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We argue that self/anti-self charge conjugate states of the ������������ 	!"�#���$�����% representation
possess axial charges. Furthermore, we analyze recent claims of the &('*)�+ ,.-/,1032 inter-
action terms for “fermions”. Finally, we briefly discuss the problem in the ���%��� �!4�#�����5 
representation.

PACS: 11.30.Er, 12.60.-i, 14.60.St

1 Introduction

The Dirac equation and the relevant theory of charged particles do not admit the 687 chiral trans-
formation. The sign in the mass term in the Lagrangian is reversed under this type of transforma-
tions. In the mean time, the chiral transformations play significant role in our understanding of
the nature of weak and strong interactions, in the problem of (un)existence of monopoles as well.
Many attempts have earlier been done in order to understand the origin of the chiral (a)symmetry
from the first principles, see, e. g., [1]. Recently, the authors of Ref. [2] proposed a very in-
teresting model of the 9 -deformed non-local chiral transformations. But, they indicated at the
importance of further study of chiral transformations and their relevance to the modern physics.
These matters appear to be of use not only from the viewpoint of the construction of a fundamen-
tal theory for neutral particles (which is our primary purpose), but the consideration of constructs
which admit the chiral invariance may also be useful for deeper understanding processes in QCD
and other modern gauge models.

In the present article we prove that massive self/anti-self charge conjugate states in the:�;<�=?>3@BA�CD:E@�>%;<�=�A
representation possess the axial charges (cf. also the McLennan-Case re-

formulation [3] of the Majorana theory [4], Refs. [5–9]). Furthermore, we present explicit ex-
amples which are relevant to the viewpoints of M. Markov [10], S. Weinberg [11] and P. A. M.
Dirac [12] about the possibility of different equations for describing particles of some represen-
tation of the Lorentz group (particularly, of the

:F;G<�=�>3@HAICJ:E@�>%;<�=�A
representation). In the most

comprehensive and clear form it is expressed in the book, papers and lectures of S. Weinberg,
e.g., [13]: “The kinematical classification of particles according to their Lorentz transformationK

E-mail address: valeri@cantera.reduaz.mx; URL: http://cantera.reduaz.mx/ L valeri/valeri.htm

0323-0465/00 c
M

Institute of Physics, SAS, Bratislava, Slovakia 629



630 V V Dvoeglazov

properties is entirely (for finite mass) determined by their familiar representation of the rotation
group. It has nothing whatever to do with the choice of one relativistic wave equation rather than
another.” See also [14, 15]. In our opinion, it is still required to take into account the issues re-
lated to the inversion group, namely, the theoretical possibility of unconventional representations
of inversions.

�
2 Chiral Interactions

We start from the observation that the Dirac field operator, which satisfies the Dirac equation
�� � 6���� �	� 9�
� :�� � A��4@ >
(1)

can be expanded in the following parts:� :�� � A�� ��� :�� � A�� ��� :�� � A > (2a)��� :�� � A�� � � ���: =���A��=��! #"%$ � :'& � A)( � :*& � A�+-,/.%01�32 $54� :*& � A)687� :*& � A�+:95.0<; >
(2b)

� � :�� � A�� � � ���: =���A��=��  " $ � :'& � A)( � :*& � A�+ ,/.%0 � 2 $ 4� :*& � A)687� :*& � A�+ 95.0<; > (2c)

where = � :��?> �A@CB � A <�D . The charge-conjugate equation is
:E� 6 � � �	� 9 A)F � 7 :E� � AG�4@IH

(3)

and the counterparts of the “field operators” (2b,2c) are ( JLK �4@
)� K :�� � A�� � K� :�� � A�� � K� :�� � A > (4a)� K� :�� � A�� � � ���: =���A��=��  "%$ � :'& � AM6 � :'& � A)+-,N.0O�#2 $�4� :'& � A)(P7� :*& � A�+:95.0<; >

(4b)

� K� :�� � A�� � � ���: =���A��=��  " � $ � :'& � AM6 � :'& � A)+-,N.0O�#2 $�4� :'& � A)(�7� :*& � A�+:95.0 ;RQ (4c)S
While this type of theories is usually called as Wigner- (or “BWW-”) type, see [16, 17], the possibility of uncon-

ventional representations of inversions was first indicated by Soviet mathematical physicists [18], see also the relevant
papers [19].T

