ds2 = −α2dt2 + (βidt)2 + 2
√

γiiβ
idxidt + γii(dxi)2 (198)

ds2 = (−α2 + [βi]2)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (199)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (200)

17see Appendix E on the original 3 + 1 ADM formalism
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Then the equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism are
given by:

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (201)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(202)

The components of the inverse metric are given by the matrix inverse :18

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(203)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−α2 + βiβi]× γii)− (

√
γiiβi ×√

γiiβi)

(
γii −√γiiβ

i

−√γiiβ
i −α2 + βiβi

)
(204)

Suppressing the lapse function α = 1 we have:

ds2 = (−1 + βiβi)dt2 + 2
√

γiiβ
idxidt + γiidxidxi (205)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβi √

γiiβ
i

√
γiiβ

i γii

)
(206)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(207)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−1 + βiβi]× γii)− (

√
γiiβi ×√

γiiβi)

(
γii −√γiiβ

i

−√γiiβ
i −1 + βiβi

)
(208)

Changing the signature from (−,+,+,+) to (+,−,−,−) we should expect for:

ds2 = (1− βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (209)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(210)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(211)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(212)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×√

γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(213)

18see Wikipedia:the free Encyclopedia on inverse or invertible matrices
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The equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism given by:

ds2 = (1− βiβi)dt2 − 2
√

γiiβ
idxidt− γiidxidxi (214)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβ
i

−√γiiβ
i −γii

)
(215)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(216)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(217)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×√

γiiβi)

(
−γii

√
γiiβ

i

√
γiiβ

i 1− βiβi

)
(218)

obeys the generic equation of a warp drive in the parallel contravariant 3 + 1 ADM formalism:

ds2 = dt2 − (
√

γiidxi + βidt)2 (219)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (220)

The Natario equation above gicen in oontravariant form is valid only in cartezian coordinates.For
a generic coordinates system in contravariant form we must employ the equation given by the parallel
contravariant 3 + 1 ADM formalism as being:

ds2 = dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (221)

Note that βi = −Xi and βiβi = XiXi with Xi being the Natario contravariant shift vectors. Hence
we have:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (222)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi √
γiiX

i

√
γiiX

i −γii

)
(223)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(224)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×√

γiiXi)

(
−γii −√γiiX

i

−√γiiX
i 1−XiXi

)
(225)
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For the equations of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (226)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi √
γiiX

i

√
γiiX

i −γii

)
(227)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(228)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×√

γiiXi)

(
−γii −√γiiX

i

−√γiiX
i 1−XiXi

)
(229)

And looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (230)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (231)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (232)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the equation of the Natario warp drive in the parallel contravariant 3 + 1 ADM formalism is
given by:

ds2 = (1−XiXi)dt2 + 2
√

γiiX
idxidt− γiidxidxi (233)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (234)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (235)

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (236)

Note that the equation of the Natario vector nX(pg 2 and 5 in [2]) appears twice in the equation above
due to the non-diagonalized shift components:

nX = Xrsdrs + Xθrsdθ (237)

As a matter of fact expanding the term

√
γiiX

idxi = Xrsdrs + Xθrsdθ (238)

we recover again the Natario vector since γrr = 1,γθθ = rs2 √γrr = 1
√

γθθ = rs
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12 Appendix C:The Natario warp drive and the parallel covariant 3+1
ADM Formalism

A 3 + 1 ADM covariant formalism parallel to the original 3 + 1 ADM formalism according with the
equation (21.40) pg [507(b)] [534(a)] in [11]

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (239)

using the signature (−,+,+,+) can be given by:

gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)(
√

γjjdxj + βjdt) (240)

Note that in the equation above all the essential 3 elements of the original 3 + 1 ADM formalism are
also present19.These elements are:

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface.In this case dl =

√
γijdxidxj .

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(
√

γiidxi + βidt).βi is known as the covariant shift vector defined as : βi = γijβ
j .

