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Abstract: A conjecture on the quasi-periodic behaviour of Ulam sequences. 

An Ulam sequence is an increasing sequence 𝑎𝑛  𝑛 ≥ 1 of positive integers such that each element 

after the second is the smallest positive integer greater than its predecessor which is the sum of two 

previous distinct elements of the sequence in exactly one way [1]. Such a sequence is determined by 

its first two elements. For example if 𝑎1 = 1 and 𝑎2 = 2 (the main Ulam sequence) then the 

sequence begins: 

1,2,3,4,6,8,11,13,16,18,26,… 

Numerical studies of Ulam sequences suggests that surprisingly they have a positive density rather 

than becoming rarer for increasing 𝑛. Although the numbers are often chaotically distributed they 

have been found by Steinerberger to have a natural wavelength 𝜆 =
2𝜋

𝛼
 where in the case above 

𝛼 = 2.5714474995 … and cos (𝛼𝑎𝑛) < 0 for the first 10 million numbers on the sequence except 

2,3,47 and 69 [2]. 

The main point of this paper is to make a more general conjecture as follows 

For any Ulam sequence 𝑎𝑛 there is a natural wavelength 𝜆 ≥ 2 ∈ ℝ such that if 
𝑟𝑛 is the residual of 𝑎𝑛 mod 𝜆 in the interval [0,𝜆) then for any 휀 > 0 there are 

only a finite number of elements in the Ulam sequence such that 𝑟𝑛 <
𝜆

3
− 휀 or 

𝑟𝑛 >
2𝜆

3
+ 휀 .  

 

 

This means that the residuals almost always lie in the middle third of their possible range. When a 

number does not fall in this range we call it an outlier. For the above sequence the outliers are 2, 3, 

8, 13, 36, 47, 53, 57, 69, 97, …  

Steinerberger’s observation that cos (𝛼𝑎𝑛) < 0 in all but a few cases follows from the conjecture 

with 휀 =
𝜆

12
 since this requires that the Ulam numbers fall in the middle half of the range where the 

cosine is negative in all but a finite number of exceptions. 

It is easy to see that the sum of two numbers which are not outliers must itself be an outlier. This 

means that most numbers in an Ulam sequence include at least one outlier in their sum despite and 

because of the rarity of outliers. If the conjecture could be proven it would therefore go some way 

towards explaining the behaviour of the sequences. 

In the case of Ulam sequences where 𝑎1 = 2 and 𝑎2 ≥ 5 is odd it is known that the sequence has 

only a finite number of even elements and is eventually periodic [3,4]. This confirms the conjecture 

for these cases with 𝜆 = 2 



We can model the behaviour of an Ulam sequence heuristically in the light of this conjecture using a 

stochastic approximation. Write 𝑝𝑎 for the probability that a positive integer 𝑎 is in the Ulam 

sequence and then treat these probabilities as independent so that 

𝑝𝑎 =  ( ∑
𝑞𝑎,𝑏

(1 − 𝑞𝑎,𝑏)
0<𝑏<𝑎

) ( ∏ (1 − 𝑞𝑎,𝑏)

0<𝑏<𝑎

) 

𝑞𝑎,𝑏 = 𝑝𝑏𝑝𝑎−𝑏(1 − 𝛿𝑎,𝑏−𝑎) 

If the density of the sequence is low we can approximate this using a Poisson distribution 

𝑝𝑎 = 𝑄𝑞𝑒−𝑄𝑎 ,    𝑄𝑎 = ∑ 𝑞𝑎,𝑏

0<𝑏<𝑎

 

Assume that for large 𝑎 we can treat the probability as a function 𝑝(𝑟) of the residual in the middle 

third and as one for 𝑎 in the set 𝑆 of outliers 

𝑝𝑎 = 𝑝(𝑎 𝑚𝑜𝑑 𝜆) + ∑ 𝛿𝑎,𝑏

𝑏∈𝑆

 

𝑝(𝑟) = 0 , 𝑟 <
𝜆

3
𝑜𝑟 𝑟 >

2𝜆

3
 

When 𝑎 is large with a residual 𝑟 = 𝑎 𝑚𝑜𝑑 𝜆 outside the middle third 

𝑄𝑎 ≳ 𝑎 ∫ 𝑝(𝑠)𝑝(𝑟 + 𝜆 − 𝑠)𝑑𝑠

2𝜆
3

𝑟+
𝜆
3

 ,        0 < 𝑟 <
𝜆

3
  

𝑄𝑎 ≳ 𝑎 ∫ 𝑝(𝑠)𝑝(𝑟 − 𝑠)𝑑𝑠
𝑟−

𝜆
3

𝜆
3

,
2𝜆

3
< 𝑟 < 𝜆 

If the integrals are greater than zero then  𝑄𝑎 = 𝑂(𝑎) and 𝑝𝑎 = 𝑂(𝑎)𝑒−𝑂(𝑎) ⟶ 0 so for large 𝑎 

there will be very few outliers except close to 
𝜆

3
 or 

2𝜆

3
 where the convolution integral goes to zero. 