As opposed to Ref. [3b] we use the conventional notation and metric. Namely, U:VXWIY diag Z\[^]`_)ab]`_�ab]`_Mab]Mc andd matrices ared<e Ygfihkjjlhnm _ d<o Ypfqh a�r or o h m _ d-s Ygfpj hh a j3m
in the Weyl representation. The Pauli charge-conjugation t!uOt matrix is thenv YCw oyx{z}| Y~w o*xXz f h �a � h�m _ where � Y�f h ab]] h�m#�
It has the propertiesv Y vb� _ v 0 Y v^� K _v � K d V v Yna d VN� _ v � K d-s v Y�a d-s � �
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Both ��� , � K� and ��� , � K� can be used to form self/anti-self charge conjugate field operators in
the coordinate representation after regarding corresponding superpositions. For instance,��� � � � � � K�= � � � � �: = ��A � =��  � $ � :'& � A ( � � 6 �= + ,/.%0 �32 $ 4� :*& � A (P7� � 6�7�= + 95.0�� >

(5a)

��� � � � � � K�= � � � � �: = ��A)�%=��  � $ � :'& � A ( � � 6 �= + ,/.%0 � 2 $ 4� :*& � A (P7� � 6�7�= + 95.0�� >
(5b)

���� � � � � � K�= � � � �{�: = ��A)�%=��  � $ � :'& � A ( � � 6 �= + ,/.%0 �32 $ 4� :*& � A (P7� � 6�7�= + 95.0�� >
(5c)

���� � � � � � K�= � � � �{�: = ��A)�%=��  � $ � :'& � A ( � � 6 �= + ,/.%0 � 2 $ 4� :*& � A (P7� � 6�7�= + 95.0 � Q
(5d)

As opposed to K. M. Case [3b] we introduce the interaction with the 4-vector potential in the
beginning and substitute � �
	��	� � � � � � +� � in the equation (1). For the sake of generality
we assume that the 4-vector potential is a complex field

 � � F � � ��� � , what is the extension
of this concept comparing with the usual quantum-field consideration. � Following the logics
of Refs. [3, 5] (the separation of different chirality sub-spaces) we should consider additional
equations for 6 7 � � � and 6 7 � K� � , i.e., the following set� � 6 � : � �	� � + F � � +�� � A � 9�
 : � � � � � AG� @ >

(6a)� � 6�� : � � �#� + F � � +�� � A � 9�
 : � K� � � K� AG� @ >
(6b)� � 6�� : � � � � + F � � +�� � A�� 9�
%6 7 : ��� � ��� AG� @ >
(6c)� � 6 � : � � �#� + F � � +�� � A�� 9�
%6 7 : � K� � � K� AG� @ Q
(6d)

Due to symmetries of the Dirac equations one can proceed in various ways. For instance, let us
introduce the following linear combinations� � � � K� � 6 7 ��� > � � � � � � 6 7 � K� > (7a)� � � � K� � 6 7 ��� > � � � � � � 6 7 � K� > (7b)

which can be used to represent solutions of Eqs. (6a-6d). Then we proceed with simple algebraic
transformations of the set (6a-6d) to obtain (

�� ��� � � � +�� � )� 6 � �� � : � � � 6 7 � � A � + 6 � F � : 6 7 � � � � � A � 9 : 6 7 � � � � � A � @ >
(8a)� 6 � �� � : 6 7 � � � � � A � + 6 � F � : � � � 6 7 � � A � 9 : � � � 6 7 � � A � @ Q
(8b)

Other two equations are obtained after multiplying (8a,8b) by the 6I7 matrix. For the first sight
one can conclude that we obtain different physical excitations (due to mathematically different
dynamical equations with different interactions) depending on constraints which we impose on
functions � ��� � � � � � . Let us impose

�� � � @
and

�� � � @
, see Eqs. (5c,5d). They are considered

here to be equivalent to either the constraints on the creation/annihilation operators 7 ( � :'& � AO��
In the modern textbooks on the classical/quantum field theory the 4-vector potential in the coordinate representation

is usually the real function(al). We still note that different choices of a) relations between the left- and right- parts of the
momentum-space bispinors; b) relations between creation and annihilation operators in the field operator; and c) metrics
would induce ones to change this conclusion for interactions of various field configurations which ones consider.s Of course, this is true only if one works with IR representations of the Wigner-Jordan (anti)commutation rules.
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6 � :'& � A and
( � :*& � A �q6 � :'& � A or the constraints �b� � � K� � � � and ��� � � � K� � � � . � The

functions � � � � � � � � become to be interrelated by the conditions� � � � � � 6 7 � � > � � � � � � 6 7 � � > � � � 6 7 � � > � � � 6 7 � � Q (9)

It is the simple procedure to show that � � presents itself self-charge conjugate field and � � , the
anti-self charge conjugate field.