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi dl =
√

γiidxi and we have
for the 3 + 1 spacetime metric the following result:

ds2 = gµν dxµ dxν = −α2dt2 + (
√

γiidxi + βidt)2 (241)

(
√

γiidxi + βidt)2 = γii(dxi)2 + 2
√

γiiβidxidt + (βidt)2 (242)

ds2 = −α2dt2 + γii(dxi)2 + 2
√

γiiβidxidt + (βidt)2 (243)

ds2 = −α2dt2 + (βidt)2 + 2
√

γiiβidxidt + γii(dxi)2 (244)

ds2 = (−α2 + [βi]2)dt2 + 2
√

γiiβidxidt + γiidxidxi (245)

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (246)

19see Appendix E on the original 3 + 1 ADM formalism
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Then the equations of the Natario warp drive in the parallel covariant 3+1 ADM formalism are given
by:

ds2 = (−α2 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (247)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβi

√
γiiβi√

γiiβi γii

)
(248)

The components of the inverse metric are given by the matrix inverse :20

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(249)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−α2 + βiβi]× γii)− (

√
γiiβi ×

√
γiiβi)

(
γii −√γiiβi

−√γiiβi −α2 + βiβi

)
(250)

Suppressing the lapse function α = 1 we have:

ds2 = (−1 + βiβi)dt2 + 2
√

γiiβidxidt + γiidxidxi (251)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβi

√
γiiβi√

γiiβi γii

)
(252)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(253)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([−1 + βiβi]× γii)− (

√
γiiβi ×

√
γiiβi)

(
γii −√γiiβi

−√γiiβi −1 + βiβi

)
(254)

Changing the signature from (−,+,+,+) to (+,−,−,−) we should expect for:

ds2 = (1− βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (255)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβi

−√γiiβi −γii

)
(256)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(257)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(258)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×

√
γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(259)

20see Wikipedia:the free Encyclopedia on inverse or invertible matrices
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The equations of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism given by:

ds2 = (1− βiβi)dt2 − 2
√

γiiβidxidt− γiidxidxi (260)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβi −√γiiβi

−√γiiβi −γii

)
(261)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(262)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (−√γiiβi ×−√γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(263)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1− βiβi]×−γii)− (

√
γiiβi ×

√
γiiβi)

(
−γii

√
γiiβi√

γiiβi 1− βiβi

)
(264)

obeys the generic equation of a warp drive in the parallel covariant 3 + 1 ADM formalism:

ds2 = dt2 − (
√

γiidxi + βidt)2 (265)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (266)

The Natario equation above given in contravariant form is valid only in cartezian coordinates.For a
generic coordinates system in covariant form we must employ the equation given by the parallel covariant
3 + 1 ADM formalism as being:

ds2 = dt2 −
3∑

i=1

(
√

γiidxi −Xidt)2 (267)

with Xi = γiiX
i

Note that βi = −Xi and βiβi = XiXi with Xi being the covariant Natario shift vectors. Hence we
have:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (268)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi
√

γiiXi√
γiiXi −γii

)
(269)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(270)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×

√
γiiXi)

(
−γii −√γiiXi

−√γiiXi 1−XiXi

)
(271)
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For the equations of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (272)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiXi
√

γiiXi√
γiiXi −γii

)
(273)

gµν =
(

g00 g0i

gi0 gii

)
=

1
(g00 × gii)− (gi0 × g0i)

(
gii −g0i

−gi0 g00

)
(274)

gµν =
(

g00 g0i

gi0 gii

)
=

1
([1−XiXi]×−γii)− (

√
γiiXi ×

√
γiiXi)

(
−γii −√γiiXi

−√γiiXi 1−XiXi

)
(275)

And looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (276)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (277)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (278)

But remember that dl2 = γijdxidxj = dr2 + r2dθ2 with γrr = 1,γθθ = r2 √γrr = 1
√

γθθ = r and
r = rs.Then the covariant shift vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (279)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (280)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (281)

It is possible to construct a covariant form for the Natario vector nX defined as ncX as follows:

ncX = Xrsdrs + Xθrsdθ (282)

With the covariant shift vector components Xrs and Xθ defined as shown above:
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The equation of the Natario warp drive in the parallel covariant 3 + 1 ADM formalism is given by:

ds2 = (1−XiXi)dt2 + 2
√

γiiXidxidt− γiidxidxi (283)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrsdt + Xθrsdθdt)− drs2 − rs2dθ2 (284)

ds2 = (1−XrsXrs −XθXθ)dt2 + 2(Xrsdrs + Xθrsdθ)dt− drs2 − rs2dθ2 (285)

ds2 = [1− (Xrs)2 − (Xθ)2]dt2 + 2[Xrsdrs + Xθrsdθ]dt− drs2 − rs2dθ2 (286)

Note that the equation of the covariant Natario vector ncX appears twice in the equation above due
to the non-diagonalized shift components:

ncX = Xrsdrs + Xθrsdθ (287)

As a matter of fact expanding the term

√
γiiXidxi = Xrsdrs + Xθrsdθ (288)

we recover again the covariant form of the Natario vector since γrr = 1,γθθ = rs2 √γrr = 1
√

γθθ = rs
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13 Appendix D:The Natario warp drive negative energy density in
Cartezian coordinates