This is consistent with the conjecture. The requirement that the integral is everywhere greater than 

zero imposes limits on the size of gaps where the probability function is greater than zero. In 

particular if there is a gap such that 𝑝(𝑟) = 0 for all 𝑟 in a range  
𝜆

3
< 𝑟0 < 𝑟 < 𝑟1 <

2𝜆

3
 then there is 

a constraint 

𝑟1 < min (2𝑟0 −
𝜆

3
,
𝑟0

2
+

𝜆

3
) 

 

The set 𝑆 of outliers can be split into two parts: the right movers 𝑅 with residual between 0 and 
𝜆

3
  

and the left movers 𝐿 with residuals between 
2𝜆

3
 and 𝜆 . The conjecture about the outliers is 

equivalent to the condition that the residuals of the outliers in 𝑅 can be ordered into an increasing 



sequence 𝑟𝑅
𝑖, 𝑖 = 1,2, … which is either finite or tending to 

𝜆

3
, and the residuals of the outliers in 𝐿 

can be ordered into a decreasing sequence 𝑟𝐿
𝑖 , 𝑖 = 1,2, … which is either finite or tending to 

2𝜆

3
 

When the recurrence relation is applied to residuals in the middle third a different and more exact 

expression can be formed combining the outliers with the distribution function 

𝑝(𝑟) = (Σ𝐿 + Σ𝑅)Π𝐿Π𝑅 

Σ𝐿 = ∑
𝑝(𝑟 − 𝑟𝑅

𝑖)

1 − 𝑝(𝑟 − 𝑟𝑅
𝑖)

𝑖

 

Σ𝑅 = ∑
𝑝 (𝑟 + (𝜆 − 𝑟𝐿

𝑗))

1 − 𝑝 (𝑟 + (𝜆 − 𝑟𝐿
𝑗))𝑗

 

Π𝐿 = ∏(1 − 𝑝(𝑟 − 𝑟𝑅
𝑖))

𝑖

 

Π𝑅 = ∏ (1 − 𝑝 (𝑟 + (𝜆 − 𝑟𝐿
𝑗)))

𝑗

 

These equations can be regarded as a non-linear recursion relation for 𝑝(𝑟) which under suitable 

conditions should converge to the distributions found computationally by Steinerberger. The 

number of terms in each sum or factors in each product is finite because of the conjecture. 

If 𝑟𝐿
1 − 𝑟𝑅

1 <
2𝜆

3
 then there are no terms or factors for a central range so that  

𝑝(𝑟) = 0, 𝑟𝐿
1 −

𝜆

3
< 𝑟 < 𝑟𝑅

1 +
𝜆

3
 

Furthermore there will be only one term and factor in a neigbouring range which gives 

𝑝(𝑟) = 𝑝(𝑟 − 𝑟𝑅
1), 𝑟𝑅

1 +
𝜆

3
< 𝑟 < 𝑟𝑅

2 +
𝜆

3
 

𝑝(𝑟) = 𝑝(𝑟 + (𝜆 − 𝑟𝐿
1)), 𝑟𝐿

2 −
𝜆

3
< 𝑟 < 𝑟𝐿

1 −
𝜆

3
 

As 𝑟 approaches the ends of the middle third range the number of terms increases so that the 

products tend to zero much faster than the sums making the value of 𝑝(𝑟) drop to zero if the 

number of left and right movers is infinite. 

  



To make the analysis more concrete the left and right movers for the main Ulam sequence can be 

computed as follows 

𝑖 outlier 𝑟𝑅
1

𝜆
 

outlier 𝑟𝐿
1

𝜆
 

1 3 0.22777 2 0.81851 

2 47 0.23515 102 0.74437 

3 69 0.23884 339 0.73865 

4 8 0.27406 36 0.73330 

5 2581 0.29639 273 0.72759 

6 983 0.30118 400 0.70343 

 

This first left and right movers imply a central gap for  3.0485 <
2𝜋𝑟

𝜆
< 3.5255 as observed in 

Steinerberger’s computed distribution (Figure 3 of [2]) The first left mover accounts for the 

repetition of the peak separated by  2𝜋 (1 −
𝑟𝐿

1

𝜆
) = 1.1403 
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