�
As the result one obtains� 6/� � 4� � � � 9 6 7 � � � @ >

(10a)� 6 � � � � � � 9 6 7 � � � @ >
(10b)

where the lengthening derivative is now defined
� � � � � � � + 6 7 F � � +�� � Q

Equations for the Dirac conjugated counterparts of � ��� � read� � � � � 6�� � 9 � � 6 7 � @ >
(11a)� � � � � 6 � � 9 � � 6 7 � @ Q
(11b)

One can propose the Lagrangian for free fields � � � � and their Dirac conjugates (cf. with the
concept of the extra Dirac equations in Ref. [9d] and with the spin-1 case, Ref. [20]): �

���
	��� � �
=�� � � 6 � � � � � � � � � � 6 � � � � � � 6 � � � � � � � � � � 6 � � ��� �� 9 � � � 6 7 � � � � � 6 7 � � � H (12)

and the terms of the interaction:
� .������ � + : � � 6 � 6 7 � � � � � 6 � 6 7 � � AMF � � � + : � � 6 � � � � � � 6 � � � A � � (13)

The conclusion that self/anti-self charge conjugate can possess the axial charge (of opposite
values) is in accordance with the conclusions of Refs. [5, 7] and with the old ideas of R. E.
Marshak [21]. It is remarkable feature of this model that we did not assume that self/anti-self
charge conjugate fields are massless.

One can come to this conclusion on using another way of speculations. Equations (1,3)
with interaction can be presented in two-component form ( � �

column
: = � A and � � �: � ���P� > � � . A ):� ��� � � � � 9 = � @ >

(14a)� � � � � � = � 9�� � @ >
(14b)� � � � 4� : ��� = 7 A � 9 : � � 7 AG�4@ >
(14c)� � ��� � 4� : � � 7 A � 9 : ��� = 7 AG�4@ >
(14d)�

As opposed to the above, one can wish to put the constraints ��� Y �"! Y h (or even more general ones), which
are considered to be equivalent to #
$ Y3a&%(' and #�' Y3a&%($ . Thus, one can reformulate the formulas in the rest of the
paper. In my opinion, the physical content, which is relevant to the aims of the present article, will not be changed. So,
the constraints are used here only for the purposes of simplicity and clarity.)

The operator of the charge conjugation and the chirality d s operator (chosen as above) are the anti-commuting
operators.*

At this point we still leave the room for other kinds of the Lagrangians describing self/anti-self charge conjugate
states, see below and cf. [7].
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with the hermitian conjugation acting on the � - numbers (it acts on the � - numbers as the complex
conjugation). Introducing other bispinors

� � � � ��� =� � = 7�� >	� � � � �
��� � � 7� � >
(15)

and combining the second and the third equation, and then, the first and the fourth equations, one
can arrive at the equations for new bispinors:� 6 � � � � � � � � 9 � � � � � @ >

(16a)� 6/� � 4� � � � � � 9 � � � � � @ Q
(16b)

After taking into account relations between
� �

and
� �

(and between
� �

and
� �

) we can obtain
two sets:� 6/� � 4� � � � 9 6 7 �
� �(@ > � 6�� � � �
� � 9 6 7 � � �4@IH

(17)

and/or� 6 � � � � � � 9 6 7 � � �(@ > � 6 � � 4� � � � 9 6 7 � � �4@ Q
(18)

They are precisely the equations which we obtained before (cf. (10a,10b) and the equations
multiplied by the 6�7 matrix). If we now impose the Majorana anzatz  = � + .��

� �
7

on all four
equations we obtain that the 6 7 interaction terms seem to disappear. Due to our previous re-
search [5–7], which was based on other postulates (see also below), we are sure in the necessity
of modifications of the Dirac theory for neutral particles and in the presence of the 6I7 interac-
tions. In fact, Majorana anzatz (e. g., with � � @

) is connected with the interrelations between
field operators � ��� � above. So, we may loose some information. How to solve the problem
rigorously? See below.