The negative energy density according to Natario is given by(see pg 5 in [2])21:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2 cos2 θ +

(
n′(rs) +

r

2
n′′(rs)

)2
sin2 θ

]
(289)

In the bottom of pg 4 in [2] Natario defined the x-axis as the polar axis.In the top of page 5 we can see
that x = rs cos(θ) implying in cos(θ) = x

rs and in sin(θ) = y
rs

Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2(

x

rs
)2 +

(
n′(rs) +

r

2
n′′(rs)

)2
(

y

rs
)2
]

(290)

Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y2 + z2] = 0
and rs2 = [(x− xs)2] and making xs = 0 the center of the bubble as the origin of the coordinate frame for
the motion of the Eulerian observer then rs2 = x2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should
expect for:

ρ = Tµνu
µuν = − 1

16π
KijK

ij = − v2
s

8π

[
3(n′(rs))2

]
(291)

21n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1
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14 Appendix E:mathematical demonstration of the Natario warp drive
equation for a constant speed vs in the original 3+1 ADM Formalism
according to MTW and Alcubierre

General Relativity describes the gravitational field in a fully covariant way using the geometrical line ele-
ment of a given generic spacetime metric ds2 = gµνdxµdxν where do not exists a clear difference between
space and time.This generical form of the equations using tensor algebra is useful for differential geometry
where we can handle the spacetime metric tensor gµν in a way that keeps both space and time integrated in
the same mathematical entity (the metric tensor) and all the mathematical operations do not distinguish
space from time under the context of tensor algebra handling mathematically space and time exactly in
the same way.

However there are situations in which we need to recover the difference between space and time as for
example the evolution in time of an astrophysical system given its initial conditions.

The 3 + 1 ADM formalism allows ourselves to separate from the generic equation ds2 = gµνdxµdxν of
a given spacetime the 3 dimensions of space and the time dimension.(see pg [64(b)] [79(a)] in [12])

Consider a 3 dimensional hypersurface Σ1 in an initial time t1 that evolves to a hypersurface Σ2 in a
later time t2 and hence evolves again to a hypersurface Σ3 in an even later time t3 according to fig 2.1 pg
[65(b)] [80(a)] in [12].

The hypersurface Σ2 is considered and adjacent hypersurface with respect to the hypersurface Σ1 that
evolved in a differential amount of time dt from the hypersurface Σ1 with respect to the initial time t1.
Then both hypersurfeces Σ1 and Σ2 are the same hypersurface Σ in two different moments of time Σt and
Σt+dt.(see bottom of pg [65(b)] [80(a)] in [12])

The geometry of the spacetime region contained between these hypersurfaces Σt and Σt+dt can be de-
termined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12])
(see also fig 21.2 pg [506(b)] [533(a)] in [11] where dxi + βidt appears to illustrate the equation 21.40
gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) at pg [507(b)] [534(a)] in [11])22

• 1)-the 3 dimensional metric dl2 = γijdxidxj with i, j = 1, 2, 3 that measures the proper distance
between two points inside each hypersurface

• 2)-the lapse of proper time dτ between both hypersurfaces Σt and Σt+dt measured by observers
moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known
as the lapse function.

• 3)-the relative velocity βi between Eulerian observers and the lines of constant spatial coordinates
(dxi + βidt).βi is known as the shift vector.

22we adopt the Alcubierre notation here
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Combining the eqs (21.40),(21.42) and (21.44) pgs [507, 508(b)] [534, 535(a)] in [11]
with the eqs (2.2.5) and (2.2.6) pgs [67(b)] [82(a)] in [12] using the signature (−,+,+,+) we get the original
equations of the 3 + 1 ADM formalism given by the following expressions:

gµν =
(

g00 g0j

gi0 gij

)
=
(
−α2 + βkβ

k βj

βi γij

)
(292)

gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (293)

The components of the inverse metric are given by the matrix inverse :

gµν =
(

g00 g0j

gi0 gij

)
=

(
− 1

α2
βj

α2

βi

α2 γij − βiβj

α2

)
(294)

The spacetime metric in 3 + 1 is given by:

ds2 = gµν dxµ dxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt) (295)

But since dl2 = γijdxidxj must be a diagonalized metric then dl2 = γiidxidxi and we have:

ds2 = −α2dt2 + γii(dxi + βidt)2 (296)

(dxi + βidt)2 = (dxi)2 + 2βidxidt + (βidt)2 (297)

γii(dxi + βidt)2 = γii(dxi)2 + 2γiiβ
idxidt + γii(βidt)2 (298)