Further arguments in aid of our reasoning are given by several constructs which appeared
recently [5–7, 9]. The Ahluwalia reformulation of the McLennan-Case construct was presented
in 1994 [6]. The following type-II spinors have been defined in the momentum space:

� � � � :*& � A�������� ��� ��� = 4� :'& � A= � :*& � A � >	� � � � :*& � AG��� =�� :'& � A: �! ��� ��� A 4 = 4� :*& � A � Q
(19)

In our choice of the operator of the charge conjugation ( J K �4@
) the phase factors �"� �  are defined

as � ; , for
� �

(
� �

), and � ; , for
� �

(
� �

), respectively. One can find relations between the type-II

#%$
is an arbitrary phase factor. It is easy to note that in the case of

$ Y h the Majorana anzatz results in & � Y [(' �
and & ! Yna)' ! . But, in the case

$ Y+* one obtains & � Y�a)' � and & ! Y [(' ! .
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spinors and the Dirac spinors. They are listed here � �� �� :*& � A � � � �� :'& � A^��� ; � 6 7= $ � :'& � AL� ;^� 6 7= $ � :'& � A > (20a)� �� :*& � A � � � �� :'& � A^� � ;^� 6 7= $ � :'& � AL� ; � 6 7= $ � :'& � A > (20b)� �� :*& � A � � � �� :'& � A���� ; � 6 7= $ � :'& � A � ;^� 6�7= $ � :'& � A > (20c)� �� :*& � A � � � �� :'& � A���� ;^� 6 7= $ � :'& � A�� ; � 6�7= $ � :'& � A Q (20d)

Positive-energy solutions are assumed in Ref. [6] to be presented by, e. g., self charge conjugate� �
spinors, negative-energy solutions, by anti-self charge conjugate

� �
spinors: �3� �B� �

� :E� � A � � � :�� � A�� � � :�� � A � (21)

� � � �{�: = ��A)� ;
=`& � � � � � �� :'& � A � � :*& � A������ : � �& B �	AL� � �� :'& � A � 7� :'& � A����	��: � �& B � A � Q

Of course, one can construct the field operator composed of
� � � � bispinors, e. g.,� � :�� � A�� � � :E� � A�� � � :E� � A � (22)

� � � ���: =���A�� ;
=�& � � � � � �� :*& � A)+ � :*& � A����	� : � �& B � A�� � �� :'& � A�
 7� :'& � A����	��: � �& B � A � Q

One of surprising features of this construct [6, 7] is the fact that dynamical equations take eight-
component form from the beginning. As shown there the equations for self/anti-self charge
conjugate states read: � �� 6 � � � � � :E� � A�� 9 � � :E� � A�� @ >

(23a)� 6 � � � � � :E� � A5� 9 � � :E� � A�� @ H
(23b)

and � 6/��� � � � :�� � A � 9 � � :E� � A�� @ >
(24a)� 6 � � � � � :E� � A � 9 � � :E� � A�� @ Q
(24b)

They can be written in the 8-component form as follows (see formulas (21) in [7] for � matrices):� � � � � � � 9�
 �� 9�� :E� � A�� @ >
(25a)� � �L� � � � 9R
 �� ,�� :E� � A�� @ >
(25b)K e Note added (13/IX/2000): A form of connection between ��� , ��� spinors and the Dirac spinors ��� , ��� has indeed

been communicated to me by D. V. Ahluwalia in 1997. However, it is known since 1995, see Ref. [9a,b,formulas (22a-
22d) and (67-70) respectively] and cf. with the formula (7) in Hadronic J. 20 (1997) 435-448.K K

Let me remind that the sign of the phase in the field operator is considered to be invariant if we restrict ourselves
by the orthochroneous proper Poincaré group. This fact has been used at the stage of writing the dynamical equations
(23a,23b,24a,24b), see below.K S