βi = γiiβ
i (299)

γii(βidt)2 = γiiβ
iβidt2 = βiβ

idt2 (300)

(dxi)2 = dxidxi (301)

γii(dxi + βidt)2 = γiidxidxi + 2βidxidt + βiβ
idt2 (302)

ds2 = −α2dt2 + γiidxidxi + 2βidxidt + βiβ
idt2 (303)

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (304)

Note that the expression above is exactly the eq (2.2.4) pgs [67(b)] [82(a)] in [12].It also appears as eq
1 pg 3 in [1].
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With the original equations of the 3 + 1 ADM formalism given below:

ds2 = (−α2 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (305)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−α2 + βiβ

i βi

βi γii

)
(306)

gµν =
(

g00 g0i

gi0 gii

)
=

(
− 1

α2
βi

α2

βi

α2 γii − βiβi

α2

)
(307)

and suppressing the lapse function making α = 1 we have:

ds2 = (−1 + βiβ
i)dt2 + 2βidxidt + γiidxidxi (308)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 + βiβ

i βi

βi γii

)
(309)

gµν =
(

g00 g0i

gi0 gii

)
=
(
−1 βi

βi γii − βiβi

)
(310)

changing the signature from (−,+,+,+) to signature (+,−,−,−) we have:

ds2 = −(−1 + βiβ
i)dt2 − 2βidxidt− γiidxidxi (311)

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (312)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(313)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(314)

Remember that the equations given above corresponds to the generic warp drive metric given below:

ds2 = dt2 − γii(dxi + βidt)2 (315)

The warp drive spacetime according to Natario is defined by the following equation but we changed
the metric signature from (−,+,+,+) to (+,−,−,−)(pg 2 in [2])

ds2 = dt2 −
3∑

i=1

(dxi −Xidt)2 (316)

The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system
we must employ the equation that obeys the 3 + 1 ADM formalism:

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (317)
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Comparing all these equations

ds2 = (1− βiβ
i)dt2 − 2βidxidt− γiidxidxi (318)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1− βiβ
i −βi

−βi −γii

)
(319)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 −βi

−βi −γii + βiβi

)
(320)

ds2 = dt2 − γii(dxi + βidt)2 (321)

With

ds2 = dt2 −
3∑

i=1

γii(dxi −Xidt)2 (322)

We can see that βi = −Xi,βi = −Xi and βiβ
i = XiX

i with Xi as being the contravariant form of the
Natario shift vector and Xi being the covariant form of the Natario shift vector.Hence we have:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (323)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(324)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(325)

Looking to the equation of the Natario vector nX(pg 2 and 5 in [2]):

nX = Xrsdrs + Xθrsdθ (326)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [2]):

Xrs = 2vsn(rs) cos θ (327)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (328)

But remember that dl2 = γiidxidxi = dr2 + r2dθ2 with γrr = 1 and γθθ = r2. Then the covariant shift
vector components Xrs and Xθ with r = rs are given by:

Xi = γiiX
i (329)

Xr = γrrX
r = Xrs = γrsrsX

rs = 2vsn(rs) cos θ = Xr = Xrs (330)

Xθ = γθθX
θ = rs2Xθ = −rs2vs(2n(rs) + (rs)n′(rs)) sin θ (331)
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The equations of the Natario warp drive in the 3 + 1 ADM formalism are given by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (332)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1−XiX
i Xi

Xi −γii

)
(333)

gµν =
(

g00 g0i

gi0 gii

)
=
(

1 Xi

Xi −γii + XiXi

)
(334)

The matrix components 2× 2 evaluated separately for rs and θ gives the following results:23

gµν =
(

g00 g0r

gr0 grr

)
=
(

1−XrX
r Xr

Xr −γrr

)
(335)

gµν =
(

g00 g0r

gr0 grr

)
=
(

1 Xr

Xr −γrr + XrXr

)
(336)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1−XθX
θ Xθ

Xθ −γθθ

)
(337)

gµν =
(

g00 g0θ

gθ0 gθθ

)
=
(

1 Xθ

Xθ −γθθ + XθXθ

)
(338)

Then the equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given
by:

ds2 = (1−XiX
i)dt2 + 2Xidxidt− γiidxidxi (339)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrsdt + Xθdθdt)− drs2 − rs2dθ2 (340)

ds2 = (1−XrsX
rs −XθX

θ)dt2 + 2(Xrsdrs + Xθdθ)dt− drs2 − rs2dθ2 (341)

23Actually we know that the real matrix is a 3× 3 matrix with dimensions t rs and θ.Our 2× 2 approach is a simplification
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15 Appendix F:Dimensional Reduction from c4