Field operators in this construct may be not self/anti-self charge conjugate operator. So, the notation ( � _�� ) used
in the formulas in the coordinate space indicates only the presence of self/anti-self charge conjugate states and does not
refer to the properties of the field operator.K�T���� Y h again. The sign in the mass term depends on this phase factor.
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where �� 9�� :�� � AG��� � � :E� � A� � :�� � A � > �� ,�� :�� � A���� � � :E� � A� � :E� � A � Q
(26)

One can reveal the possibility of the 6 7 phase transformations [7]. The Lagrangian [7, Eq.(24)],
which (like in the Dirac construct) becomes to be equal to zero on the solutions of the dynamical
equations � �� � �

=3" � � 6 � � � � � � : � � � � A 6 � � � � � � 6 � � � � � � : � � � � A 6 � � � �� � � 6/�P� � � � � : � � � � A 6�� � � � � � 6���� � � � � : � � � � A 6/� � � ; �� 9 " � � � � � � � � � � � � � � � � � � � ; (27)

is invariant with respect to the phase transformations:� � :�� � A 	 :������ � � � 6 7 ���
	 � A � :�� � A >
(28a)� � :�� � A 	 � :�� � A :������ � � � 6 7 ���
	 � A >
(28b)� � :E� � A 	 :������ � �#� 6 7 ���
	 � A��	:�� � A >
(28c)� � :�� � A 	 � :E� � A5:����� � � � 6 7 ����	 � A Q
(28d)

Obviously, the 4-spinors
� � � � :'& � A and

� � � � :'& � A remain in the space of self/anti-self charge
conjugate states. �F7 In terms of the field functions

� 
� � :E� � A the transformation formulas recast

as follows (Ł 7 � diag
: 6�7 � 6�7 A and

��
� � � � 7 �� � � � )� �
� � :�� � A 	 � ����� � � � Ł 7 ����	 ��� ���� � :E� � A >
(29a)� �
� � :�� � A 	 ���� � :E� � A � ���� � � � Ł 7 ���
	 � � Q
(29b)

Let us proceed further with the local gradient transformations (gauge transformations) in the
Majorana construct. When we are interested in them one must introduce the compensating field
of the 4-vector potential [7]� ��	 �	� � � � �#� + Ł 7  � >

(30a) �� :��	A 	  � :E� A � ;+ � � � Q
(30b)

Therefore, equations describing interactions of the
� �

and
� �

with 4-vector potential are the
following� 6/� � � � � :E� � A5� + 6��H6 7  � � � :�� � A5� 9 � � :E� � A�� @ >

(31a)� 6 � � � � � :E� � A � + 6 � 6 7  � � � :E� � AL� 9 � � :E� � A�� @ Q
(31b)K �

The overline implies the Dirac conjugation.K s Usual phase transformations like that which were applied to the Dirac field will destroy self/anti-self charge conju-
gacy. The origin lies in the fact that the charge conjugation operator is not a linear operator and it includes the operation
of complex conjugation.
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The second-order equations follow immediately form the set (31a,31b) � ���� ���� � + � 6 7�� � ���� � + � 6 7�� � 9 �
	 � � :E� � A�� @ >
(32a)��� � �� � + � 6 7 � � � �� � + � 6 7 � � 9 � 	 � � :E� � A�� @ H
(32b)

with the notation being used:
� � 6 �  � � 6 �  � � : � B�� A

. After algebraic transformations in
the spirit of [22, 23] one obtains�� 9� � � 9 � 9 � � +

= 6 7�� ����� ��� 	 � � � � :E� � A�� @ >
(33a)� � ,� � � , � 9 � � +

= 6 7 � ��� � ��� 	 � � � � :E� � A�� @ >
(33b)

where the “covariant derivative” operators acting in the
:�;<�=�>3@BA�C : @�>%;<�=HA

representation are
now defined� �� � ; � � � � + 6 7  � >

(34)

and

� ��� � �
= � 6 � > 6 � 
 , Q

(35)

Thus, we see that the second-order equations for the particles described by the field operator� :E� � A (Eq. (46) in [6] and Eq. (21) of this paper), which interact with the 4-vector potential,
have the same form for positive- and negative-energy parts. The same is true in the case of the use
of the field operator composed from

� �
and

� �
. One can see the difference with the Dirac case;

namely, the presence of 6 7 matrix in the “Pauli term” and in the lengthening derivatives. Next,
we are able to decouple the set (33a,33b) for the up- and down- components of the bispinors
in the coordinate representation. For instance, the up- and the down- parts of the ��� � :E� AC�
column