G to c2

G

The Alcubierre expressions for the Negative Energy Density in Geometrized Units c = G = 1 are given
by(pg 4 in [2])(pg 8 in [1]):24:

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (342)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (343)

In this system all physical quantities are identified with geometrical entities such as lengths,areas or
dimensionless factors.Even time is interpreted as the distance travelled by a pulse of light during that
time interval,so even time is given in lengths.Energy,Momentum and Mass also have the dimensions of
lengths.We can multiply a mass in kilograms by the conversion factor G

c2
to obtain the mass equivalent in

meters.On the other hand we can multiply meters by c2

G to obtain kilograms.The Energy Density( Joules
meters3 )in

Geometrized Units have a dimension of 1
length2 and the conversion factor for Energy Density is G

c4
.Again

on the other hand by multiplying 1
length2 by c4

G we retrieve again ( Joules
meters3 ). 25.

This is the reason why in Geometrized Units the Einstein Tensor have the same dimension of the Stress
Energy Momentum Tensor(in this case the Negative Energy Density)and since the Einstein Tensor is
associated to the Curvature of Spacetime both have the dimension of 1

length2 .

G00 = 8πT00 (344)

Passing to normal units and computing the Negative Energy Density we multiply the Einstein Tensor
(dimension 1

length2 ) by the conversion factor c4

G in order to retrieve the normal unit for the Negative Energy
Density ( Joules

meters3 ).

T00 =
c4

8πG
G00 (345)

Examine now the Alcubierre equations:

vs = dxs
dt is dimensionless since time is also in lengths.y2+z2

rs2 is dimensionless since both are given also in
lengths. f(rs) is dimensionless but its derivative df(rs)

drs is not because rs is in meters. So the dimensional
factor in Geometrized Units for the Alcubierre Energy Density comes from the square of the derivative and
is also 1

length2 .Remember that the speed of the Warp Bubble vs is dimensionless in Geometrized Units and

when we multiply directly 1
length2 from the Negative Energy Density in Geometrized Units by c4

G to obtain
the Negative Energy Density in normal units Joules

meters3 the first attempt would be to make the following:

ρ = −c4

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (346)

ρ = −c4

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (347)

24See Geometrized Units in Wikipedia
25See Conversion Factors for Geometrized Units in Wikipedia

58



But note that in normal units vs is not dimensionless and the equations above do not lead to the
correct dimensionality of the Negative Energy Density because the equations above in normal units are
being affected by the dimensionality of vs.

In order to make vs dimensionless again,the Negative Energy Density is written as follows:

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (348)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (349)

Giving:

ρ = −c2

G

1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (350)

ρ = −c2

G

1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (351)

As already seen.The same results are valid for the Natario Energy Density

Note that from

ρ = −c4

G

1
32π

(
vs

c
)2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (352)

ρ = −c4

G

1
32π

(
vs

c
)2
[
df(rs)
drs

]2

[
y2 + z2

rs2
] (353)

Making c = G = 1 we retrieve again

ρ = − 1
32π

vs2
[
f ′(rs)

]2 [
y2 + z2

rs2
] (354)

ρ = − 1
32π

vs2

[
df(rs)
drs

]2

[
y2 + z2

rs2
] (355)
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16 Remarks

References [11],[12],[13] and [14] are standard textbooks used to study General Relativity and these
books are available or in paper editions or in electronic editions all in Adobe PDF Acrobat Reader.

We have the electronic editions of all these books

In order to make easy the reference cross-check of pages or equations specially for the readers of the paper
version of the books we adopt the following convention:when we refer for example the pages [507, 508(b)]
or the pages [534, 535(a)] in [11] the (b) stands for the number of the pages in the paper edition while the
(a) stands for the number of the same pages in the electronic edition displayed in the bottom line of the
Adobe PDF Acrobat Reader

60



17 Epilogue

• ”The only way of discovering the limits of the possible is to venture a little way past them into the
impossible.”-Arthur C.Clarke26

• ”The supreme task of the physicist is to arrive at those universal elementary laws from which the
cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition,
resting on sympathetic understanding of experience, can reach them”-Albert Einstein2728

26special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second
Law Of Arthur C.Clarke

27”Ideas And Opinions” Einstein compilation, ISBN 0− 517− 88440− 2, on page 226.”Principles of Research” ([Ideas and
Opinions],pp.224-227), described as ”Address delivered in celebration of Max Planck’s sixtieth birthday (1918) before the
Physical Society in Berlin”

28appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978− 0− 9557068− 0− 6
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