:�����A
interact with the vector potential in the following manner:� � � 9� � � 9 � 9 � � �� � ��� � ��� � ��:E� � A��(@ >

� � ,� � � , � 9 � � �� �� ��� � ��� � ��:�� � AG� @ > (36)

where already one has
� �� � � � � � +� � , � � . � � �� � . � � � . , � . � � � � . � ��� . ��� � � . Of course,

introducing the operator composed of the
�

states one can write corresponding equations for its
up- and down- components and, hence, restore the Feynman-Gell-Mann equation [24, Eq.(3)]
and its charge conjugate (if one considers that

 � and � ��� are the real fields). � � In fact, this wayK �
The case of � ! and � � is similar.K )
One can connect the Feynman-Gell-Mann field with �-Z � V c and !�-Z"� V c defined in (21,22). For instance,

�$#&%(' Y ]N[ d s) ! �$* ]5a d s) � _ (37a)Z �$#&%(' c � Y ]N[ d s) �$* ]5a d s) !� � (37b)

But the signs are not fixed in the framework of this consideration (due to the fact that the Feynman-Gell-Mann equations
are of the second order and the left-hand side operator (see Eq. (3) in [24]) commutes with the d s matrix.
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will lead us to the consideration which is identical to the recent papers [25]. It was based on the
linearization procedure for 2-spinors, which is similar to that used by Feshbach and Villars [26]
in order to derive the Hamiltonian form of the Klein-Gordon equation. Some insights in the
interaction issues with the 4-vector potential in the eight-component equation have been made
there: for instance, while explicit form of the wave functions slightly differ from the Dirac case,
the hydrogen atom spectrum is the same to that in the usual Dirac theory [23, p.66,74-75]. Next,
like in the paper [27] the equations of [25] presume a non-CP-violating �� electric dipole moment
of the corresponding states.

Next, by using the relations (20a-20d) one can deduce how is the � operator connected with
the Dirac field operator and its charge conjugate. In the particular case when

:�( � � 6 � A3<�=A�: ( � � 6 � A <�= � � � � � � and
:�( � � 6 � A3<�= � :�( � � 6 � A3<�= � � � � � � one has

� :E� � AG� � ;= : � � :E� � A � � K� :E� � A�A � 6 7= : � � :E� � AL� � K� :E� � A�A Q (38)

The operator composed of
�

spinors is then expressed ��
� � :E� � AG� � ;= : � � :E� � AL� � K� :E� � A�A�� 6 7= : � � :E� � A � � K� :E� � A�A Q (39)

Other fields which we use in order to obtain dynamical equations are

� K :E� � A � � ;= : ��� :�� � A � � K� :�� � A3A�� 6�7= : ��� :�� � A�� � K� :�� � A3A > (40a)

6 7 � :E� � A � � ;= : � � :�� � A�� � K� :�� � A3A�� 6�7= : � � :�� � A � � K� :�� � A3A > (40b)

6 7 � K :E� � A � � ;= : � � :�� � A�� � K� :�� � A3A � 6�7= : � � :�� � A � � K� :�� � A3A > (40c)� � K :E� � A � � ;= : ��� :�� � A�� � K� :�� � A3A�� 6�7= : ��� :�� � A � � K� :�� � A3A > (40d)

6 7 � � :E� � A � � ;= : ��� :�� � A � � K� :�� � A3A�� 6�7= : ��� :�� � A�� � K� :�� � A3A > (40e)

6 7 � � K :E� � A � � ;= : ��� :�� � A � � K� :�� � A3A�� 6�7= : ��� :�� � A�� � K� :�� � A3A Q (40f)

After rather tiresome calculational procedure one obtains the dynamical equations in this ap-
proach� 6 � �� � : � � � K A � + 6 � 6 7 F � : � � � K A � 9 6 7 : � � � � � K A�� @ >

(41a)� 6 � �� � : � � � � � K A5� + 6 � 6 7 F � : � � � � � K AL� 9 6 7 : � � � K A�� @ >
(41b)� 6 � 6 7 �� � : � � � K A � + 6 � F � : � � � K AL� 9 : � � � � � K A�� @ >
(41c)� 6 � 6 7 �� � : � � � � � K A�� + 6 � F � : � � � � � K A � 9 : � � � K A�� @ >
(41d)K *

This is possible due to the Wigner “doubling” of the components of the wave function.K #
Of course, certain relations between creation/annihilation operators of various field operators are again assumed.
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or

:F;^� 6 7 A " � 6 � �� � : � � � K � � � � � � K A5� + 6 � F � : � � � K � � � � �� K A�� 9 : � � � K � � � � �� K A ;� @ >
(42a):F;^� 6 7 A " � 6/� �� � : � � � K � � � � � � K A5� + 6�� F � : � � � K � � � � �� K A � 9 : � � � K � � � � �� K A ;� @ >
(42b):F; � 6 7 A " � 6 � �� � : � � � K � � � � � � K A � + 6 � F � : � � � K � � � � �� K A � 9 : � � � K � � � � �� K A ;� @ >
(42c):F; � 6 7 A " � 6 � �� � : � � � K � � � � � � K A � + 6 � F � : � � � K � � � � �� K A�� 9 : � � � K � � � � �� K A ;� @ Q
(42d)

Thus, one can see the operators

� :E� � A � � K :E� � A and
: � � :E� � A�� � � K :E� � A3A

also satisfy the equations of the type (10a,10b). From the formulas (38,39) one can figure out,
why do Eqs. (17,18) and (23a-24b) have different forms and how are

� � � � ,
� � � � , the self/anti-

self charge conjugate operators, and
� � � � ,

� � � � , the operators answering for the self/anti-self
charge conjugate states, connected?

3 The term � B � � � � 4 
 : To Be or Not To Be?

The possibility of terms as � � B � � � � 4 
 , Ref. [28, 29], appears to be related to the matters of
chiral interactions. As we are now convinced, the Dirac field operator can be always presented
as a superposition of the self- and anti-self charge conjugate field operators. The anti-self charge
conjugate part can give the self charge conjugate part after multiplying by the 6 7 matrix and vice
versa. In the equations (9) we are able to put further constraints to extract the self-conjugate
states. For instance,

6 7 � � � � � (43)

or, the anti-self charge conjugate states:

6 7 � � � � � � Q (44)

Hence, one has
���

� � 6 � � 4� � 9�
� �� �4@ >
(46)S e The anti-self charge conjugate field function � S can also be used. The equation has then the form:

� � d V�� 0V [	��
���S Y h � (45)
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or
� � � � 6 � � �	� 9�
� �� �4@ >

(48)

Both equations lead to the terms of interaction such as � � B � � � � 4 
 provided that the 4-vector
potential is considered as a complex function(al). In fact, from (46) we have:� ��� �	� � � � 9 = � � @

(49a)� � � � � 4� = � � 9 � � � @ Q
(49b)

And, from (48) we have� � � � 4� � � � 9 = � � @
(50a)� � � � � � = � � 9 � � � @ Q
(50b)

The meanings of � � and
� � � are obvious from the definition of 6 matrices. From the above set

we extract the terms as � + � � .� ����� . � �� ����� .  .  4� , which lead to the discussed terms [28, 29].
Furthermore, one can come to the same conclusions not applying to the constraints on the

creation/annihilation operators (which we have chosen previously for clarity and simplicity). It
is possible to work with self/anti-self charge conjugate fields

� � � � and
� � � � and two Majorana

anzatzen, see equations (16a,16b).
Thus, in the considered cases it is the 6 7 transformation which distinguishes various field

configurations (helicity, self/anti-self charge conjugate properties etc) in the coordinate repre-
sentation.

It would be interesting to compare the above arguments for derivation of the Esposito-
Recami-Evans term with those which have been used in [29]. We would also like to note that in
the submitted Esposito-Recami paper the terms of the type � � B � � � � 4 
 can be reduced to: � B�� A�� , where

�
is the scalar potential.

4 Generalizations to Higher Spin Representations and Conclusions

As we have learnt the 6 7 interactions is intimately related to the question of defining the self/anti-
self charge conjugate states. But, as we discussed in [9c] (see also [6]) it is impossible to intro-
duce self/anti-self charge conjugate momentum-space objects in the

:F;H>3@HA%C : @�>%;�A
representation.

One can see difficulties of introducing the analogues of � ��� � � � � � in the
:�;�>3@BA�C4: @�> ;A

representa-
tion, for instance, from these formulas:� � :E� � A�� � � � �: = ��A)�%=<�  " $ � :*& � A�( � :'& � A�+ ,N.0 �#2 $ 4� :'& � AM6�7� :'& � A)+ 95.%0 ; >

(51a)

��� :E� � A�� � � �{�: = ��A)�%=<�! 3"%$ � :*& � A�( � :'& � A�+-,N.0 �#2 $�4� :'& � AM6�7� :'& � A)+:95.%0<; >
(51b)

��� :E� � A�� � � �{�: = ��A)�%=<�  ��'$ � :'& � A)( � :'& � A)+ ,N.0 � 2 $ 4� :*& � A)6 7� :*& � A)+ 9�.%0 � > (51c)S3K
The self charge conjugate field function � K also can be used. The equation has the form:� � d V � V [	��
��
	 K Y h � (47)

As readily seen in the cases of alternative choices we have opposite “charges” in the terms of the type ����
� � u � 0 


and in the mass terms.
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and

� K� :E� � A�� � � �{�: = ��A)�%=<�  3" � $ � :*& � A)6 � :'& � A�+ ,N.0 �32 $ 4� :'& � A�(P7� :'& � A)+ 9�.%0 ; >
(52a)

��� :E� � A�� � � �{�: = ��A)�%=<�! 3" � $ � :*& � A)6 � :'& � A�+-,N.01�32 $54� :'& � A�(P7� :'& � A)+X9�.%0-; >
(52b)

��� :E� � A�� � � �{�: = ��A)�%=<�  ��'$ � :'& � AM6 � :'& � A�+ ,N.0 �32 $ 4� :*& � A)( 7� :*& � A)+ 9�.%0 � > (52c)

The equation
� K� � � � :�� � A��p+ . � � :E� � A with

� K �i2�� ��+ .�� z � ��� � @
��� � ������ � � @ � � >

��� � � �
	
 @ @ ;@ � ; @; @ @

��
(53)

defined in Ref. [6, 17], has no solutions in the field of complex numbers. We use the following
analogues of the formulas of the footnote 3 for the Barut-Muzinich-Williams matrices2 � � � 2 > 2 4 �g2~� � 2�, � (54a)2 6/��� � 2 , � � � 6���� > 2 6 7 � 2 , � � � 6 7 Q (54b)

Furthermore, in the Majorana representation of 6 ��� matrices the operator of the charge conjuga-
tion ( J K � @

) is equal to

� K� � � � 6 7�� � �p� 6 7��� 6 ���� � � � @ �
� � @ � � Q

(55)

Thus, if one implies that � � � � � ��: � < � >�A3< � � � ; the Sankaranarayanan-Good equation of
Ref. [17] transforms as follows:� 6 ��� � � � � � � � � � 9 � 
%� :E� � AG�4@�� � 6 ��� � � � � � � � � � 9 � 
� K :E� � AG�4@ Q

(56)

Please notice that the operator � � � � defined above has the following property with respect to the
ordinary complex conjugation � 4� � � � � � � � � , cf. [30].

Finally, in the Majorana representation the analogues of (6a-6d) have the form:

� 6���� � � � � � � � � � 9 � � � :�� � AG� @ >
(57a)

� 6���� � 4� � 4� � � � � � 9 � � 6 7 � 4 :E� � AG�4@ >
(57b)

� 6 ��� � � � � � � � � � 9 � � 6 7 � :�� � AG� @ >
(57c)

� 6 ��� � 4� � 4� � � � � � 9 � � � 4 :E� � AG�4@ Q
(57d)

It is seen after calculations which are similar to above that the combinations � � � 4 and 6�7 : � �� 4 A may have interaction of the “axial” form.
Concluding, we state that the 6 7 interaction is indispensable element of

:�;<�=�>3@BA�CJ:E@ > ;<�=�A
representation space (and, presumably, of all the representations of the type

:��H>3@HA8C :E@�>�� A
). We

discussed important physical consequences of the presence of this interaction for the particles of
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this representation and found relations to other models. The proper account of such terms may
lead to deeper understanding of the nature of particle interactions in the modern gauge theories,
of the structure of the Fock space and reasons for introduction of the latter as well.
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